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ABSTRACT This paper introduces self-manipulation as a new formal design methodology for legged robots
with varying ground interactions. The term denotes a set of modeling choices that permit a uniform and body-
centric representation of the equations of motion—essentially a guide to the selection and configuration
of coordinate frames. We present the hybrid system kinematics, dynamics, and transitions in the form of a
consistently structured representation that simplifies and unites the account of these, otherwise bewilderingly
diverse differential algebraic equations. Cleaving as closely as possible to the modeling strategies developed
within the mature manipulation literature, self-manipulation models can leverage those insights and results
where applicable, while clarifying the fundamental differences. Our primary motivation is not to facilitate
numerical simulation but rather to promote design insight. We instantiate the abstract formalism for a
simplified model of RHex, and illustrate its utility by applying a variety of analytical and computational
techniques to derive new results bearing on behaviors, controllers, and platform design. For each example,
we present empirical results documenting the specific benefits of the new insight into the robot’s transitions
from standing to moving in place and to leaping.

INDEX TERMS Legged locomotion, Robot control, Robot kinematics, Manipulator dynamics.

I. INTRODUCTION
Legged robots, such as the notional mechanism in Fig. 1,
will necessarily experience a variety of changing contact
conditions as they perform ever more complex tasks requiring
greater autonomy on novel, and possibly shifting, terrain. As

FIGURE 1. Selected coordinate frames for self-manipulation of a legged
robot, where the object frame O is connected to the world but co-located
with the palm frame P on the robot. Figure adapted from [1, Fig. 5.14].

new conditions arise, it is crucial to formally (and therefore
automatically) generate and analyze the system dynamics, in
a manner requiring as little knowledge as possible about the
geometry and mechanics of the substrate. In contrast, multi-
fingered object manipulation has been well formalized for
many decades [1]–[6], motivating our paper that leverages
this established body of work and extends it to legged robots
as they manipulate themselves through the world. We exploit
these ‘‘self-manipulation’’ modeling choices to generate the
diverse constrained quasi-static and Lagrangian dynamics (as
well as the hybrid transition conditions that relate them) aris-
ing from the exponentially many possible contact conditions.
The framework is body centric (does not require full knowl-
edge of the world reference frame), allows for massless limbs
(does not require an invertible mass matrix), and permits
underactuation (does not require an invertible kinematic Jaco-
bian). More than numerical simulation (e.g. [7]), our goal is
the distillation of physically parametrized models into formal
design results, utilizing a variety of analytical and numerical
methods.
The central contribution of the paper is summarized in a

single ‘‘master equation’’ (33), in addition to the equations
and modeling decisions that lead up to it, expressing a rigid
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robot’s Lagrangian dynamics together with the constraint
forces required to sustain them for any combination of legs
and other body parts contacting rigid ground. From the per-
spective of electromechanical platform design, this model
elucidates the role of morphology and actuator characteristics
in promoting or precluding certain desired motions of the
body. From the perspective of behavior design, the model
comprises a compact, uniform representation of the hybrid
dynamical control system—the family of state spaces, con-
trolled dynamics over them, and guard conditions and reset
maps determining their adjacency—that must be exercised to
achieve those motions.

The use of this formalism is illustrated with reference to
a succession of tasks executed on the RHex robot [8], [9]
wherein the interplay of controlled joint torques, leg con-
tact conditions, and body reactions is particularly heightened
by that machine’s very limited actuation. But the model is
applicable to any legged machine, and we are convinced
that specific power (W/kg) limitations exhibited by every
available actuation scheme [10]–[12] will incur very simi-
lar, complex tradeoffs between various limb strategies for
imparting work upon the body. We believe that the body-
centric self-manipulation framework will reveal deeper, more
formal results concerning the adjacency relations between a
legged machine’s hybrid dynamics cells with strong behav-
ioral implications, but these ideas go beyond the scope of
the present paper and are merely hinted at in the conclu-
sion through speculative remarks concerning further work
presently in progress.

