Rank rigidity of CAT(0) groups

Dan P. Guralnik (Penn), Eric L. Swenson (BYU)

February 16, 2012

The CAT(0) inequality

A complete geodesic metric space (X, d) is CAT(0), if all geodesic triangles $\triangle xyz$ are thinner than their Euclidean comparison triangles:

CAT(0) – Why should I care?

Properties:

• Convexity of the metric

```
→ convex analysis can be done here!
```

- Uniqueness of geodesics
- Nearest point projections to closed convex subspaces
- Contractibility
- Universal cover of locally CAT(0) is CAT(0), e.g.:
 - a 2-dim'l square complex with vertex links of girth \geq 4;
 - more generally a cubical complex all whose links are flags.

 \rightsquigarrow a starategy for constructing a K(G, 1)

• A compact set has a circumcenter

 \rightsquigarrow have a grip on compact subgroups of Isom (X)

CAT(0) Groups

By a CAT(0) group we mean a group *G*, together with a proper, co-compact isometric (*geometric*) action on a CAT(0) space *X*.

Properties:

- A finite order element fixes a point in *X* (*elliptic*);
- An element of infinite order acts as a translation on a geodesic line in *X* (*hyperbolic*);
- There are only finitely many elliptic conjugacy classes;
- No infinite subgroup of G is purely elliptic. (Swenson)

Theorem (Flat Torus theorem)

If H < G is a free abelian subgroup of rank d, then H stabilizes an isometrically embedded d-flat $F \subset X$, on which it acts co-compactly by translations.

Examples

 $\langle a, b | - \rangle \times \mathbb{Z}$ acts geometrically on the product of a 4-regular tree with the real line:

Other examples:

- Lattice in Isom(\mathbb{H}^n): becomes a CAT(0) group upon excising a maximal disjoint family of precisely invariant horoballs;
- Coxeter groups acting on Davis-Moussong complexes;
- Direct products of free groups;
- More generally, right-angled Artin groups;
- Fundamental groups of piecewise-NPC complexes with large links.

Two geodesic rays $\gamma, \gamma' : [0, \infty) \to X$ are *asymptotic*, if $d(\gamma(t), \gamma'(t))$ is bounded.

Two geodesic rays $\gamma, \gamma' : [0, \infty) \to X$ are *asymptotic*, if $d(\gamma(t), \gamma'(t))$ is bounded.

Two geodesic rays $\gamma, \gamma' : [0, \infty) \to X$ are *asymptotic*, if $d(\gamma(t), \gamma'(t))$ is bounded.

Two geodesic rays $\gamma, \gamma' : [0, \infty) \to X$ are *asymptotic*, if $d(\gamma(t), \gamma'(t))$ is bounded.

Two geodesic rays $\gamma, \gamma' : [0, \infty) \to X$ are *asymptotic*, if $d(\gamma(t), \gamma'(t))$ is bounded.

The visual boundary ∂X of a CAT(0) space X is the set of asymptoticity classes of geodesic rays in X.

Theorem

Let $x \in X$. Then every asymptoticity class in ∂X contains a unique representative emanating from x.

Why boundaries?

Boundaries were born to answer coarse geometric questions, e.g.:

• Which subgroups of G stabilize large-scale features?

... for example, extend the idea (and role) of parabolic subgroups encountered in the classical groups; radial vs. tangential convergence.

• If X is so-and-so, what is G?

... Mostow rigidity utilizes the conformal structure on the ideal sphere for classifying *G* up to conjugacy according to the homotopy type of $G \setminus \mathbb{H}^3$.

Two ideas for topologizing ∂X **:** Two boundary points are close if...

Two ideas for topologizing ∂X : Two boundary points are close if...

• ... a pair of representative rays fellow-travels for a long time; (*Cone topology*, $\partial_{\infty}X$ – use projections to balls)

Two ideas for topologizing ∂X : Two boundary points are close if

Two boundary points are close if...

