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Abstract— We have built a 4DOF tailed monoped that hops
along a boom permitting free sagittal plane motion. This
underactuated platform is powered by a hip motor that adjusts
leg touchdown angle in flight and balance in stance, along
with a tail motor that adjusts body shape in flight and drives
energy into the passive leg shank spring during stance. The
motor control signals arise from the application in parallel
of four simple, completely decoupled 1DOF feedback laws
that provably stabilize in isolation four corresponding 1DOF
abstract reference plants. Each of these abstract 1DOF closed
loop dynamics represents some simple but crucial specific
component of the locomotion task at hand. We present a partial
proof of correctness for this parallel composition of “template”
reference systems along with data from the physical platform
suggesting these templates are “anchored” as evidenced by the
correspondence of their characteristic motions with a suitably
transformed image of traces from the physical platform.

I. INTRODUCTION

The control of power-autonomous, dynamic legged robots
that have a high number of degrees of freedom (DOF) is
made difficult by a number of factors including (a) under-
actuation necessitated by power-density constraints, (b) the
existence of significant inertial coupling and Coriolis forces
that are hard or impossible to cancel, (c) variable ground
affordance, (d) often hard-to-measure and necessarily rapid
hybrid transitions. In the face of these challenges, some pop-
ular methods of controller design, such as feedback lineariza-
tion [1]—which are “exact” in their domain of applicability
but require extremely accurate qualitative and quantitative
models—are hard to implement. Similarly, methods depend-
ing on local linearizations of the typically (highly) nonlinear
dynamics found in dynamically dexterous locomotion and
manipulation systems [2], [3] typically suffer from small
basins of attraction [4] and high sensitivity to parameters.1

Observation (a) suggests that modularity of operation
(i.e., wherein different combinations of actuators are used
to effect distinctly different dynamical goals at different
stages within the task cycle) will be a hallmark of practical
locomotion platforms. Observations (b) and (c) imply that
simpler, less exact but potentially more robust representations
of the principal dynamical effects likely to prevail across
a wide range of substrates may offer a tractable means of
working with rather than fighting against, or learning exactly
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1 In some robotics settings these disadvantages of the exact or local
linearized control paradigm can be effectively remedied by recourse to
parameter adaptation [5], but in our experience, such methods are too
“laggy” to work in this hybrid dynamics domain with its intrinsically abrupt
and rapidly switching characteristics.

Fig. 1. Snapshots from apex to apex of tail-energized planar hopping (§V)
implemented on a new robot platform—the Penn Jerboa (§VI).
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Fig. 2. Control of a hopping behavior expressed as a hierarchical
composition of closed-loop templates. Notionally, the grey arrows represent
directed templateÑanchor relations. Center: A model of the tailed monoped
physical platform on which we implement tail-energized planar hopping,
labeled with configuration variables (black), actuators (red), and model
parameters (blue).

the highly varied dynamical details. Observation (d) implies
that higher authority sensorimotor control activity ought to
target continuous phases of the locomotion cycle, leaving the
transition event interventions to more passive and mechanical
sources of regulation [6]. In sum, these observations motivate
the search for modular, reduced order representations of
locomotion task constituents that are specialized to couple se-
lected actuation affordances to particular DOFs at particular
phases of the locomotion cycle. The value of such component
task representatives remains hostage to the availability of
methods for composing them in a stable manner.

This paper uses the design of a novel locomotion platform,
the Penn Jerboa, Fig. 1, to put a slowly maturing formalism
for the composition of such modules to a practical test.
We adopt the template-anchor2 framework [7] to repre-
sent this machine’s 4DOF steady sagittal plane running as

2 The template-anchor relation associates a pair of smooth vector fields,
fT, fA on a pair of smooth spaces, T Ă A via the condition that T is an
attracting invariant submanifold of the anchor field, fA, whose restriction
dynamics is conjugate to that of the template field, fT „ fA |T (where „
denotes equivalence up to smooth change of coordinates). In this paper, we
are dealing with hybrid fields and flows for which the extended definition
and its verification is a bit more intricate. Thus exceeding the scope and
length constraints of the present paper, we will treat the hybrid template-
anchor relation as an intuitive notion here.



the hierarchical composition of the low DOF constituents
depicted in Fig. 2. At the leaves of this hierarchy tree,
we introduce four different 1DOF templates that emerge
from the decades old bioinspired running literature [3], [8],
joined by a new arrival from recent work on bioinspired
tails [9], [10]. We apply the four decoupled 1DOF control
laws associated with these isolated “leaf” templates directly
to the (highly dynamically coupled) physical platform and
demonstrate empirically steady sagittal plane running (on a
circular boom) whose body motions reveal, when viewed
in the appropriate coordinates, Fig. 7, striking similarity to
the corresponding isolated 1DOF constituents. We show (up
to a still unproven technical conjecture) that the appropriate
two pairs of these four 1DOF leaf templates are formally
anchored by the two “interior” 2DOF templates depicted in
Fig. 2, in the sense that the 1DOF systems define attracting
invariant submanifolds of the 2DOF systems that exhibit
conjugate restriction dynamics. We conjecture, as well, that
the two interior nodes (the 2DOF templates) of the figure are
in turn formally anchored by a physically realistic dynamical
model of the closed loop Penn Jerboa in the sagittal plane.
The data of Fig. 7 support this hypothesis, but we have not
yet succeeded in completing the proof beyond the embedding
and invariance properties.

Notwithstanding the specifics of our compositional ap-
proach to its control, we believe that the new physical
platform is itself of independent interest by virtue of its
added appendage (the “tail”), opening up a multiplicity of
diverse uses for both of its two revolute actuators. Note again,
however, this diversity of uses cannot be achieved without
some recourse to behavioral modularity. In that light, we
are particularly attracted by these simple low-DOF template
controllers. In our experience, such constructions have the
hope of succeeding in unstructured outdoor settings, since
they build on the relatively robust template dynamics.

A. Relation to Prior Literature

This “compositional” method of controller synthesis was
pioneered empirically by Raibert [11] for planar and 3D
hopping machines, and we develop our planar hopping
behavior by building up from those ideas. Our physical
platform (Fig. 2 center) forgoes Raibert’s prismatic shank
actuator, and instead places that actuator in an inertial
appendage. This motivates us to explore how tails can be
“recycled” from their transitional agility duties [9], [10],
now repurposed to substitute for Raibert’s shank actuator and
play the role of steady-state running energizer in the sagittal
plane. Apart from their use in transitional maneuvers (inertial
control in free-falling lizards [12] and robots [9], [10] or in
turning lizards [13] and robots [14]) it has recently been
discovered that kanagaroos do positive work with their tails
in a quasistatic pentapedal gait [15]. In our implementation,
the tail contributes the reorientation function in flight, and
the energetic “pump” function in stance (albeit in a dynamic
fashion). We are not aware of prior robotic locomotion work
wherein a tail is used to help power the stance phase.

