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The CAT(0) inequality

A complete geodesic metric space (X, d) is CAT(0), if all
geodesic triangles Mxyz are thinner than their Euclidean
comparison triangles:
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CAT(0) – Why should I care?

Properties:
Convexity of the metric

 convex analysis can be done here!
Uniqueness of geodesics
Nearest point projections to closed convex subspaces
Contractibility
Universal cover of locally CAT(0) is CAT(0), e.g.:

- a 2-dim’l square complex with vertex links of girth≥ 4;
- more generally a cubical complex all whose links are flags.

 a starategy for constructing a K(G, 1)
A compact set has a circumcenter

 have a grip on compact subgroups of Isom (X)
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CAT(0) Groups

By a CAT(0) group we mean a group G, together with a proper,
co-compact isometric (geometric) action on a CAT(0) space X.

Properties:
A finite order element fixes a point in X (elliptic);
An element of infinite order acts as a translation on a
geodesic line in X (hyperbolic);
There are only finitely many elliptic conjugacy classes;
No infinite subgroup of G is purely elliptic. (Swenson)

Theorem (Flat Torus theorem)
If H < G is a free abelian subgroup of rank d, then H stabilizes
an isometrically embedded d-flat F ⊂ X, on which it acts
co-compactly by translations.
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Examples〈
a, b

∣∣− 〉× Z acts geometrically on the product of a 4-regular
tree with the real line:

D. P. Guralnik Rank Rigidity of CAT(0) groups



Examples

Other examples:
Lattice in Isom(Hn): becomes a CAT(0) group upon
excising a maximal disjoint family of precisely invariant
horoballs;
Coxeter groups acting on Davis-Moussong complexes;
Direct products of free groups;
More generally, right-angled Artin groups;
Fundamental groups of piecewise-NPC complexes with
large links.

D. P. Guralnik Rank Rigidity of CAT(0) groups



Visual Boundary

Two geodesic rays γ, γ′ : [0,∞)→ X are asymptotic, if
d(γ(t), γ′(t)) is bounded.

The visual boundary ∂X of a CAT(0) space X is the set of
asymptoticity classes of geodesic rays in X.

D. P. Guralnik Rank Rigidity of CAT(0) groups



Visual Boundary

Two geodesic rays γ, γ′ : [0,∞)→ X are asymptotic, if
d(γ(t), γ′(t)) is bounded.

The visual boundary ∂X of a CAT(0) space X is the set of
asymptoticity classes of geodesic rays in X.

D. P. Guralnik Rank Rigidity of CAT(0) groups



Visual Boundary

Two geodesic rays γ, γ′ : [0,∞)→ X are asymptotic, if
d(γ(t), γ′(t)) is bounded.

The visual boundary ∂X of a CAT(0) space X is the set of
asymptoticity classes of geodesic rays in X.

D. P. Guralnik Rank Rigidity of CAT(0) groups



Visual Boundary

Two geodesic rays γ, γ′ : [0,∞)→ X are asymptotic, if
d(γ(t), γ′(t)) is bounded.

The visual boundary ∂X of a CAT(0) space X is the set of
asymptoticity classes of geodesic rays in X.

D. P. Guralnik Rank Rigidity of CAT(0) groups



Visual Boundary

Two geodesic rays γ, γ′ : [0,∞)→ X are asymptotic, if
d(γ(t), γ′(t)) is bounded.

The visual boundary ∂X of a CAT(0) space X is the set of
asymptoticity classes of geodesic rays in X.

Theorem
Let x ∈ X. Then every asymptoticity class in ∂X contains a
unique representative emanating from x.
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Why boundaries?

Boundaries were born to answer coarse geometric
questions, e.g.:

Which subgroups of G stabilize large-scale features?

. . . for example, extend the idea (and role) of parabolic
subgroups encountered in the classical groups; radial vs.
tangential convergence.

If X is so-and-so, what is G?

. . . Mostow rigidity utilizes the conformal structure on the
ideal sphere for classifying G up to conjugacy according to
the homotopy type of G\H3.
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Cone boundary ∂∞X vs. Tits boundary ∂TX

Two ideas for topologizing ∂X:
Two boundary points are close if. . .