• ... a pair of representative rays fellow-travels for a long time; (*Cone topology*, $\partial_{\infty}X$ – use projections to balls)

• ... I can stare at both of them at the same time, no matter where I stand. (*Tits metric*, $\partial_{T}X$ – use angles)

Example: $G = \mathbf{F}_2 \times \mathbb{Z} \curvearrowright \mathbf{T}_4 \times \mathbb{R}$

 $\partial (\mathbf{T}_4 \times \mathbb{R}) = \partial \mathbf{T}_4 * \partial \mathbb{R} = \{ \text{Cantor set} \} * \{ \pm \infty \}$ $\partial_{\infty} X \text{ is coarser than } \partial_{\mathsf{T}} X !!$

More generally, we have good news:

- $\partial_{\mathrm{T}} X$ is a complete CAT(1) space (Kleiner-Leeb)
- $\partial(X \times Y) = \partial X * \partial Y$ for *both* the Cone and Tits boundaries (Berestovskij)
- The Tits metric is lower semi-continuous on $\partial_{\infty}X \times \partial_{\infty}X$.
- The following are equivalent:

(Gromov?)

- G is Gromov-hyperbolic,
- $\partial_{\mathrm{T}} X$ is discrete,
- X contains no 2-flat.

The Bad News

- $\partial_{\mathrm{T}} X$ is not locally compact
- *G* one-ended but $\partial_{\mathsf{T}} X$ not connected
- *G* determines neither $\partial_{\infty} X$ nor $\partial_{T} X$ (Croke-Kleiner)

 $(\mathbf{F}_2 \times \mathbb{Z})$

(Croke-Kleiner)

- Many join-irreducible examples of $\partial_{\infty} X$ not locally connected (Mihalik-Ruane)
- $\partial_{\infty} X$ not 1-connected though *G* is 1-connected at infinity (Mihalik-Tschantz)
- If there is a round $\mathbb{S}^d \subset \partial_{\mathsf{T}} X$, is there a periodic $\mathbb{E}^{d+1} \subset X$? (Gromov, Wise)
- $\partial_{T}X$ is connected iff diam $\partial_{T}X \leq \frac{3\pi}{2}$. (Ballmann-Buyalo, Swenson-Papasoglu) What does it mean for $\partial_{T}X$ to have diameter $\leq \pi$?

Rank One

Let X be a proper CAT(0) space.

Rank one

A rank one geodesic in X is a geodesic line not bounding a flat half-plane. A rank one isometry is a hyperbolic isometry $g \in \text{Isom}(X)$ having a rank one axis. A group G < Isom(X)has rank one if it contains a rank one isometry (otherwise G has higher rank).

- **Origin:** rank one Lie groups and discrete subgroups thereof;
- More generally: hyperbolic and relatively-hyperbolic groups;
- **Typical behaviour:** Convergence dynamics, mimicking compactness properties of univalent analytic mappings.

Rank One and Convergence Dynamics

Discrete Convergence (Gehring-Martin)

Every infinite $F \subset G$ contains a sequence g_n converging on $\partial_{\infty} X$ to a constant map uniformly on compacts in $\partial_{\infty} X \setminus \{pt\}$.

Morally (or loosely) speaking,

G of higher rank \Leftrightarrow flats abound in $X \Rightarrow$ DCG fails

How? – e.g., if $g \in G$ has an axis bounding a flat half-plane F, then g^n cannot collapse ∂F to $g(\infty)$.

Some properties of rank one groups:

- Many non-abelian free subgroups
- More 'interesting' boundaries
- Better chances for splittings over 'nice' subgroups

Compressiblity

To study higher rank groups, we introduce:

Compressible pairs (Swenson-G.)

A pair $p, q \in \partial X$ is *G*-compressible if there are $g_n \in G$ such that $g_n p \to p_\infty, g_n q \to q_\infty$ but $d_T(p_\infty, q_\infty) < d_T(p, q)$. $A \subset \partial X$ is incompressible if contains no compressible pair.

Examples:

- Rank one \Rightarrow No non-degenerate incompressible sets
- $X = \mathbb{E}^m \Rightarrow$ entire boundary is *G*-incompressible
- More generally, $\partial_{T} X$ compact $\Rightarrow \partial_{T} X$ is *G*-incompressible

Action of $g^n = u^n \times v^n$ with $1 \neq u, v \in F_2$ causes massive compressions away from the repelling points (ξ, η arbitrary):

Action of $g^n = u^n \times v^n$ with $1 \neq u, v \in F_2$ causes massive compressions away from the repelling points (ξ, η arbitrary):

Action of $g^n = u^n \times v^n$ with $1 \neq u, v \in F_2$ causes massive compressions away from the repelling points (ξ, η arbitrary):