TABLE I
LIST OF SYMBOLS

i P Z2 Hybrid mode, where 1 is stance, 2 is flight
D‹
i Domain for template ‹ in mode i

f‹
i : D‹

i Ñ TD‹
i Vector field in mode i

r‹
i : BD‹

i Ñ D‹
i`1 Reset map from mode i to i` 1

F ‹
i : D‹

i Ñ BD‹
i Mode i flow evaluated at the next transition

F ‹ “ F ‹
2 ˝ F

‹
1 Return map at touchdown (TD) event

p‹
i px, uq Plant to which we apply u “ gipxq to get f‹

i
Id P Rdˆd Identity matrix of size d
J “

“

0 ´1
1 0

‰

Planar skew-symmetric matrix
R : S1 Ñ SOp2q Map from angle to rotation matrix
Tx “ px, 9xq Tangent vector associated with x
Dxy Jacobian matrix Byi{Bxj
κ P R` SLIP radial velocity gain (§III-B.2)
hκ P RÑ R` Map from radial TD velocity to κ (§III-A.1)
γ : RÑ S1 Fore-aft model stance sweep angle (§III-B.2)
β : RÑ S1 Raibert touchdown angle function (7)
hw : R2 Ñ R2 Cartesian to Polar TD velocity (§III-C.2)

TABLE II
TEMPLATE CONTROLLERS

Tail energy pump gv1pxq “ kt cosp=xq (3)
Raibert stepping [11] gfa2 p 9xq “ β˚p 9xq ` kpp 9x´ 9x˚q (7)
Raibert pitch correction [11] gp1pa1, 9a1q “ ´kgka1 ´ kg 9a1 (14)
Shape reorientation [10] gsh2 pa2, 9a2q “ ´kgka2 ´ kg 9a2 (14)

B. Contributions of the Paper

This paper contributes both to the theory and practice
of dynamical legged locomotion. The principle theoretical
contributions are: (i) a new (slightly simplified) further
abstraction (§III-C) of the longstanding SLIP running model
[3] as a formal cross-product of previously proposed vertical
[16] and fore-aft [17] templates; (ii) a proof (modulo one
remaining unproven conjecture) of local stability in this
product dynamics of the parallel composition3 of Raibert’s
[11] stepping controller (7) with our new energy pump (3);
and (iii) a proof of local stability in the inertial reorientation
model (13) of the parallel composition (14) of Raibert’s [11]
pitch stabilizer and the tail reorientation controller [10].

The principal empirical contributions of the paper are:
(i) the design and implementation of a working tailed biped
platform, the Penn Jerboa (Fig. 1); (ii) a physical demonstra-
tion of the (provably correct) oscillatory spring-energization
scheme for vertical hopping; and (iii) experimental evidence
supporting the hypothesis that our final parallel composition
of the four isolated controllers does indeed anchor the
corresponding templates in the Jerboa body (Fig. 7).

While the idea of parallel composition is appealing, the
difficulty of such a composition arises from the natural
transfer of energy between different compartments [18]4 in
a mechanical system operating in a dynamical regime. In

3 By this term we mean the application to the (coupled) plant pspx, uq
of a decoupled control law, u “ gvpx1q ˆ gfapx2q.

4We use this term here to stand for subsystems (here, disjoint subsets of
the physical degrees of freedom) that exchange a resource (here, energy).



our setting, some degree of coupling across compartments
is crucial to the underlying design concept of driving the
leg spring through torques generated “far away” in the tail.
Thus, a naive approach of looking for exactly decoupled
body dynamics is not fruitful5. Instead, we analyze stability
properties of (hybrid) closed-loop templates–which are not
specifically associated to any body–without paying atten-
tion to the input structure. In agreement with intuition, we
find (§V-B) that minimization of cross-template transfer of
energy–through either the flows or the reset maps–results in
a successful composition.

II. PRELIMINARIES: ORGANIZATION AND NOTATION

Table I contains a list of important symbols in this paper,
including a set of symbols for describing hybrid dynamical
systems. We adopt the modeling paradigm from Definition
1 in [19], representing a hybrid dynamical system by the
tuple pD, f, rq as defined in Table I. We only consider two
hybrid modes in this paper: ballistic flight, and a stance phase
arising from a sticking contact at the “toe”.

Superscripts on each of these symbols denote the hybrid
template that it is a part of, e.g. ‹v for controlled vertical
hopping (§III-A). The layout of the paper roughly reflects
the template-anchor hierarchy depicted in Fig. 2. Namely,
there are two intermediate 2DOF templates—the SLIP, s,
and the inertial reorientation, a—-that comprise the tailed
monoped, tm “ ts, au. They, in turn, are comprised of the
vertical, v, and fore-aft, fa, 1DOF templates, s “ tv, fau, and
respectively, the shape, sh, and pitch, p, 1DOF templates,
a “ tsh, pu. We endow the 1DOF templates at the lowest
level with an exemplar plant, with respect to which we will
develop controllers for the four template plants, in isolation.

Sections III-IV present the 2DOF s, a templates that
are directly anchored in the robot body (§V), and within
them contain descriptions of the subtemplates (e.g. §III-
A, III-B)—as simple exemplar 1DOF anchoring bodies and
corresponding control laws—that comprise in isolation the
constituent desired limiting behaviors that we seek to em-
body simultaneously in our physical system. Each of the
template controllers in this suite is necessarily simple by
dint of its origin as a feedback law for a highly abstract
1DOF task exemplar. We hypothesize that this combination
of algorithmic simplicity and task specialization may lend
robustness in the empirical setting since control policies
are not sensitive to, and certainly avoid cancellation of, the
various sources of crosstalk arising from their dynamical
coupling in the anchoring body.

We emphasize that these coupling-naı̈ve feedback laws
(summarized in Table II) are simply “played back” (modulo
scaling) in the 6DOF body (§V) with all its complicated
true dynamical coupling. We show formally through various
Propositions in this paper that nevertheless the stability of
the templates and subtemplates persists through composition.

5For instance, for hopping with the tailed monoped, the tail actuator and
hip actuator seemingly work on differently “binned” tail and leg DOFs, but
we energize the robot body with the tail through the leg spring.

Finally, we offer empirical data in §VI showing how this
theory has been applied to the Jerboa robot.

III. THE (2DOF) SLIP TEMPLATE

A. Controlled Vertical Hopping (1DOF)

For a successful hopping behavior, energy must be pe-
riodically injected into the robot body to compensate for
losses. We simplify the analysis here to a 1DOF vertically-
constrained point-mass which can alternate between stance
phase (during which the actuator has affordance) and a
ballistic (passive) flight phase. It has been shown in the
past empirically [11] and analytically [20] that an impulse
at the bottom of stance can produce a stable limit cycle,
in the presence of a spring for energy storage. In this
paper, we consider a different strategy of an actuator forcing
the damped spring by applying forces in a phase-locked
manner. This choice of input representative is made with
an eye toward using a tail actuator exerting inertial reaction
forces on the spring (this model is formally instantiated §V).
Intuitively, this can be thought of as negative damping [16]
(effectively cancelling losses by physical damping).

