Rapid Pole Climbing with a Quadrupedal Robot

This paper describes the development of a legged robot designed for general locomotion of complex terrain but specialized for dynamical, high-speed climbing of a uniformly convex cylindrical structure, such as an outdoor telephone pole. This robot, the RiSE V3 climbing machine—mass 5.4 kg, length 70 cm, excluding a 28 cm tail appendage—includes several novel mechanical features, including novel linkage designs for its legs and a non-backdrivable, energy-dense power transmission to enable high-speed climbing. We summarize the robot’s design and document a climbing behavior that achieves rapid ascent of a wooden telephone pole at 21 cm/s, a speed previously unachieved—and, we believe, heretofore impossible—with a robot of this scale. The behavioral gait of the robot employs the mechanical design to propel the body forward while passively maintaining yaw, pitch, and roll stability during climbing locomotion. The robot’s general-purpose legged design coupled with its specialized ability to quickly gain elevation and park at a vertical station silently with minimal energy consumption suggest potential applications including search and surveillance operations as well as ad hoc networking.