Action of $g^n = u^n \times v^n$ with $1 \neq u, v \in F_2$ causes massive compressions away from the repelling points (ξ, η arbitrary):

Action of $g^n = u^n \times v^n$ with $1 \neq u, v \in F_2$ causes massive compressions away from the repelling points (ξ, η arbitrary):

Any subsequence with $u^{n_k} \cdot u^{-\infty}$ and $v^{n_k} \cdot v^{-\infty}$ converging gives rise to a well-defined limiting 'folding' operator on $\partial_{\tau} X$:

Any subsequence with $u^{n_k} \cdot u^{-\infty}$ and $v^{n_k} \cdot v^{-\infty}$ converging gives rise to a well-defined limiting 'folding' operator on $\partial_{\tau} X$:

Example: $G = F_2 \times F_2$ is compressible

Question: How much of this can be retained *without* prior knowledge about group/space structure?

Goal: the Rank-Rigidity Conjectures

Suppose $G \curvearrowright X$ is a CAT(0) group.

Conjecture: Closing Lemma (Ballman-Buyalo)

If diam $\partial_{\mathrm{T}} X > \pi$, then *G* has rank one.

The best known bound is $\frac{3\pi}{2}$, due to Swenson and Papasoglu.

Conjecture: Rank-rigidity (Ballman-Buyalo)

If diam $\partial_{T}X = \pi$ and X is irreducible, then X is either a symmetric space or a Euclidean building.

Known for:

- Riemannian manifolds (Ballman)
- Cell complexes of low dimensions (Ballman and Brin)
- Cubings (Caprace and Sageev)

A sample of our results

Theorem (G.-Swenson)

Let $G \curvearrowright X$ be a CAT(0) group of higher rank, and let *d* denote the geometric dimension of $\partial_T X$. Then

$$\operatorname{diam} \partial_{\mathrm{T}} X \le 2\pi - \arccos\left(-\frac{1}{d+1}\right)$$

Theorem (G.-Swenson)

Let $G \curvearrowright X$ be a CAT(0) group of higher rank. TFAE:

- *G* is virtually-Abelian;
- 2 X contains a virtually G-invariant coarsely dense flat;
- Solution G stabilizes a non-degenerate maximal incompressible subset of ∂X .

Approach through the boundary $\partial_{\mathsf{T}} X$

Most promising results in the direction of rank rigidity are:

- Leeb: If X is geodesically-complete and $\partial_{T}X$ is a join-irreducible spherical building then X is a symmetric space or Euclidean building;
- Lytchak: If $\partial_{T}X$ is geodesically-complete and contains a proper closed subspace closed under taking antipodes, then $\partial_{T}X$ is a spherical building.

Question: Assume *G* has higher rank. How to use $G \cap X$ for obtaining a classification of its possible boundaries?

Some known structural results

Let *Z* be a finite-dimensional complete CAT(1) space:

• Lytchak: If Z is geodesically-complete then

$$Z = \underbrace{\mathbb{S}^n}_{sphere} * \underbrace{Z_1 * \cdots * Z_k}_{irred. \text{ buildings}} * \underbrace{Y_1 * \cdots * Y_l}_{irred. \text{ none of the above}}$$

This decomposition is unique.

• Swenson: There always is a decomposition

$$Z = \underbrace{\mathbb{S}(Z)}_{} \ast \quad \underbrace{E(Z)}_{}$$

sphere no sphere factor

Moreover, $\mathbb{S}(Z)$ is the set of suspension points of *Z* and the decomposition is unique.

π -Convergence

Let G be a group of isometries of a CAT(0) space X.

π -Convergence

Let G be a group of isometries of a CAT(0) space X.

π -Convergence (Swenson-Papasoglu)

For every $\epsilon \in [0, \pi]$, every infinite $F \subset G$ contains a sequence g_n converging on $\partial_{\infty} X$ into a Tits ball $B_T(p, \epsilon)$ uniformly on compacts in $\partial_{\infty} X \setminus B_T(n, \pi - \epsilon)$.

π -Convergence

Let G be a group of isometries of a CAT(0) space X.