We build upon the “linear spring” analysis in [20] for our
vertical hopping exemplar body and closed-loop templates.
We borrow the reparameterized form of the dynamics,

:χ` ω2p1` σ2q 9χ` 2ωσχ “ τ, (1)

valid for the system being in an oscillatory regime. We make
the following assumptions (to be used in Proposition 1):

Assumption 1 (Vertical hopper design). The parameters of
the mass-spring-damper ensure (i) σ2 ` ω2 “ 1 (such that
W :“ r 1 σ

0 ω s has a simple inverse6) and (ii) ω ą σ.

1) Oscillatory Spring Energization: W from Assumption
1 is a transformation to real-canonical form for the unforced
system, i.e. if x :“W

“ χ
9χ

‰

,

9x “ pv1px, τq :“ p´σI ` ωJqx` r σω s τ, (2)

and the hybrid events of interest occur at x2 “ 0 (corre-
sponding physically to the touchdown and liftoff events at
χ “ 0). We choose the physically motivated control strategy

τ :“ ktx1

}x}`ε « kt cosp=xq, (3)

where ε ą 0 is a small saturation constant. It is clear in this
form that the input is a fed-back version of the “phase” only.
We obtain the closed-loop stance dynamics

9x “ f v1pxq :“
´

´σI ` ωJ ` kt
}x}`ε r

σ
ω s e

T
1

¯

x. (4)

Proposition 1 (Oscillatory energization stability). The ver-
tical hopping template (4) has an attracting periodic orbit.

Proof. Please see Appendix A.

While this result guarantees periodic hopping behavior,
we cannot yet preclude multiple limit cycles, some of which

6There is no loss of generality since this amounts to choosing a time
scale, preserving all orbits and their limiting properties.
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Fig. 3. Left: The vector field and an execution of (4), showing an annular
trapping region. Middle, Right: Closed-loop simulation behavior of the
hybrid vertical hopping system showing controllable hopping height and
stable return maps.

may not be attracting. Encouraged by simulation results in
Fig. 3, we make the following conjecture.

Conjecture 1. The attracting limit cycle of (4) is unique and
nondegenerate.

As a corollary to Proposition 1, we know F v
1 (the vertical

stance map, cf. Appendix B) has at least one asymptotically
stable fixed point, 9χ˚, but we will now assume the non-
degeneracy property of Conjecture 1, to assert as well that
´1 ă DF v

1 | 9χ˚ă 1.
The ballistic flight portion of this simple model simply

reverses the velocity,

F v
2 p 9χq :“ ´ 9χ. (5)

Note that by symmetry (f v1 , and consequently F v
1 are odd),

F v
1 ˝ F

v
1 “ F v

2 ˝ F
v
1 ˝ F

v
2 ˝ F

v
1 , i.e. the stability properties of

the hybrid system are the same as that of the stance map as
analyzed in Proposition 1.

Define

κ “ hκp 9χq :“
´F v

1 p 9χq
9χ , (6)

the effective coefficient of restitution through stance, or the
so-called “velocity gain” during SLIP stance [17]. Note that
there is a unique fixed point, κ˚ “ 1, in these coordinates,
which is necessary and sufficient for the smooth invertibility
of hκ, as can be seen by direct computation of its derivative.

Conjugating the touchdown velocity return map via this
diffeomorphism, we can define a return map for κ, F v.

Proposition 2 (Vertical stability). The velocity gain return
map, F v, has an asymptotically stable fixed point, κ˚ :“ 1,
assuming Conjecture 1 and, in fact, DF v |κ“1“ ´DF

v
1 | 9χ˚ .

Proof. This directly follows from the observation that κ and
touchdown velocity are related by a diffeo, Proposition 1,
and the simple form of F v

2 in (5).

B. Controlled Fore-Aft Speed (1DOF)

Running and walking systems of a large variety from
the sagittal or frontal plane resemble inverted pendula dur-
ing stance [3]. Some prevalent robot control strategies for
general fore-aft control and balance are ankle torques (if
available), and stepping. We will focus on the second of
these techniques, since our assumed model does not have an
actuator at the toe. In prior literature, it has been shown that
in SLIP, a fixed touchdown angle can admit a reasonable

v F fapvq

Stance Flight

β

Fig. 4. A simple model for the 1DOF fore-aft dynamics in SLIP, closely
related to BHop [17].

basin of stability around an emergent attracting steady-state
velocity [21]. The capture point [22] and zero moment point
[23] methods use a quasistatic heuristic which is related to
these ideas, but are not explicitly designed to generalize to
velocities other than zero. The empirical success of [11] is
notable, and we attempt here to place it in the context of a
model where its stability properties can be analyzed.

1) The Raibert Stepping Controller: In his classical em-
pirical study, Raibert [11] inspired decades of subsequent
experimentation and analysis by offering the following obser-
vations about the pendular stance phase in a running machine
traveling at forward speed, 9x, and stepping with a touchdown
angle βp 9xq (as in Fig. 4):

Assumption 2 (Raibert observations). (i) For each speed, 9x,
there is a neutral7 touchdown angle, β˚p 9xq (ii) this neutral
angle is monotonic with speed, D 9xβ

˚ ą 0, and (iii) devia-
tions from touchdown angle cause negative acceleration, i.e.
Dβp 9x` ´ 9xq |β“β˚ă 0.

Proposition 3 (Raibert stepping controller). Under assump-
tions 2(i-iii), the Raibert stepping controller,

β : 9x ÞÑ β˚p 9xq ` kpp 9x´ 9x˚q (7)

stabilizes the forward speed to 9x˚.

Proof. Please see Appendix C.

Surprisingly, notwithstanding the large literature arising
from his pioneering ideas, to our knowledge, these simple
observations represent the first stability analysis of any
representation of Raibert’s stepping controller. In order to
establish a compositional view of SLIP, we will adopt a
simple model of pendular stance that is in harmony with
the Raibert assumptions, thereby automatically providing
sufficient conditions for stability of the isolated fore-aft
template closed-loop dynamics F fa defined in (9)8.

2) Modified BHop as a Fore-Aft Model: Building on exist-
ing SLIP literature [24], we make the following assumptions
about pendular stance:

Assumption 3 (Pendular stance). During stance, (i) the
effects of gravity are negligible compared to spring poten-
tial / damping forces, (ii) radial deflections are negligible,

7In this context, “neutral” means 9x` “ 9x, where 9x` refers to the fore-aft
speed at the subsequent touchdown event.

8Of course, the sufficiency of the Raibert stepping controller (7) for
stability of the composed coupled systems is not automatic and represents
a central contribution of the paper. This is established for the intermediate
SLIP template, F s, in Proposition 5.



(iii) time of stance is constant, and (iv) the angle swept by
the leg admits a small-angle approximation.

