Spatial Sampling Strategies with Multiple Scientific Frames of Reference

We study the spatial sampling strategies employed by field scientists studying aeolian processes, which are geophysical interactions between wind and terrain. As in geophysical field science in general, observations of aeolian processes are made and data gathered by carrying instruments to various locations and then deciding when and where to record a measurement. We focus on this decision-making process. Because sampling is physically laborious and time consuming, scientists often develop sampling plans in advance of deployment, i.e., employ an offline decision-making process. However, because of the unpredictable nature of field conditions, sampling strategies generally have to be updated online. By studying data from a large field deployment, we show that the offline strategies often consist of sampling along linear segments of physical space, called transects. We proceed by studying the sampling pattern on individual transects. For a given transect, we formulate model-based hypotheses that the scientists may be testing and derive sampling strategies that result in optimal hypothesis tests. Different underlying models lead to qualitatively different optimal sampling behavior. There is a clear mismatch between our first optimal sampling strategy and observed behavior, leading us to conjecture about other, more sophisticated hypothesis tests that may be driving expert decision-making behavior.

For more information: Kod*lab

Quasi-Static and Dynamic Mismatch for Door Opening and Stair Climbing

This paper contributes to quantifying the notion of robotic fitness by developing a set of necessary conditions that determine whether a small quadruped has the ability to open a class of doors or climb a class of stairs using only quasi-static maneuvers. After verifying that several such machines from the recent robotics literature are mismatched in this sense to the common human scale environment, we present empirical workarounds for the Minitaur quadrupedal platform that enable it to leap up, force the door handle and push through the door, as well as bound up the stairs, thereby accomplishing through dynamical maneuvers otherwise (i.e., quasi-statically) achievable tasks.

For more information: Kod*lab

Smooth Extensions of Feedback Motion Planners via Reference Governors

In robotics, it is often practically and theoretically convenient to design motion planners for approximate low-order (e.g., position- or velocity-controlled) robot models first, and then adapt such reference planners to more accurate high-order (e.g., force/torque-controlled) robot models. In this paper, we introduce a novel provably correct approach to extend the applicability of low-order feedback motion planners to high-order robot models, while retaining stability and collision avoidance properties, as well as enforcing additional constraints that are specific to the high-order models. Our smooth extension framework leverages the idea of reference governors to separate the issues of stability and constraint satisfaction, affording a bidirectionally coupled robot-governor system where the robot ensures stability with respect to the governor and the governor enforces state (e.g., collision avoidance) and control (e.g., actuator limits) constraints. We demonstrate example applications of our framework for augmenting path planners and vector field planners to the second-order robot dynamics.

Detecting Poisoning Attacks on Hierarchical Malware Classification Systems

Anti-virus software based on unsupervised hierarchical clustering (HC) of malware samples has been shown to be vulnerable to poisoning attacks. In this kind of attack, a malicious player degrades anti-virus performance by submitting to the database samples specifically designed to collapse the classification hierarchy utilized by the anti-virus (and constructed through HC) or otherwise deform it in a way that would render it useless. Though each poisoning attack needs to be tailored to the particular HC scheme deployed, existing research seems to indicate that no particular HC method by itself is immune. We present results on applying a new notion of entropy for combinatorial dendrograms to the problem of controlling the influx of samples into the data base and deflecting poisoning attacks. In a nutshell, effective and tractable measures of change in hierarchy complexity are derived from the above, enabling on-the-fly flagging and rejection of potentially damaging samples. The information-theoretic underpinnings of these measures ensure their indifference to which particular poisoning algorithm is being used by the attacker, rendering them particularly attractive in this setting.

Sensory Steering for Sampling-Based Motion Planning

Sampling-based algorithms offer computationally efficient, practical solutions to the path finding problem in high-dimensional complex configuration spaces by approximately capturing the connectivity of the underlying space through a (dense) collection of sample configurations joined by simple local planners. In this paper, we address a long-standing bottleneck associated with the difficulty of finding paths through narrow passages. Whereas most prior work considers the narrow passage problem as a sampling issue (and the literature abounds with heuristic sampling strategies) very little attention has been paid to the design of new effective local planners. Here, we propose a novel sensory steering algorithm for sampling- based motion planning that can “feel” a configuration space locally and significantly improve the path planning performance near difficult regions such as narrow passages. We provide computational evidence for the effectiveness of the proposed local planner through a variety of simulations which suggest that our proposed sensory steering algorithm outperforms the standard straight-line planner by significantly increasing the connectivity of random motion planning graphs.