π -Convergence (Swenson-Papasoglu)

For every $\epsilon \in [0, \pi]$, every infinite $F \subset G$ contains a sequence g_n converging on $\partial_{\infty} X$ into a Tits ball $B_T(p, \epsilon)$ uniformly on compacts in $\partial_{\infty} X \setminus B_T(n, \pi - \epsilon)$.

Special attention on the words 'converging' and 'into':

- No actual limiting map $\partial_{\infty} X \smallsetminus B_{T}(n, \pi \epsilon) \rightarrow B_{T}(p, \epsilon)$.
- Varying limits can be constructed, but are
 - choice-dependent, and
 - restricted to Tits-compact sets.

Instead of limits of the form $\lim_{n\to\infty} g_n p$, work with *G*-ultra-limits $\omega p = \lim_{g\to\omega} gp$, computed in the cone compactification \widehat{X} of *X*.

Instead of limits of the form $\lim_{n\to\infty} g_n p$, work with *G*-ultra-limits

- $\omega p = \lim_{g \to \omega} gp$, computed in the cone compactification \widehat{X} of *X*.
 - *G* discrete and countable, so

Instead of limits of the form $\lim_{n\to\infty} g_n p$, work with *G*-ultra-limits

- *G* discrete and countable, so
- Space of ultra-filters on *G* with Tychonoff topology coincides with β*G*, so

Instead of limits of the form $\lim_{n\to\infty} g_n p$, work with *G*-ultra-limits

- *G* discrete and countable, so
- Space of ultra-filters on G with Tychonoff topology coincides with βG, so
- $G \curvearrowright \widehat{X}$ extends to a semi-group action $\beta G \curvearrowright \widehat{X}$, and

Instead of limits of the form $\lim_{n\to\infty} g_n p$, work with *G*-ultra-limits

- *G* discrete and countable, so
- Space of ultra-filters on G with Tychonoff topology coincides with βG, so
- $G \curvearrowright \widehat{X}$ extends to a semi-group action $\beta G \curvearrowright \widehat{X}$, and
- The inversion map extends to a continuous involution $\omega \mapsto S\omega$ (*antipode*).

Instead of limits of the form $\lim_{n\to\infty} g_n p$, work with *G*-ultra-limits

- *G* discrete and countable, so
- Space of ultra-filters on G with Tychonoff topology coincides with βG, so
- $G \curvearrowright \widehat{X}$ extends to a semi-group action $\beta G \curvearrowright \widehat{X}$, and
- The inversion map extends to a continuous involution $\omega \mapsto S\omega$ (*antipode*).
- Caveat:
 - $\omega \curvearrowright \partial_{\infty} X$ need not be continuous,

$$S(\omega\nu) \neq (S\nu)(S\omega).$$

Suppose $\omega \in \beta G$ is non-principal.

Suppose $\omega \in \beta G$ is non-principal.

• Contraction property. ω is a Lip-1 operator on $\partial_{T} X$.

Suppose $\omega \in \beta G$ is non-principal.

- Contraction property. ω is a Lip-1 operator on $\partial_{T} X$.
- Sink and Source. ω is constant on X, so define –

$$\omega(\infty) = \omega X, \quad \omega(-\infty) = (S\omega)X.$$

Suppose $\omega \in \beta G$ is non-principal.

- Contraction property. ω is a Lip-1 operator on $\partial_{T} X$.
- Sink and Source. ω is constant on X, so define –

$$\omega(\infty) = \omega X, \quad \omega(-\infty) = (S\omega)X.$$

• π -Convergence. for all $p \in \partial X$, $\epsilon \in [0, \pi]$:

$$\mathbf{d}_{\mathrm{T}}(p,\omega(-\infty)) \geq \pi - \epsilon \ \Rightarrow \ \mathbf{d}_{\mathrm{T}}(\omega p,\omega(\infty)) \leq \epsilon \,.$$

Also...

Suppose $\omega \in \beta G$ is non-principal.

- Contraction property. ω is a Lip-1 operator on $\partial_{T} X$.
- Sink and Source. ω is constant on X, so define –

$$\omega(\infty) = \omega X, \quad \omega(-\infty) = (S\omega)X.$$

• π -Convergence. for all $p \in \partial X$, $\epsilon \in [0, \pi]$:

$$\mathbf{d}_{\mathrm{T}}\!(p,\omega(-\infty)) \geq \pi - \epsilon \ \Rightarrow \ \mathbf{d}_{\mathrm{T}}\!(\omega p,\omega(\infty)) \leq \epsilon \,.$$

Also...