Schwind [24] approximated that angular momentum about
the toe is constant during stance, but we simplify further
with the second assumption, and conclude that the angular
velocity is roughly constant during stance. We adopt the third
approximation from Raibert [11], and the last approximation
is made for the ensuing analytical simplifications in §V-B,
but we find empirically (§VI) that it is not critical in practice.

These assumptions lead directly to the construction of
the following return map acting on touchdown velocity in
Cartesian coordinates (cf. Fig. 4):

F spv, κq “
“

1
´1

‰

Rp´γ ` βq
“

1
´κ

‰

Rp´βqv

“ Rpγ ´ βq r 1
κ sRp´βqv, (8)

where κ (explicitly, the interaction from the radial component
of SLIP) is taken to be a fixed parameter at this stage,
γpv1q «

v1Ts
ρl

is the angle swept by the leg over the course
of stance and βpv1q is the leg touchdown angle (§III-B.1).
This model is only a slight modification9 of BHop [17].

This analytically tractable model (i) allows us to “sepa-
rate” the dynamics in the radial compartment (encapsulated
in κ) from the contributions of the fore-aft model itself,
(ii) captures the exchange of vertical and horizontal kinetic
energy through toe placement, and (iii) matches each of the
empirically observed Raibert conditions (Fig. 5) as well as
empirical data (Fig. 7), suggesting it is physically applicable
and not just an analytical convenience.

In this Section, we restrict our attention to κ “ 1, and
generalize this to include the radial dynamics in §III. With
this restriction,

F fapvq :“ F spv, 1q “ Rpγ ´ 2βqv, (9)

While we choose to parameterize the return map as a
function of v P R2, it is really a 1D map (cf. Appendix
D).

Proposition 4 (Fore-aft stability). MBHop with the Raibert
controller presents a stable touchdown return map.

Proof. Please see Appendix D.

C. SLIP as a Parallel Composition

In order to anchor our 1DOF templates in the classical
SLIP model (2DOF point mass with 2DOF springy leg), we
simply “play back” our devised control schemes (Sections
III-A and III-B). In the following subsections, we check
that the closed-loop executions in the higher-DOF body
still resemble a cross-product of our template behaviors. We
emphasize that when moving to a more complex body, we
do not add complexity to our controllers, rather, the closed-
loop templates which we couple together are intrinsically
amenable to parallel execution with minimal leakage of

9Specifically, the similarities are apparent between (8) and (19) of [17].
The slightly discrepancy should be attributed to our insistence on using the
physical touchdown and sweep angles β and γ in the model, whereas the
abstract parameter θ in [17] results in a more succinct form.
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Fig. 5. A contour plot of the fore-aft acceleration 9x` ´ 9x produced by
the MBHop model for a range of fore-aft speed 9x and touchdown angle
β. This plot depicts that (in a range around the neutral angle), this model
captures all the conditions of Assumption 2.

energy, by design. For instance, prior literature has observed
a decomposition of SLIP dynamics into radial and tangential
components, but to our knowledge there is no complete
account of the stability of the parallelly composed (closed-
loop) templates in these components.

1) Hybrid Dynamical Model of SLIP: We will construct
our template plant model from [24]: a bead of mass 1
at (Cartesian) coordinates pxs, zsq P R2, with a springy
(Hooke’s law spring constant ks) massless leg of length10

θs2 P R` (where R` is restricted to strictly positive reals,
and is open) and rest length ρl, at an angle of θs1 P S

1 from
vertical. Let qs :“ pθs1, θ

s
2, x

s, zsq. Using Assumption 3(iv)
as a convenience (though that assumption is not required for
this formulation), the touchdown and lift-off conditions can
be specified in terms of the zeros of as :“ zs ´ ρl.

Define Qs
i :“ S1 ˆ R` ˆ R ˆ Ii, where R “ I1 \ I2 :“

p´8, ρls \ pρl,8q. Then, Ds
i :“ TQs

i, and

f s1pq
s, 9qsq :“

˜

9qs,

«

´
2 9θs1

9θs2
θs2

θs2
9θs1
2
`kspρl´θ

s
2q

‹

ff¸

, (10)

f s2pq
s, 9qsq :“

´

9qs,
”

‹
0
´g

ı¯

, (11)

where the unspecified components are (i) the mass-center
dynamics which are constrained by

“

xs

zs
‰

“ θs2

”

´ sin θs1
cos θs1

ı

in
(10), and (ii) the degenerate massless leg dynamics in (11).
Please see Appendix E for more details.

2) Anchoring the 1DOF Templates: Consequent upon
the above model—where each hybrid mode is dynamically
2DOF—SLIP is a 4D dynamical system (one parameter-
ization being px, z, vq, where v P R2 is the touchdown
velocity, and px, zq P R2 is the Cartesian location of the
point mass at touchdown). The efficacy of our 2D return
map analysis is established by arguments similar to those
of [26]: the Poincare section zTD “ ρl cosβpvq eliminates
one dimension, and the equivariance of the dynamics with x
eliminates another.

We first observe that our MBHop model of §III-B.2 still
represents the pendular stance correctly under Assumption 3.
However, κ is not a fixed parameter, but evolves according
to dynamics similar to Fκ in Proposition 2.

10We use θ for leg “joints” to be consistent with [25].



a1

a2
 δ

τ1 (Stance)

τ2 (Flight)a2

Pitch

Shape

ψa “ 0ψa “ π

Fig. 6. A hybrid 2DOF inertial reorientation template with two segments
pinned at the CoM and no gravity. Left: the net angular momentum of the
system is constant. Right: the system can correct the net angular momentum
using reaction torques on the main body segment, but the tail DOF is subject
to an unmodeled disturbance  , or δ in (13).

We observe from (7) and (8) that the embedded pκ “
1, v “ v˚q submanifold is invariant, and show in Proposition
5 that is also attracting.

Let us define hw : R2 Ñ R2 as

w “ hwpvq :“ Rp´βpvqqv. (12)

This mapping is a local diffeomorphism (Appendix F), and
the vector w gives a tangential/radial decomposition of v (i.e.
polar with respect to the leg angle).

Additionally, using (6), we can “recover” the κ-dynamics
in the coupled system: κ “ hκpw2q. We prefer the redundant
pv, κq parameterization because of analytical tractability.

Proposition 5 (Stability of SLIP as a composition). For
(i) stable vertical hopping with ´1`εr ă ´DF

v
1 |˚ă 1´εr,

(ii) sufficiently11 small kp in the Raibert contoller, parallel
composition of the radial and fore-aft templates results in a
locally stable 2D return map, F s.

Proof. Please see Appendix G.

IV. HYBRID INERTIAL REORIENTATION (2DOF)

Our decision to energize the hopping behavior with a tail
leaves introduces a new actuated DOF whose tight dynamical
coupling to both the mass center and the body orientation
dynamics requires its careful control throughout the locomo-
tion cycle. Recent literature [10] has seen the development
of a 1DOF “inertial reorientation” template for correcting the
“shape” coordinate in a two-link body experiencing free-fall
(constrained by conservation of angular momentum). Raibert
[11] introduced a pitch stabilization mechanism relying on
reaction torques from hip actuation during stance. In this
paper, we adopt the approach of composing these templates
for 2DOF stabilization of appropriately defined “pitch” and
“shape” coordinates of a two-link body/tail model.