. . . a pair of representative rays fellow-travels for a long
time; (Cone topology, ∂∞X – use projections to balls)

. . . I can stare at both of them at the same time, no matter
where I stand. (Tits metric, ∂TX – use angles)
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Cone boundary ∂∞X vs. Tits boundary ∂TX

Example: G = F2 × Z y T4 × R

∂ (T4 × R) = ∂T4 ∗ ∂R = {Cantor set} ∗ {±∞}

∂∞X is coarser than ∂TX!!
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Cone boundary ∂∞X vs. Tits boundary ∂TX

More generally, we have good news:
∂TX is a complete CAT(1) space (Kleiner-Leeb)

∂(X × Y) = ∂X ∗ ∂Y for both the Cone and Tits
boundaries (Berestovskij)

The Tits metric is lower semi-continuous on ∂∞X × ∂∞X.

The following are equivalent: (Gromov?)
- G is Gromov-hyperbolic,
- ∂TX is discrete,
- X contains no 2-flat.
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The Bad News

∂TX is not locally compact (F2 × Z)
G one-ended but ∂TX not connected (Croke-Kleiner)
G determines neither ∂∞X nor ∂TX (Croke-Kleiner)
Many join-irreducible examples of ∂∞X not locally
connected (Mihalik-Ruane)
∂∞X not 1-connected though G is 1-connected at infinity

(Mihalik-Tschantz)
If there is a round Sd ⊂ ∂TX, is there a periodic Ed+1 ⊂ X?

(Gromov, Wise)
∂TX is connected iff diam∂TX ≤ 3π

2 .
(Ballmann-Buyalo, Swenson-Papasoglu)

What does it mean for ∂TX to have diameter≤ π?
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Rank One

Let X be a proper CAT(0) space.

Rank one
A rank one geodesic in X is a geodesic line not bounding a flat
half-plane. A rank one isometry is a hyperbolic isometry
g ∈ Isom (X) having a rank one axis. A group G < Isom (X)
has rank one if it contains a rank one isometry (otherwise G has
higher rank).

Origin: rank one Lie groups and discrete subgroups
thereof;
More generally: hyperbolic and relatively-hyperbolic
groups;
Typical behaviour: Convergence dynamics, mimicking
compactness properties of univalent analytic mappings.
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Rank One and Convergence Dynamics

Discrete Convergence (Gehring-Martin)
Every infinite F ⊂ G contains a sequence gn converging on
∂∞X to a constant map uniformly on compacts in ∂∞X r {pt}.

Morally (or loosely) speaking,
G of higher rank ⇔ flats abound in X ⇒ DCG fails

How? – e.g., if g ∈ G has an axis bounding a flat half-plane F,
then gn cannot collapse ∂F to g(∞).

Some properties of rank one groups:
Many non-abelian free subgroups
More ‘interesting’ boundaries
Better chances for splittings over ‘nice’ subgroups
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Compressiblity

To study higher rank groups, we introduce:

Compressible pairs (Swenson-G.)
A pair p, q ∈ ∂X is G-compressible if there are gn ∈ G such that
gnp→ p∞, gnq→ q∞ but dT(p∞, q∞) < dT(p, q).
A ⊂ ∂X is incompressible if contains no compressible pair.

Examples:
Rank one ⇒ No non-degenerate incompressible sets
X = Em ⇒ entire boundary is G-incompressible
More generally, ∂TX compact ⇒ ∂TX is G-incompressible
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Example: G = F2 × F2 is compressible
Action of gn = un × vn with 1 6= u, v ∈ F2 causes massive
compressions away from the repelling points (ξ, η arbitrary):
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Example: G = F2 × F2 is compressible
Any subsequence with unk · u−∞ and vnk · v−∞ converging gives
rise to a well-defined limiting ‘folding’ operator on ∂TX:
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Example: G = F2 × F2 is compressible
Question: How much of this can be retained without prior
knowledge about group/space structure?
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Goal: the Rank-Rigidity Conjectures

Suppose G y X is a CAT(0) group.