Compression. A incompressible iff ω restricts to an isometry on A, for all ω ∈ βG.

Suppose $\omega \in \beta G$ is non-principal.

- Contraction property. ω is a Lip-1 operator on $\partial_{T}X$.
- Sink and Source. ω is constant on X, so define –

$$\omega(\infty) = \omega X, \quad \omega(-\infty) = (S\omega)X.$$

• π -Convergence. for all $p \in \partial X$, $\epsilon \in [0, \pi]$:

$$\mathbf{d}_{\mathbf{T}}\!(p,\omega(-\infty)) \geq \pi - \epsilon \ \Rightarrow \ \mathbf{d}_{\mathbf{T}}\!(\omega p,\omega(\infty)) \leq \epsilon \,.$$

Also...

Compression. A incompressible iff ω restricts to an isometry on A, for all ω ∈ βG.

Most importantly: Can appeal to compactness of βG .

Our main tool: Folding and Total Folding

Folding Lemma (Swenson-G.)

Let *d* be the geometric dimension of $\partial_{\mathsf{T}} X$. Then for every (d+1)-flat *F* there exist $\omega_0 \in \beta G$ and a (d+1)-flat F_0 such that

• ω_0 maps ∂F isometrically onto $\mathbb{S}_0 = \partial F_0$, and

2 ω_0 maps ∂X onto the sphere \mathbb{S}_0 .

Our main tool: Folding and Total Folding

Folding Lemma (Swenson-G.)

Let *d* be the geometric dimension of $\partial_{\mathsf{T}} X$. Then for every (d+1)-flat *F* there exist $\omega_0 \in \beta G$ and a (d+1)-flat F_0 such that

• ω_0 maps ∂F isometrically onto $\mathbb{S}_0 = \partial F_0$, and

2 ω_0 maps ∂X onto the sphere \mathbb{S}_0 .

Corollaries: For \mathbb{S}_0 as above,

- every minimal closed invariant subset of $\partial_{\infty} X$ intersects \mathbb{S}_0 ;
- \mathbb{S}_0 contains an isometric copy of any incompressible subset $A \subset \partial X$;
- Every maximal incompresible subset of ∂X is isometric to a compact π -convex subset of a round sphere.

Our main tool: Folding and Total Folding

Total Folding (Swenson-G.)

There exists $\nu_0 \in \beta G$ such that

• $\nu_0 \partial X$ is a maximal incompressible subset of maximal volume (MVI),

•
$$\nu_0^2 = \nu_0$$
 in βG , and $\nu_0 \partial X \subset \mathbb{S}_0$.

Moreover, any two MVI's are isometric and (geometrically) interiorly-disjoint.

Remarks:

- Rank one implies ∂X is compressible. Converse?
- Does higher rank imply \mathbb{S}_0 is covered by incompressibles? \rightsquigarrow A positive answer implies diam $\partial_T X = \pi$
- Is ∂X covered by MVI's?

 \leadsto Through Lytchak, this would imply rank rigidity!

Endspiel: let's try to prove something

Theorem (G.-Swenson)

Let $G \curvearrowright X$ be a CAT(0) group of higher rank. TFAE:

- *G* is virtually-Abelian;
- 2 X contains a virtually G-invariant coarsely dense flat;
- *G* stabilizes a non-degenerate maximal incompressible subset of ∂X .

The plan to prove $(3) \Rightarrow (1)$:

- Prove that $\partial_{T}X$ and $\partial_{\infty}X$ coincide with the round sphere;
- Hit this on the head with Shalom's QI characterization of virtually-Abelian groups.

But first we need to find a candidate sphere living inside ∂X .

We now apply Swenson's decomposition of $\partial_{T} X$:

• A dipole is an incompressible pair p, q with $d_{T}(p,q) = \pi$.

- A dipole is an incompressible pair p, q with $d_{T}(p, q) = \pi$.
- A pole is an element of a dipole.

- A dipole is an incompressible pair p, q with $d_{T}(p, q) = \pi$.
- A pole is an element of a dipole.
- Let \mathbb{P} be the set of all poles.