Keeping in mind that in the physical system the tail actu-
ator, τ2, is unavailable for attitude control in stance (because
it is being “monopolized” as the destabilizing energy source
for the SLIP subsystem), and that the Raibert pitch correction
mechanism (inserted through the hip actuator, τ1) is unavail-
able in flight (due to absence of ground reaction force), we
present a hybrid inertial reorientation (HIR) template (Fig. 6)

11Formally, this means that kp can be chosen as a function of εr.

as the simplest exemplar body on which this 2DOF template
is anchored.

We omit the Lagrangian derivation for this familiar subsys-
tem [10], but exploit the fact that when pinned at the CoM,
the dynamics are second-order LTI with no Coriolis terms.
We perform a change of coordinates (inverting the constant
inertia tensor) to obtain the (decoupled) dynamics

“

:a1
:a2

‰

“

#

r
τ1
δ s “: pa1pTa, τ1q (stance),

“

0
τ2

‰

“: pa2pTa, τ2q (flight),
(13)

where pa1, a2q are the “pitch” and “shape” coordinates, re-
spectively, and δ is an unmodeled disturbance term (explicitly
added here with an eye toward the use of tail for spring
energization in the physical system). In (13) we have now
represented HIR as two independent subsystems on which
two identical 1DOF templates will be anchored in parallel
(albeit in alternating stages of the hybrid execution).

Taking advantage of the direct affordance (by which we
mean that both of the two decoupled 1DOF systems are
completely actuated in, one and then other, of the alternating
modes of their hybrid dynamics), we employ a graph-error
controller [27] as a type of reduction. Since our reference
first-order dynamics are just 9ai “ ´kai, the independent
closed-loop 1DOF subtemplate vector fields, fp : Ta1 ÞÑ

9Ta1 and f sh : Ta2 ÞÑ 9Ta2, are defined as

:ai “ ´kgp 9ai ` kaiq “ ´kgkai ´ kg 9ai, (14)

where the gain kg is understood to be high enough to make
the transients of the anchoring dynamics irrelevant.

A. Hybrid Dynamical Model of HIR
Since the isolated model does not have any intrinsic

physical mechanism for transitioning between modes, we add
an exogenous clock signal, ψa P S1 such that ψa P r0, πs
represents stance, and the complement represents flight.

Define Da “ TS2 ˆ tp0, πs \ pπ, 2πsu. Now the closed-
loop template dynamics, f a : TS2 ˆ S1 Ñ T pTS2 ˆ S1q

can be specified as

f a1p
“

Ta
ψa

‰

q “

„ 0 I 0
”

´kgk 0 ´k 0
0 0 0 0

ı

0 0

0 0 ωa



“

Ta
ψa

‰

`

”

03ˆ1

δ
0

ı

,

f a2p
“

Ta
ψa

‰

q “

„ 0 I 0
”

0 0 0 0
0 ´kgk 0 ´k

ı

0 0

0 0 ωa



“

Ta
ψa

‰

, (15)

the guards sets are BDa “ TS2ˆttπu\t2πuu and the reset
maps rai “ id simply modify the dynamics (13) at ψa “ π
(stance to flight) and ψa “ 0 (flight to stance).

B. HIR Stability Analysis
Let us denote δ̄ris :“

ş

δdt, the interval being over the
stance phase of stride i. Also, define δ̄max “ maxt δ̄rts.

Proposition 6 (HIR Stability). Setting

k ą 2ωa
π log

´

1` δ̄max

εa

¯

results in the desired limiting behavior for F a: }a} Ñ
Bεap0q, a neighborhood of 0 of size εa.

Proof. Please see Appendix H.



V. PHYSICAL SYSTEM: TAILED MONOPED

We were able to formally show template-anchor relations
going from 1DOF to 2DOF templates (Propositions 5 and
6), because of the availability of simple models (§III-B.2),
or trivial dynamics (§IV). However, as we proceed up the
desired hierarchy (Fig. 2), there are no easily accessible tools
that let us directly analyze the effects of coupling in the
return map. In this section, we only show (Proposition 8) that
under assumption 4, the closed-loop tailed monoped return
map F tm has an invariant submanifold where it is equal
to F s ˆ F a, but we leave as conjecture that this invariant
submanifold is attracting.

A. The Tailed Monoped Model

The Raibert planar hopper [11] empirically demonstrated
stable hopping using a rigid body with a massless springy
leg, and in this paper we pursue the same idea, but instantiate
the Raibert vertical hopping template by coupling the 1-DOF
leg-spring excitation controller (physically acting through the
tail). In flight, the tail actuator grants us a new affordance
that we only12 use here to regulate the added “shape” DOF.

Our physical model is shown in Fig. 2 (center). The system
has a single massless leg with joints θ “ pθ1, θ2q P S

1ˆR`,
a rigid body px, z, φ1q P SEp2q, and a point-mass tail with
revolute DOF φ2, such that the full configuration is q :“
pθ1, θ2, x, z, φ1, φ2q P Q.

We make the following design-time assumptions:

Assumption 4 (Tailed monoped design). The (i) leg/tail
axes of rotation are coincident at the “hip,” (ii) center of
mass (configuration-independent by the previous assumption)
coincides with the hip, (iii) the tail mass is small, i.e. mt !

mb, and (iv) the body, tail have high inertia, i.e. ib, it Ñ8.13

B. “Physical” Decoupling

We show from the equations of motion (cf. Appendix I)
that the design choices in assumption 4 contribute to a natural
(weak) decoupling of the 6DOF dynamics into “point-mass”
and attitude compartments.14

Proposition 7 (Invariant submanifold). Under assumption
4, in each hybrid mode, (i) the submanifold U “ tTq P
TQ : Tφ1 “ Tφ2 “ 0u is invariant under the action of
the flow generated by f tmi , and (ii) in each hybrid mode,
the closed-loop flow restricted to U, 9Tq “ f tmi pTq |Uq is a
cross-product of the template vector fields,

f tmi “ f si ˝ πs ˆ f
a
i ˝ πa, (16)

12We omit a detailed design discussion here, but a revolute tail avoids
the morphological specialization of a dedicated prismatic actuator and can
be repurposed for other uses such as static standing, reorienting the body in
free fall [10], directing reaction forces through ground contact for leaping
when used as another “leg” [28], etc.

13Even though the dynamic task here is quite different from free-fall, in
the language of [10] this is saying that the tail should be light but effective.