Conjecture: Closing Lemma (Ballman-Buyalo)
If diam∂TX > π, then G has rank one.

The best known bound is 3π
2 , due to Swenson and Papasoglu.

Conjecture: Rank-rigidity (Ballman-Buyalo)
If diam∂TX = π and X is irreducible, then X is either a
symmetric space or a Euclidean building.

Known for:
Riemannian manifolds (Ballman)
Cell complexes of low dimensions (Ballman and Brin)
Cubings (Caprace and Sageev)
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A sample of our results
Theorem (G.-Swenson)
Let G y X be a CAT(0) group of higher rank, and let d denote
the geometric dimension of ∂TX. Then

diam∂TX ≤ 2π − arccos
(
− 1

d + 1

)
.

Theorem (G.-Swenson)
Let G y X be a CAT(0) group of higher rank. TFAE:

1 G is virtually-Abelian;
2 X contains a virtually G-invariant coarsely dense flat;
3 G stabilizes a non-degenerate maximal incompressible

subset of ∂X.
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Approach through the boundary ∂TX

Most promising results in the direction of rank rigidity are:
Leeb: If X is geodesically-complete and ∂TX is a
join-irreducible spherical building then X is a symmetric
space or Euclidean building;
Lytchak: If ∂TX is geodesically-complete and contains a
proper closed subspace closed under taking antipodes, then
∂TX is a spherical building.

Question: Assume G has higher rank. How to use G y X for
obtaining a classification of its possible boundaries?
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Some known structural results

Let Z be a finite-dimensional complete CAT(1) space:
Lytchak: If Z is geodesically-complete then

Z = Sn︸︷︷︸
sphere

∗Z1 ∗ · · · ∗ Zk︸ ︷︷ ︸
irred. buildings

∗ Y1 ∗ · · · ∗ Yl︸ ︷︷ ︸
irred. none of the above

This decomposition is unique.
Swenson: There always is a decomposition

Z = S(Z)︸︷︷︸
sphere

∗ E(Z)︸︷︷︸
no sphere factor

Moreover, S(Z) is the set of suspension points of Z
and the decomposition is unique.
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π-Convergence

Let G be a group of isometries of a CAT(0) space X.

π-Convergence (Swenson-Papasoglu)

For every ε ∈ [0, π], every infinite F ⊂ G contains a sequence
gn converging on ∂∞X into a Tits ball BT(p, ε) uniformly on
compacts in ∂∞X r BT(n, π − ε).
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π-Convergence

Let G be a group of isometries of a CAT(0) space X.

π-Convergence (Swenson-Papasoglu)

For every ε ∈ [0, π], every infinite F ⊂ G contains a sequence
gn converging on ∂∞X into a Tits ball BT(p, ε) uniformly on
compacts in ∂∞X r BT(n, π − ε).

Special attention on the words ‘converging’ and ‘into’:
1 No actual limiting map ∂∞X r BT(n, π − ε)→ BT(p, ε).
2 Varying limits can be constructed, but are –

choice-dependent, and
restricted to Tits-compact sets.
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Our contribution: use the Ellis semi-group

Instead of limits of the form lim
n→∞

gnp, work with G-ultra-limits

ωp = lim
g→ω

gp, computed in the cone compactification X̂ of X.

G discrete and countable, so
Space of ultra-filters on G with Tychonoff topology
coincides with βG, so
G y X̂ extends to a semi-group action βG y X̂, and
The inversion map extends to a continuous involution
ω 7→ Sω (antipode).
Caveat:

1 ω y ∂∞X need not be continuous,
2 S(ων) 6= (Sν)(Sω).
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Ultra-filter Miracles

Suppose ω ∈ βG is non-principal.

Contraction property. ω is a Lip-1 operator on ∂TX.
Sink and Source. ω is constant on X, so define –

ω(∞) = ωX , ω(−∞) = (Sω)X .

π-Convergence. for all p ∈ ∂X, ε ∈ [0, π]:

dT(p, ω(−∞)) ≥ π − ε ⇒ dT(ωp, ω(∞)) ≤ ε .