We intend the paper to be readily accessible to readers
acquainted with modern texts on robot manipulation and
control [1]–[6]. The modeling principles underlying self-
manipulation are quite general, and as such are presented
first in tutorial form. We believe their value and coherence
is best conveyed in the context of a specific robot presented
with a variety of specific tasks, spanning the energetic range
from static to quasi-static to dynamic. The RHex robot is
required to first stand in place (with the least possible energy
on unknown terrain [13]), then manipulate itself in that
place (while acting as a ‘‘tilt-scanning’’ sensor platform [14],
[15]) and finally leap dynamically from that place (to ‘‘pre-
pare’’ [16] various behaviors such as gap crossing [17] or
pronking [18]). The value of this formal method becomes
quite apparent when the great multiplicity, diversity and
dynamically varying nature of the contact modes is consid-
ered across these seemingly disparate tasks. The framework
generates automatically the equations of motion for all of
them, whose consistent structure differs only in one term (the
matrix A in Eqn. (32)) facilitating not only computational
analysis but also formal proofs of the validity or optimality of
behavioral choices, controller design, and robot morphology.

This paper is structured as follows: Section I-A compares
and contrasts self-manipulation with traditional manipula-
tion and locomotion models. Section I-B then introduces
the motivating behaviors which illustrate the benefits of this
analysis. Section II formalizes the modeling decisions and

FIGURE 2. Various models for a closed-loop kinematic chain:
(a) manipulating the world with your feet, (b) ‘‘broken back’’—symmetric
robots that meet in the middle, (c) free body diagram, (d) ‘‘walking
model’’—single open chain, (e) being manipulated by the world,
(f) self-manipulation (used here).

then review the quasi-static and dynamic equations of motion.
The abstract formalism is instantiated in Section III for RHex,
providing a concrete example. This model is put to task
in Section IV, where the various behaviors are instantiated
and analyzed, with specific new design results called out.
Section V concludes the paper with a brief summary and look
ahead.

A. BACKGROUND: SELF-MANIPULATION,
MANIPULATION, AND LOCOMOTION
Most centrally, the self-manipulation methodology appeals
to the key formulation of the manipulation literature, the
‘‘grasp map’’ or ‘‘grip transformation’’, G [2], which relates
wrenches at the contact points to wrenches on the object.1

Specifically, in Section II-B, we adopt the same model-
ing choices that lead to this map in the traditional setting.
However in self-manipulation, the robot must itself move
relative to the inertial world, and we focus attention on
the consequences of this departure from the manipulation
framework.
Of course such modeling decisions are not required to

arrive at accurate kinematics or dynamics. Consider the robot
in Fig. 2, a single kinematic chain similar to a 4 bar mech-
anism. The robot could be ‘‘cut’’ in many ways, in order
to determine the identical e-DOF (degrees of freedom, here
e = 1) from various q-dimensional open-loop dynamics and
c constraint forces. For example, one might make: one cut,
at a toe (q = 3, c = 2, Fig. 2(d), common in walking
analysis [19], [6, Ch. 16]) or at the robot center (q = 4, c = 3,
Fig. 2(b), producing strong symmetries); two cuts at the hips
(q = 5, c = 4, Fig. 2(e), akin to parts feeding [20]) or at
the toes (q = 5, c = 4, Fig. 2(a), direct instantiation of
manipulation [21], [22], as well as Fig. 2(f), sometimes called
a ‘‘floating-base’’ [23]); four cuts, at the joints (q = 9, c = 8,
Fig. 2(c), a free body diagram). Each variation of this example
results the same one-DOF mechanics model, however cutting
at the toes (Fig. 2(f)) admits simple expressions for friction
at each toe (as opposed to at the hip or body, Fig. 2(b), (e)),

1We adopt the specific notation introduced in [1], though these ideas
coincide with the formulation in [2]–[6]—and, indeed, most works on the
subject make similar modeling decisions.
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generalizes across all contact conditions (as opposed to the
walking model which must be separately instantiated in each
mode, Fig. 2(d)), andwith far fewer states and constraints than
the more general problem (Fig. 2(c)).