14Considering that many running multilegged animals act SLIP-like [3],
this kind of result can be interpreted to mean that the dynamics of the
complicated running body may be a simple cross product of the template
(SLIP) dynamics and the body-specific anchoring dynamics [7].
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Fig. 7. A single stride (stance with shaded background followed by flight),
where each column corresponds to some representative time series from each
of the four 1DOF templates from §III-IV, and the traces (mean and standard
deviation) correspond to different “bodies” realized by variably constraining
the robot—red: tailed vertical hopper (i.e. pθ1, x, φ1q locked), green: tailed
point-mass hopper (i.e. φ1 locked), blue: tailed planar hopper (all free)—in
which these templates are being anchored.

where πs and πa represent projections to the SLIP and
attitude components of q respectively (cf. Appendix I).

Proof. Please see Appendix J.

The statement above unfortunately does not guarantee
anything about the limiting behavior of the hybrid physical
system in a neighborhood of (the zero measure set) U.
We leave the missing piece as a conjecture, and present
experimental evidence that it is indeed true in §VI:

Conjecture 2. (Attracting invariant submanifold) The set U
is attracting under the action of f tm.

C. Parallel Composition of Hybrid Templates

Building on Proposition 7 and Conjecture 2, we can now
make the following statement:

Proposition 8 (Clock synchronization and TM return map).
The set U is invariant under the return map F tmpTq |Uq,
and restricted to U, F tm “ F s ˝ πs ˆ F

a ˝ πa.

Proof. Please see Appendix K.

VI. EXPERIMENTAL RESULTS

We perform the experiments on the Penn Jerboa: a new
tailed bipedal robot platform (Fig. 1) with a pair of compliant
hip-actuated legs (in parallel for sagittal plane behaviors),
and a 2DOF revolute point-mass tail [10] driven differentially
by two motors through a five-bar mechanism (locked in the
sagittal plane for the behaviors in this paper). The robot
weighs 2 Kg (with onboard battery), has a peak robot power
density of 300 W/Kg, and peak force density of 52.7 N-
m/Kg. An IMU and motor encoders comprise the sensing
capabilities (without payloads), and control is performed on
an onboard Cortex-M4F microcontroller.

By physically constraining some of the degrees of free-
dom, we test the efficacy of our hierarchical composition
(Fig. 2) at as many “nodes” of the composition tree as
possible. Note that it is infeasible to isolate the fore-aft
or the closed-loop pitch correction templates in a physical



setting. The results are summarized in Fig. 7. Five strides
are averaged within each category, and aligned with ground
truth knowledge of the touchdown event. We observe that
with the same controllers acting in each case,

i) there is a limit cycle in the vertical compartment that
retains its rough profile and magnitude through three
anchoring bodies,

ii) the fore-aft DOF (hip angle) roughly satisfies :θ1 “ 0
in stance and the time of stance is roughly constant
(corroborating assumptions 3.ii-iii) and corroborating
our MBHop model (8),

iii) the shape coordinate is destabilized in stance and stabi-
lized in flight, and the pitch-deflections seem relatively
small in magnitude over the stride, and in agreement
with (15).

Qualitatively, the “tailed point-mass hopper” configuration
attained stable forward hopping at controlled speeds upwards
of 20 strides, only limited by space. The fully unlocked
system has so far hopped for about 10 strides at multiple
instances before failing due to accumulated error causing
large deviations from the limit cycle. We believe the prime
reason for this is that in the hardware platform, the CoM
is significantly aft of the hip (violating assumption 4.i). We
attempted to compensate for this effect with a counterbalance
visible in Fig. 1, but an unacceptably large weight would
have been required to completely correct the problem.

VII. DISCUSSION

Raibert’s hopper [11] made significant empirical advances
in the field of robotics, but to our knowledge, no previous
account in the literature has provided any formal conditions
under which such simple and decoupled control strategies
will work. In this paper, we apply simple decoupled con-
trollers using similar ideas (including the exact same fore-
aft (7) and pitch (15) controllers), but with a new vertical
hopping scheme (§III-A) and a new tail appendage to enable
it. Moreover, we construct abstract models (that appear
to, nevertheless, be representative of empirical data) that
enable us to present analyses of stability for each of these
subsystems, culminating in a local proof of stability for
the tailed hopper (§V-C) and also essentially including an
account of the Raibert hopper’s empirical success.

Our analysis in this paper is very specifically targetted to
the tailed hopper (including the hand-designed hierarchy in
Fig. 2), but in future work we plan to generalize these ideas
to other tasks as well as platforms. As explained in §II, we
focus on closed-loop templates in this paper, but there is an
accompanying interesting problem of assignment of actuator
affordances to the control of specific compartments.

Lastly, we see in this paper that a sufficient condition for
enabling a simple parallel composition is a physical decou-
pling (§V-B) through the design (summarized in Assumption
4) and natural dynamics of the system. In the future we
wish to leverage recent advances in self-manipulation [25] to
enable a direct analysis of the system dynamics, perhaps even
enabling tools for designing machines based on a desired
composition hierarchy (Fig. 2).
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APPENDIX

A. Oscillatory Energization Stability Proof (Proposition 1)

First, note that other than x “ 0, there are no fixed points
for our parameter regime, ω ą σ. (It can be checked that
two more equilibria appear otherwise.)

We can find a trapping region, Ro :“ tx : }x} ď kt
σ u

(shown in Fig. 3). To see why, note that

xT f v1pxq ď ´σx
Tx` ktx

T x
}x} , (17)

i.e. }x} ě kt
σ ùñ d

dt px
Txq ď 0.

Next, note that

Df v1 |x“0“

”

p´1`
kt
ε qσ p1`

kt
ε qω

´ω ´σ

ı

, (18)

for which trDfv
1 |x“0“ σ ¨ pktε ´ 2q ą 0 for a sufficiently

small ε, and detDfv
1 |x“0“ 1 ` kt

ε pω
2 ´ σ2q ą 0, by

assumption. Thus, x “ 0 is a source.
Now we know that the trapping region is annular, and

contains no equilibria. Applying the Poincare-Bendixson
Theorem [29], we conclude that the limiting trajectory is
a closed orbit lying inside the trapping region.

B. Vertical Stance Map (§III-A)

Writing xpt, x0q to denote the flow generated by (1), and
letting Spx0q :“ mintt ą 0 | π1xpt, x0q “ 0u denote
the stance time (since π1, the projection onto the position
component, vanishes exactly at the liftoff), we define the
vertical stance map, F v

1 p 9χq :“ π2xpSp 9χ, 0q, p 9χ, 0qq.

C. Raibert Speed Controller Stability Proof (Proposition 3)

Note that

D 9xp 9x` ´ 9xq “ Dβp 9x` ´ 9xq ¨D 9xβp 9xq

“ Dβp 9x` ´ 9xq ¨ pD 9xβ
˚ ` kpq

ùñ D 9x 9x` | 9x“ 9x˚ “ 1`Dβp 9x` ´ 9xq ¨ pD 9xβ
˚ ` kpq.

From the sign properties of various terms, we note that for
small kp, ´1 ă D 9x 9x` ă 1.