Compression. A incompressible iff ω restricts to an
isometry on A, for all ω ∈ βG.

D. P. Guralnik Rank Rigidity of CAT(0) groups



Ultra-filter Miracles

Suppose ω ∈ βG is non-principal.
Contraction property. ω is a Lip-1 operator on ∂TX.

Sink and Source. ω is constant on X, so define –

ω(∞) = ωX , ω(−∞) = (Sω)X .

π-Convergence. for all p ∈ ∂X, ε ∈ [0, π]:

dT(p, ω(−∞)) ≥ π − ε ⇒ dT(ωp, ω(∞)) ≤ ε .

Compression. A incompressible iff ω restricts to an
isometry on A, for all ω ∈ βG.

D. P. Guralnik Rank Rigidity of CAT(0) groups



Ultra-filter Miracles

Suppose ω ∈ βG is non-principal.
Contraction property. ω is a Lip-1 operator on ∂TX.
Sink and Source. ω is constant on X, so define –

ω(∞) = ωX , ω(−∞) = (Sω)X .

π-Convergence. for all p ∈ ∂X, ε ∈ [0, π]:

dT(p, ω(−∞)) ≥ π − ε ⇒ dT(ωp, ω(∞)) ≤ ε .

Compression. A incompressible iff ω restricts to an
isometry on A, for all ω ∈ βG.

D. P. Guralnik Rank Rigidity of CAT(0) groups



Ultra-filter Miracles

Suppose ω ∈ βG is non-principal.
Contraction property. ω is a Lip-1 operator on ∂TX.
Sink and Source. ω is constant on X, so define –

ω(∞) = ωX , ω(−∞) = (Sω)X .

π-Convergence. for all p ∈ ∂X, ε ∈ [0, π]:

dT(p, ω(−∞)) ≥ π − ε ⇒ dT(ωp, ω(∞)) ≤ ε .

Also...

Compression. A incompressible iff ω restricts to an
isometry on A, for all ω ∈ βG.

D. P. Guralnik Rank Rigidity of CAT(0) groups



Ultra-filter Miracles

Suppose ω ∈ βG is non-principal.
Contraction property. ω is a Lip-1 operator on ∂TX.
Sink and Source. ω is constant on X, so define –

ω(∞) = ωX , ω(−∞) = (Sω)X .

π-Convergence. for all p ∈ ∂X, ε ∈ [0, π]:

dT(p, ω(−∞)) ≥ π − ε ⇒ dT(ωp, ω(∞)) ≤ ε .

Also...
Compression. A incompressible iff ω restricts to an
isometry on A, for all ω ∈ βG.

D. P. Guralnik Rank Rigidity of CAT(0) groups



Ultra-filter Miracles

Suppose ω ∈ βG is non-principal.
Contraction property. ω is a Lip-1 operator on ∂TX.
Sink and Source. ω is constant on X, so define –

ω(∞) = ωX , ω(−∞) = (Sω)X .

π-Convergence. for all p ∈ ∂X, ε ∈ [0, π]:

dT(p, ω(−∞)) ≥ π − ε ⇒ dT(ωp, ω(∞)) ≤ ε .

Also...
Compression. A incompressible iff ω restricts to an
isometry on A, for all ω ∈ βG.

Most importantly: Can appeal to compactness of βG.

D. P. Guralnik Rank Rigidity of CAT(0) groups



Our main tool: Folding and Total Folding

Folding Lemma (Swenson-G.)
Let d be the geometric dimension of ∂TX. Then for every
(d + 1)-flat F there exist ω0 ∈ βG and a (d + 1)-flat F0 such
that

1 ω0 maps ∂F isometrically onto S0 = ∂F0, and
2 ω0 maps ∂X onto the sphere S0.
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Our main tool: Folding and Total Folding

Folding Lemma (Swenson-G.)
Let d be the geometric dimension of ∂TX. Then for every
(d + 1)-flat F there exist ω0 ∈ βG and a (d + 1)-flat F0 such
that

1 ω0 maps ∂F isometrically onto S0 = ∂F0, and
2 ω0 maps ∂X onto the sphere S0.