For more information: Kod*lab

Discriminative Measures for Comparison of Phylogenetic Trees

In this paper we introduce and study three new measures for efficient discriminative comparison of phylogenetic trees. The NNI navigation dissimilarity $d_{nav}$ counts the steps along a “combing” of the Nearest Neighbor Interchange (NNI) graph of binary hierarchies, providing an efficient approximation to the (NP-hard) NNI distance in terms of “edit length”. At the same time, a closed form formula for $d_{nav}$ presents it as a weighted count of pairwise incompatibilities between clusters, lending it the character of an edge dissimilarity measure as well. A relaxation of this formula to a simple count yields another measure on all trees — the crossing dissimilarity $d_{CM}$. Both dissimilarities are symmetric and positive definite (vanish only between identical trees) on binary hierarchies but they fail to satisfy the triangle inequality. Nevertheless, both are bounded below by the widely used Robinson–Foulds metric and bounded above by a closely related true metric, the cluster-cardinality metric $d_{CC}$. We show that each of the three proposed new dissimilarities is computable in time O($n^2$) in the number of leaves $n$, and conclude the paper with a brief numerical exploration of the distribution over tree space of these dissimilarities in comparison with the Robinson–Foulds metric and the more recently introduced matching-split distance.

For more information: Kod*Lab

Comparative Design, Scaling, and Control of Appendages for Inertial Reorientation

This paper develops a comparative framework for the design of an actuated inertial appendage for planar reorientation. We define the Inertial Reorientation template, the simplest model of this behavior, and leverage its linear dynamics to reveal the design constraints linking a task with the body designs capable of completing it. As practicable inertial appendage designs lead to physical bodies that are generally more complex, we advance a notion of “anchoring” whereby a judicious choice of physical design in concert with an appropriate control policy yields a system whose closed loop dynamics are sufficiently captured by the template as to permit all further design to take place in its far simpler parameter space. This approach is effective and accurate over the diverse design spaces afforded by existing platforms, enabling performance comparison through the shared task space. We analyze examples from the literature and find advantages to each body type, but conclude that tails provide the highest potential performance for reasonable designs. Thus motivated, we build a physical example by retrofitting a tail to a RHex robot and present empirical evidence of its efficacy.

For more information: Kod*lab

Core Actuation Promotes Self-Manipulability on a Direct-Drive Quadrupedal Robot

For direct-drive legged robots operating in unstructured environments, workspace volume and force generation are competing, scarce resources. In this paper we demonstrate that introducing geared core actuation (i.e., proximal to rather than distal from the mass center) increases workspace volume and can provide a disproportionate amount of work-producing force to the mass center without affecting leg linkage transparency. These effects are analytically quantifiable up to modest assumptions, and are demonstrated empirically on a spined quadruped performing a leap both on level ground and from an isolated foothold (an archetypal feature of unstructured terrain).

Frontal plane stabilization and hopping with a 2DOF tail

The Jerboa, a tailed bipedal robot with two hip-actuated, passive-compliant legs and a doubly actuated tail, has been shown both formally and empirically to exhibit a variety of stable hopping and running gaits in the sagittal plane. In this paper we take the first steps toward operating Jerboa as a fully spatial machine by addressing the predominant mode of destabilization away from the sagittal plane: body roll. We develop a provably stable controller for underactuated aerial stabilization of the coupled body roll and tail angles, that uses just the tail torques. We show that this controller is successful at reliably reorienting the Jerboa body in roughly 150 ms of freefall from a large set of initial conditions. This controller also enables (and appears intuitively to be crucial for) sustained empirically stable hopping in the frontal plane by virtue of its substantial robustness against destabilizing perturbations and calibration errors. The controller as well as the analysis methods developed here are applicable to any robotic platform with a similar doubly-actuated spherical tail joint.

Mobile Robots as Remote Sensors for Spatial Point Process Models

Spatial point process models are a commonly-used statistical tool for studying the distribution of objects of interest in a domain. We study the problem of deploying mobile robots as remote sensors to estimate the parameters of such a model, in particular the intensity parameter lambda which measures the mean density of points in a Poisson point process. This problem requires covering an appropriately large section of the domain while avoiding the objects, which we treat as obstacles. We develop a control law that covers an expanding section of the domain and an online criterion for determining when to stop sampling, i.e., when the covered area is large enough to achieve a desired level of estimation accuracy, and illustrate the resulting system with numerical simulations.