TABLE III
PHYSICAL PARAMETERS (ALL SCALARS UNLESS NOTED)

kt Tail gain (3)
kp Raibert speed controller gain (7)
k Inertial reorientation generalized damper gains (14)
kg Inertial reorientation graph error gain (14)
σ, ω Dissipation, frequency of spring-damper (§III-A)
ε Saturation parameter for tail controller (3))
εr Stability margin for vertical hopping (Proposition 5)
εa Arbitrarily small orientation error (Proposition 6)
mb, ib Mass, inertia of robot body (§V)
ρl, ρt Leg, tail link lengths (§III,V)
ks Hooke’s law leg spring constant (§III,V)

D. Fore-aft Stability Proof (Proposition 4)

We can check that F fa satisfies each of the Raibert
conditions (Fig. 5), thereby concluding automatically from
Proposition 3 that the Raibert controller will ensure local
stability.

Alternatively, the utility of our simple analytical model
(8)-(9) is that we can directly compute the stability properties
under the Raibert controller (7),

DF fapvq :“ R` JRv ¨ pDγ ´ 2DβqeT1 , (19)

where R is evaluated at γ´ 2β. By inspection, the (desired)
fixed point of (9) is β “ γ{2 (this is the neutral touchdown
angle). Evaluated at the fixed point,

DF fapv˚q “ I ´ 2kpJv
˚eT1 “

”

1`2kpv
˚
2 0

´2kpv
˚
1 1

ı

, (20)

which is lower-triangular. The eigenvalues are t1, 1`2kpv
˚
2 u,

which capture the local stability of the single fore-aft DOF
(1` 2kpv2 ă 1) as well as the degeneracy of the map.

To see why the last statement is true, note that we can
find a rank 1 map

ι : R2 Ñ R : v ÞÑ }v},

which is invariant to F fa, i.e. ι ” ι ˝ F fa. Taking a gradient
of both sides and using the chain rule,

Dι |v“ Dι |F fapvq ¨DF
fa |v .

Evaluating at the fixed point v˚,

Dι |v˚“ Dι |v˚ ¨DF
fa |v˚ ,

i.e. Dι |v˚ is a left eigenvector of DF fa |v˚ with unity
eigenvalue.

Consequently, under iterations of this map, we get an in-
variant submanifold spanned by the orthogonal complement
of the unity eigenvector, resulting in a “dimension reduction”
(to a codimension 1 submanifold). In our case, F fa is really
a 1D map, even though its (co)domain in R2.

E. Hybrid Dynamical Model of SLIP (§III-C.1)

1) The Guard Set is BDs: Since Qs is itself a cross product
of Euclidean spaces and Lie groups, we can identify the
tangent bundle with a cross product, TQs

i « Qs
i ˆR4. Then,

the boundary of the product space only contains parts from
Ii, which corresponds exactly to the zeros of as (§III-C.1).



2) Reset Maps: Let us define the functions

Cart : S1 ˆ R` Ñ R2 :
“

θ1
θ2

‰

ÞÑ θ2

“

´ sin θ1
cos θ1

‰

(21)

Pol : R2 Ñ S1 ˆ R` : u ÞÑ
”

=u
}u}

ı

. (22)

The reset maps are defined as

rs1 : Ds Ñ Ds :

»

–

θ
9θ

r xz s
”

9x
9z

ı

fi

fl ÞÑ

«

θ
9θ

Cartpθq

DCart|θ¨ 9θ

ff

rs2 : Ds Ñ Ds :

»

–

θ
9θ

r xz s
”

9x
9z

ı

fi

fl ÞÑ

»

—

—

–

Polpr xz sq

DPol¨
”

9x
9z

ı

”

´z tan βp 9xq
z

ı

”

9x
9z

ı

fi

ffi

ffi

fl

F. Diffeomorphism to Leg-Polar Coordinates (§III-C.2)

Lemma 9. Let V :“ tv P R2 : v2 ă ´
2ρl
Ts
u. Then hw |V is

a local diffeomorphism.15

Proof. Note that

Dhw “ R´ JRvDβeT1 ,

where R is understood to be evaluated at ´βpvq. By inspec-
tion, Dhw could only have a test vector RTJRv in its kernel,
i.e.

Dhw ¨ pR
TJRvq “ p1´DβeT1 RTJRvqJRv ‰ 0,

since we know v ‰ 0, Dβ “
´

Ts
2ρl
` kp

¯

and so

1´DβeT1 RTJRv “ 1` v2

´

Ts
2ρl
` kp

¯

ă 0,

by the conditions assumed on kp. Thus Dhw is nonsingular,
and hw is a local diffeo.

G. Compositional Proof of SLIP Stability (Proposition 5)

We choose to perform our stability analysis at a section
just after touchdown (in w “ hwpvq coordinates). From (8),
the return map in w-coordinates is

ĂF spwq :“ hw ˝ F
s ˝ h´1

w pwq |κ“hκpw2q

“ Rpηpwqq
“

1
hκpw2q

‰

w,

where η :“ pγ ´ β ´ β ˝ F sq ˝ h´1
w . Now,

DĂF s “ Dw
ĂF s `Dκ

ĂF s ¨Dhκe
T
2 ,

where the first summand can be thought of as loosely
the isolated fore-aft subsystem behavior, and the second
summand is the perturbation from the radial subsystem. We
will evaluate this quantity at the fixed point w˚ “ hwpv

˚q.
Observe that using (7), Dη |˚“ ´2kpe

T
1 Dh

´1
w . Proceed-

ing just like in Proposition 2,

Dhκ |˚ “ ´
1

w˚2

´

1`DF v
1 |w˚2

¯

,

Dκ
ĂF s “ Rpηqe2e

T
2 w ùñ Dκ

ĂF s |˚“ w˚2 e2.

15Physically, the restriction to V means that the hopper must have
sufficient vertical component of touchdown velocity, essentially eliminating
“grazing” ground impacts.

Lastly, the “isolated” term computes similar to (20),

Dw
ĂF s “ R r 1

κ s ` JR r 1
κ swDη,

ùñ Dw
ĂF s |˚ “ I ` Jw˚Dη |˚ .

Putting all of these together,

DĂF s |˚“

”

1
´DF v

1 |˚

ı

` pqT ,

where p :“ ´2kpJw
˚, qT :“ eT1 Dh

´1
w . Using the matrix

determinant lemma,

trDĂF s “ 1´DF v
1 |˚ `p

T q

detDĂF s “ ´DF v
1 |˚

´

1´ qT
”

1
´DF v

1 |
´1
˚

ı

p
¯

.

Now notice that since Dhw is well-conditioned, we can
claim an upper bound on

|pT q| ď 2kp}Jw
˚}}Dh´1

w } ď kpΞ.

Also, the quadratic form qT
”

1
´DF v

1 |
´1
˚

ı

p must have

ˇ

ˇ

ˇ
qT

”

1
´DF v

1 |
´1
˚

ı

p
ˇ

ˇ

ˇ
ď |pT q|,

since
”

1
´DF v

1 |
´1
˚

ı

has norm less than 1.
It can be checked that both eigenvalues are of absolute

value bounded by unity iff all of (i) det ă 1, (ii) det ą
tr ´ 1, and (iii) det ą ´tr ´ 1 are true. These inequalities
follow from condition (ii) of Proposition 5 and choosing
small enough kp such that 2kpΞ ă εr.

