A Brachiating Robot Controller

We report on our empirical studies of a new controller for a two-link brachiating robot. Motivated by the pendulum-like motion of an ape’s brachiation, we encode this task as the output of a “target dynamical system.” Numerical simulations indicate that the resulting controller solves a number of brachiation problems that we term the “ladder,” “swing-up,” and “rope” problems. Preliminary analysis provides some explanation for this success. The proposed controller is implemented on a physical system in our laboratory. The robot achieves behaviors including “swing locomotion” and “swing up” and is capable of continuous locomotion over several rungs of a ladder. We discuss a number of formal questions whose answers will be required to gain a full understanding of the strengths and weaknesses of this approach.

Event Driven Parts Moving in 2D Endogenuous Environments

This paper is concerned with the parts’ moving problem based on an event-driven planning and control. We are interested in developing feedback based approaches to the automatic generation of actuator commands that cause the robot to move a set of parts from an arbitrary initial disassembled configuration to a specif ed final configuration. In the Phase I of this project, a composite algorithm that reactively switches between different feedback controllers has been shown to induce a noncooperative game being played among the parts being manipulated. This paper describes experimental results with EDAR – Event-Driven Assembler Robot – developed for moving parts based on feedback techniques.

For more information: Kod*Lab

Representation of Color Space Transformations for Effective Calibration and Control

We propose the “minvar” algorithm for computing continuous, continuously invertible, piecewise linear (PL) approximations of color space transformations that can serve as functional replacements wherever look-up tables are presently used. After motivating the importance of invertible approximants in color space management applications, we review the parameterization and computational implementation of PL functions as representing one useful instance of this notion. Finally, we describe the present version of the minvar algorithm and compare the approximations it yields with standard industrial practice — interpolation of look-up table data.

Modeling and Control of Color Xerographic Processes

The University of Michigan and Xerox’s Wilson Research Center have been collaborating on problems in color management systems since 1996, supported in part by an NSF GOALI grant. The paper is divided into three sections. The first discusses the basics of xerography and areas where systems methodology can have a potential impact. The second section describes the authors’ approach to the approximation of color space transformations using piecewise linear approximants and the graph intersection algorithm, with a brief review of some of the analytical and numerical results. The last section expounds on some of the benefits and difficulties of industry-university-government collaboration.

TEMPLATES AND ANCHORS: NEUROMECHANICAL HYPOTHESES OF LEGGED LOCOMOTION ON LAND

Locomotion results from complex, high-dimensional, non-linear, dynamically coupled interactions between an organism and its environment. Fortunately, simple models we call templates have been and can be made to resolve the redundancy of multiple legs, joints and muscles by seeking synergies and symmetries. A template is the simplest model (least number of variables and parameters) that exhibits a targeted behavior. For example, diverse species that differ in skeletal type, leg number and posture run in a stable manner like sagittal- and horizontal-plane spring-mass systems. Templates suggest control strategies that can be tested against empirical data. Templates must be grounded in more detailed morphological and physiological models to ask specific questions about multiple legs, the joint torques that actuate them, the recruitment of muscles that produce those torques and the neural networks that activate the ensemble. We term these more elaborate models anchors. They introduce representations of specific biological details whose mechanism of coordination is of interest. Since mechanisms require controls, anchors incorporate specific hypotheses concerning the manner in which unnecessary motion or energy from legs, joints and muscles is removed,leaving behind the behavior of the body in the low-degree-of-freedom template. Locating the origin of control is a challenge because neural and mechanical systems are dynamically coupled and both playa role. The control of slow, variable-frequency locomotion appears to be dominated by the nervous system, whereas during rapid, rhythmic locomotion, the control may reside more within the mechanical system. Anchored templates of many legged, sprawled-postured animals suggest that passive, dynamic self-stabilization from a feedforward, tuned mechanical system can reject rapid perturbations and simplify control. Future progress would benefit from the creation of a field embracing comparative neuromechanics.

A Hybrid Swing up Controller for a Two-link Brachiating Robot

In this paper, we report on a “hybrid” scheme for regulating the swing up behavior of a two degree of freedom brachiating robot. In this controller, a previous “target dynamics” controller and a mechanical energy regulator are combined. The proposed controller guarantees the boundedness of the total energy of the system. Simulations suggest that this hybrid controller achieves much better regulation of the desired swing motion than the target dynamics method by itself.

Sequential Composition of Dynamically Dexterous Robot Behaviors

We report on our efforts to develop a sequential robot controller composition technique in the context of dexterous “batting” maneuvers. A robot with a flat paddle is required to strike repeatedly at a thrown ball until the ball is brought to rest on the paddle at a specified location. The robot’s reachable workspace is blocked by an obstacle that disconnects the free space formed when the ball and paddle remain in contact, forcing the machine to “let go” for a time to bring the ball to the desired state. The controller compositions we create guarantee that a ball introduced in the “safe workspace” remains there and is ultimately brought to the goal. We report on experimental results from an implementation of these formal composition methods, and present descriptive statistics characterizing the experiments.

For more information: Kod*Lab

Brachiation on a Ladder with Irregular Intervals

We have previously developed a brachiation controller that allows a two degree of freedom robot to swing from handhold to handhold on a horizontal ladder with evenly space rungs as well as swing up from a suspended posture using a “target dynamics” controller. In this paper, we extend this class of algorithms to handle the much more natural problem of locomotion over irregularly spaced handholds. Numerical simulations and laboratory experiments illustrate the effectiveness of this generalization.

Planar image based visual servoing as a navigation problem

We describe a hybrid planar image-based servo algorithm which, for a simplified planar convex rigid body, converges to a static goal for all initial conditions within the workspace of the camera. This is achieved by using the sequential composition of a palette of continuous image based controllers. Each sub-controller, based on a specified set of collinear feature points, is shown to converge for all initial configurations in which the feature points are visible. Furthermore, the controller guarantees that the body will maintain a “visible” orientation, i.e. the feature points will always be in view of the camera. This is achieved by introducing a change of coordinates from SE(2) to an image plane measurement of three points, and imposing a navigation function in that coordinate system. Our intuition suggests that appropriately generalized versions of these ideas may be extended to SE(3)

A Formalism for the Composition of Loosely Coupled Robot Behaviors

We address the problem of controlling large distributed robotic systems such as factories. We introduce tools which help us compose local, hybrid control programs for a class of distributed robotic systems, assuming a palette of controller for individual tasks is already constructed. These tools, which combine backchaining behaviors with Petri Nets, expand on successful work in sequential composition of robot behaviors. We apply these ideas to the design of a robotic bucket brigade and simple, distributed assembly tasks.