- A dipole is an incompressible pair p, q with $d_{T}(p, q) = \pi$.
- A pole is an element of a dipole.
- Let \mathbb{P} be the set of all poles.
- !! Poles are suspension points of $\partial_{T}X$ (so $\mathbb{P} \subset \mathbb{S}(\partial_{T}X)$).

- A dipole is an incompressible pair p, q with $d_{T}(p, q) = \pi$.
- A pole is an element of a dipole.
- Let \mathbb{P} be the set of all poles.
- !! Poles are suspension points of $\partial_{T}X$ (so $\mathbb{P} \subset \mathbb{S}(\partial_{T}X)$).
- ! $\mathbb{S}(\partial_{T}X)$ is incompressible, and therefore $\mathbb{P} = \mathbb{S}(\partial_{T}X)$.

- A dipole is an incompressible pair p, q with $d_T(p, q) = \pi$.
- A pole is an element of a dipole.
- Let \mathbb{P} be the set of all poles.
- !! Poles are suspension points of $\partial_{T}X$ (so $\mathbb{P} \subset \mathbb{S}(\partial_{T}X)$).
- ! $\mathbb{S}(\partial_{\mathsf{T}}X)$ is incompressible, and therefore $\mathbb{P} = \mathbb{S}(\partial_{\mathsf{T}}X)$.
- Every (non-degenerate) max incompressible contains P:
 A ∪ P is incompressible, so P ⊆ A by maximality.

- A dipole is an incompressible pair p, q with $d_{T}(p,q) = \pi$.
- A pole is an element of a dipole.
- Let \mathbb{P} be the set of all poles.
- !! Poles are suspension points of $\partial_{T} X$ (so $\mathbb{P} \subset \mathbb{S}(\partial_{T} X)$).
- ! $\mathbb{S}(\partial_{\mathsf{T}}X)$ is incompressible, and therefore $\mathbb{P} = \mathbb{S}(\partial_{\mathsf{T}}X)$.
- Every (non-degenerate) max incompressible contains P:
 A ∪ P is incompressible, so P ⊆ A by maximality.
- In fact, A is the spherical join of \mathbb{P} with a compact convex spherical polytope.

Main direction: if G stabilizes a max incompressible set A, then G is virtually-Abelian.

• Write *A* = ℙ * *B* using Swenson's decomposition, and prove *B* must be empty (This is the main step where group theory is involved).

Main direction: if G stabilizes a max incompressible set A, then G is virtually-Abelian.

- Write *A* = ℙ * *B* using Swenson's decomposition, and prove *B* must be empty (This is the main step where group theory is involved).
- Thus, \mathbb{P} is the only max incompressible, but that implies $E(\partial_T X)$ is empty, by *G*-invariance, and we are done.

Main direction: if G stabilizes a max incompressible set A, then G is virtually-Abelian.

- Write *A* = ℙ * *B* using Swenson's decomposition, and prove *B* must be empty (This is the main step where group theory is involved).
- Thus, \mathbb{P} is the only max incompressible, but that implies $E(\partial_T X)$ is empty, by *G*-invariance, and we are done.
- The main step: unless *B* is empty, *G* has a fixed point in *B*; now use Ruane's result to virtually split *G* as a direct product with a Z factor, allowing an induction on dim P.

Main direction: if G stabilizes a max incompressible set A, then G is virtually-Abelian.

- Write *A* = ℙ * *B* using Swenson's decomposition, and prove *B* must be empty (This is the main step where group theory is involved).
- Thus, \mathbb{P} is the only max incompressible, but that implies $E(\partial_T X)$ is empty, by *G*-invariance, and we are done.
- The main step: unless *B* is empty, *G* has a fixed point in *B*; now use Ruane's result to virtually split *G* as a direct product with a Z factor, allowing an induction on dim P.

THE END, THANK YOU!

What Makes Folding Work?

Properties of pulling (Swenson-G.)

Suppose $\omega \in \beta G$ pulls from a point $n \in \partial X$. Then:

- if *F* is a flat with $n \in \partial F$, then ω maps ∂F isometrically onto the boundary of a flat;
- ② if $d_{T}(n, a) \le \pi$, then ω restricts to an isometry on [n, a];
- if $d_{T}(n, a) \ge \pi$, then $\omega a = \omega(\infty)$. Thus,
- ω maps ∂X into the geodesic suspension of ωn and $\omega(\infty)$, preserving boundaries of flats through *n*.