H. Proof of HIR Stability (§IV-B)

Simply integrating the first-order dynamics (15), we get
the touchdown return map F a : S2 Ñ S2,

F apaq “ ζ ¨
`

a` δ̄ r 0
1 s
˘

, (23)

where ζ :“ e´kπ{ωap1 ´ kπ{ωaq. Iterating this return map,
at stride n P Z`,

arns “ ζtar0s ` pζnδ̄r0s ` ¨ ¨ ¨ ` ζδ̄rn´ 1sqe2, (24)

and using the triangle inequality,

}arns} ď |ζ|n ¨ }ar0s} ` δ̄max

ˇ

ˇ

ˇ

ζ
1´ζ

ˇ

ˇ

ˇ
. (25)

Note that ζ ă 1
1`δ̄max{εa

is a sufficient condition to ensure
that }arts} ď εa asymptotically stable. Some algebra reveals
that

k ą 2ωa
π log

´

1` δ̄max

εa

¯

(26)

is, in turn, a condition sufficient to insure that previous
inequality involving ζ.



I. Lagrangian Analysis of Tailed Monoped (§V-B)

We use the self-manipulation [25] formulation of hybrid
dynamics. The inertia tensor is

M “
“

0
Mb

‰

, where Mb :“
”

M1 MT
o

Mo M2

ı

. (27)

Note that M1 “ pmb ` mtqI and M2 “
“

ib`it it
it it

‰

are
constant, and Mo contains the critical cross-compartment
interaction, by way of which we can use our tail actuator
(formally acting on an attitude DOF, φ2) for energizing the
shank DOF, θ2.

Let the forward kinematics of the leg be g : θ ÞÑ R2. The
constraint in the stance contact mode is

a1pqq “ r
x
z s ´ Rpφ1qgpθq, (28)

such that A1pqq “ rRDg I JRg 0 s. In flight mode, a2pqq ”
0. As in [25], the dynamics can be expressed as

”

M AT
i

Ai 0

ı

“

:q
λ

‰

“
“

Υ´N
0

‰

´

”

C
9Ai

ı

9q. (29)

Define the linear coordinate change h : Y “ SˆAÑ Q,
and H :“ Dh such that

h´1 : q ÞÑ

„

pθ1`φ1,θ2,x,zq
T

M2

”

φ1

φ2

ı



, (30)

and observe that h´1pqq “ ps, aq is reminiscent of SLIP
(§III) and attitude (§IV) coordinates. Define

πs :“ r I4 0 sh´1, πa :“ r 0 I2 sh´1 (31)

The equations of motion are generated in the new coordi-
nates,

:y “ H´1M:pΥ´Nq ´H´1pM:C`A:T 9AqH 9y. (32)

In stance,

“

:s1
:s2

‰

“

«

τh
mbθ

2
2
´

2 9θ2
9θs

θ2

kspρl´θ2q

mb
`θ2 9θ2s

ff

` τt
ρtmb

”

sin ξ{θ2
´ cos ξ

ı

, (33)

:a “
“

´τh
τt

‰

, (34)

where ξ :“ θ1 ´ φ2 (the tail-leg angle), and the right
summand in (33) is quite clearly the disturbance caused due
to the added attitude degrees of freedom.

With the same choice of H, we can similarly recover
weakly decoupled flight dynamics:

“

:x
:z

‰

“
“

0
´g

‰

` τt
ρtmb

”

sinpφ1`φ2q

´ cospφ1`φ2q

ı

, (35)

:a “
“

0
τt

‰

, (36)

J. Tailed Monoped Flow Invariance (Proposition 7)

Applying assumption 4.iii to the Lagrangian analysis of
Appendix I, the plant dynamics ptmpTq, pτh, τtqq are

:θ |stance “

«

τh
mbθ

2
2
´

2 9θ2
9θs

θ2

kspρl´θ2q

mb
`θ2 9θ2s

ff

` τt
ρtmb

”

sin ξ{θ2
´ cos ξ

ı

,

:a |stance “
“

´τh
τt

‰

,
“

:x
:z

‰

|flight “
“

0
´g

‰

` τt
ρtmb

”

sinpφ1`φ2q

´ cospφ1`φ2q

ı

,

:a |flight “
“

0
τt

‰

, (37)

We can check that we have available affordances through
our two actuators to assign (scaled versions of) our template
controllers in Table II, (i) τh |stance“ ´g

p
1pa1, 9a1q to control

a1, and τh |flight“ gfa2 p 9xq to control 9x, and (ii) τt |flight“

gsh2 pa2, 9a2q to control a2, and τt |stance“ ´ρtθ2mb ¨ g
v
1p 9zq to

control hopping height16.
Under assumptions 3.iv and 4.iv, we show that the high-

lighted terms in (37) vanish inside U:
i) M2 Ñ 8, so in the dynamics equations :a “ 0.

Restricted to U, a ” 0. This proves part (i) of the claim.
ii) From :a ” 0 and (14), τh |stance“ τt |flight“ 0.

iii) Since φ2 “ 0, ξ “ ´φ1 « 0 (from assumption 3.iv).
By comparing the thus-restricted plant dynamics (37) to

(10), (11) and (13), we obtain part (ii) of the result.

K. Tailed Monoped Return Map Invariance (Proposition 8)

We first define the return map F tm by instantiat-
ing a “cross-product” hybrid system pDtm, f tm, rtmq as
(a) Dtm :“ Ds ˆ ĂDa, (b) rtm :“ rs ˆ rra, and (c) f tm as
defined in Proposition 7, where ĂDa

i :“ TS2 ˆ S1 for each i
(ensuring BĂDa “ H) and rrai : ĂDa

i Ñ
ĆDa
i`1 is defined

rrai :
“

Ta
ψa

‰

ÞÑ
“

Ta
iπ mod 2π

‰

. (38)

With these modifications, the ψa dynamics (15) are ignored,
and the clock of the HIR subsystem is being driven by
the SLIP subsystem17. This ensures that the conditions of
Proposition 6 still hold, i.e. πa ˝ F tm “ F a ˝ πa.

Additionally, the decoupled nature of f tm |U (Proposition
7) allows us to conclude that πs ˝ F tm “ F s ˝ πs, so that

F tm “ πs ˝ F
tm ˆ πa ˝ F

tm “ F s ˝ πs ˆ F
a ˝ πa,

which concludes the proof.

16We observe that by assumption 3.ii, θ2 « ρl is roughly constant, so
the scaling need not be configuration dependent.

17This coupling interaction importantly invalidates the ωa-dependent
bound on k (26). Our solution is to scale the input such that k is high
enough for the shortest feasible transition time in vertical hopping.
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