Corollaries: For S0 as above,
every minimal closed invariant subset of ∂∞X intersects S0;
S0 contains an isometric copy of any incompressible subset
A ⊂ ∂X;
Every maximal incompresible subset of ∂X is isometric to
a compact π-convex subset of a round sphere.
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Our main tool: Folding and Total Folding

Total Folding (Swenson-G.)
There exists ν0 ∈ βG such that

ν0∂X is a maximal incompressible subset of maximal
volume (MVI),
ν2

0 = ν0 in βG, and ν0∂X ⊂ S0.
Moreover, any two MVI’s are isometric and (geometrically)
interiorly-disjoint.

Remarks:
Rank one implies ∂X is compressible. Converse?
Does higher rank imply S0 is covered by incompressibles?

 A positive answer implies diam∂TX = π

Is ∂X covered by MVI’s?
 Through Lytchak, this would imply rank rigidity!
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Endspiel: let’s try to prove something

Theorem (G.-Swenson)
Let G y X be a CAT(0) group of higher rank. TFAE:

1 G is virtually-Abelian;
2 X contains a virtually G-invariant coarsely dense flat;
3 G stabilizes a non-degenerate maximal incompressible

subset of ∂X.

The plan to prove (3) ⇒ (1):
Prove that ∂TX and ∂∞X coincide with the round sphere;
Hit this on the head with Shalom’s QI characterization of
virtually-Abelian groups.

But first we need to find a candidate sphere living inside ∂X.
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The sphere of poles

We now apply Swenson’s decomposition of ∂TX:
A dipole is an incompressible pair p, q with dT(p, q) = π.

A pole is an element of a dipole.
Let P be the set of all poles.

!! Poles are suspension points of ∂TX (so P ⊂ S(∂TX)).
! S(∂TX) is incompressible, and therefore P = S(∂TX).

Every (non-degenerate) max incompressible contains P:
A ∪ P is incompressible, so P ⊆ A by maximality.
In fact, A is the spherical join of P with a compact convex
spherical polytope.
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Characterizing virtually-Abelian groups

Main direction: if G stabilizes a max incompressible set A, then
G is virtually-Abelian.

Write A = P ∗ B using Swenson’s decomposition, and
prove B must be empty (This is the main step where group
theory is involved).

Thus, P is the only max incompressible, but that implies
E(∂TX) is empty, by G-invariance, and we are done.
The main step: unless B is empty, G has a fixed point in B;
now use Ruane’s result to virtually split G as a direct
product with a Z factor, allowing an induction on dimP.
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Main direction: if G stabilizes a max incompressible set A, then
G is virtually-Abelian.

Write A = P ∗ B using Swenson’s decomposition, and
prove B must be empty (This is the main step where group
theory is involved).
Thus, P is the only max incompressible, but that implies
E(∂TX) is empty, by G-invariance, and we are done.
The main step: unless B is empty, G has a fixed point in B;
now use Ruane’s result to virtually split G as a direct
product with a Z factor, allowing an induction on dimP.

THE END, THANK YOU!

D. P. Guralnik Rank Rigidity of CAT(0) groups



What Makes Folding Work?

D. P. Guralnik Rank Rigidity of CAT(0) groups



What Makes Folding Work?

D. P. Guralnik Rank Rigidity of CAT(0) groups



What Makes Folding Work?

D. P. Guralnik Rank Rigidity of CAT(0) groups



What Makes Folding Work?

D. P. Guralnik Rank Rigidity of CAT(0) groups



What Makes Folding Work?

Properties of pulling (Swenson-G.)
Suppose ω ∈ βG pulls from a point n ∈ ∂X. Then:

1 if F is a flat with n ∈ ∂F, then ω maps ∂F isometrically
onto the boundary of a flat;

2 if dT(n, a) ≤ π, then ω restricts to an isometry on [n, a];
3 if dT(n, a) ≥ π, then ωa = ω(∞). Thus,
4 ω maps ∂X into the geodesic suspension of ωn and ω(∞),

preserving boundaries of flats through n.
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