We are interested in the development of a variety of legged robot platforms intended for operation in unstructured outdoor terrain. In such settings, the traditions of rational engineering design, driven by analytically informed and computationally assisted studies of robot-environment models, remain ineffective due to the complexity of both the robot designs and the terrain in which they must operate. Instead, empirical trial and error often drives the necessary incremental and iterative design process, hence the development of such robots remains expensive both in time and cost, and is often closely dependent upon the substrate properties of the locomotion terrain. This paper describes a series of concurrent but increasingly coordinated software development efforts that aim to diminish the gap between easily interfaced and physically sound computational models of a real robot’s operation in a complex natural environment. We describe a robot simulation environment in which simple robot modifications can be easily prototyped along and “played” into phenomenological models of contact mechanics. We particularly focus on the daunting but practically compelling example of robot feet interacting granular media, such as gravel or sand, offering a brief report of our progress in deriving and importing physically accurate but computationally tractable phenomenological substrate models into the robot execution simulation environment. With a goal of integration for future robot prototyping simulations, we review the prospects for diminishing the gap between the integrated computational models and the needs of physical platform development.