Our objective is to provide experimentalists with neuromechanical control hypotheses that can be tested with kinematic data sets. To illustrate the approach, we select legged animals responding to perturbations during running. In the following sections, we briefly outline our dynamical systems approach, state our over-arching hypotheses, define four neuromechanical control architectures (NCAs) and conclude by proposing a series of perturbation experiments that can begin to identify the simplest architecture that best represents an animal’s controller.