Contrary to the oft encountered adage, locomotion is not
the same as manipulation. To any reasonable level of pre-
cision, a legged robot is not moving the world with its feet
(i.e. the ‘‘object’’ is Earth,2 Fig. 2(a), [21], [22]), nor is the
world moving the robot (i.e. grounded legs reaching up and
manipulating the robot Fig. 2(e), [20]). In particular there
are three main differences between the usual manipulation
formulation and the self-manipulation setting: the robot is
the object (and so the ‘‘Palm’’ and ‘‘Object’’ frames are
coincident, as in Fig. 1); we are concerned with motion of
the robot and not what the robot is touching (and so the
grasp map must be composed with an appropriate reflection,
as appears in (15)); and the dynamics of the legs and body
are not decoupled (so in particular the mass matrix is no
longer block diagonal, as apparent in (25), complicating the
dynamics).Why bother following amanipulation formulation
if the problems are actually different? While not every result
carries over exactly, the problems are similar enough that
matching as closely as possible the modeling decisions that
have emerged from this very successful and mature body
of work facilitates the reuse, or slightly modified extension,
of several valuable ideas and results (e.g. rolling contact
[24]–[28], Section II-F).

Finally, it is worth a brief pause to consider the rela-
tionship between self-manipulation and locomotion, though
they are often considered equivalent [29]. Typically, the
locomotion problem domain focuses on the mobility of the
body in machines or animals [30], and, most commonly,
with respect to a greatly reduced or ‘‘template’’ [31] projec-
tion (although certainly not always, e.g. [19]). In contrast,
the self-manipulation problem is to determine the simplest
‘‘anchor’’ [31] that fully expresses the actuators’ abilities
perform to work upon that body, typically via ground reaction
forces directed through the limbs (16), but, not unimportantly,
often through momentum transfer in flight (67). Our ‘‘mas-
ter equation’’ (33) formulates the self-manipulation problem
under conditions of great enough generality to provide a com-
plete anchoring model for virtually any locomotion problem
where the substrate mechanics is well characterized by tradi-
tional lumped models (e.g. excluding flowing media [32]).

B. RESULTS: CONTROLLERS, BEHAVIORS, DESIGNS
We illustrate the utility of the self-manipulation formalism
through a succession of increasingly energetic tasks imple-
mented on the decade-old hexapod, RHex [8], [9]. The
selected behaviors hopefully strike the reader as a plausible
and coherent short ‘‘episode’’ of a kind likely to arise within
an autonomous missions: the robot comes to a halt at some
location of interest; once there, it actively engages its sensory
payload; this new information provokes the sudden determi-

2‘‘The planet Earth’s radius and mass are R0 and M0,’’ [22].

nation to leap up and escape that location. Notwithstanding
the intuitively straightforward, even mundane nature of this
simple vignette, in the absence of a systematic formalism
along the lines this paper develops, such a succession of
tasks would present the behavior designer with a diverse
(and combinatorially numerous) array of seemingly unre-
lated mechatronic and sensorimotor control problems whose
common implementation offers no unifying insight into what
properties of the platformmight help or hinder the mission. In
contrast, we point out how this general methodology informs
and simplifies the analysis of each of these constituent tasks
regarded separately, and affords a unifying framework for
analyzing the performance as a function of platform design
parameters (here focused on leg shape [33], [34], but the
formalism makes explicit the role of the various other mor-
phological parameters (e.g., Table 2) in the behavioral conse-
quences).

1) REACTIVE STANDING
The first behavioral example (Section IV-A) seeks to find
a reduction in the power needed for stand-in-place tasks
on unmodeled rough terrain [13]. The controller developed
is quite simple and implements the intuitive notion that all
actuators must resist external load while relaxing any rela-
tive imbalances between their individual efforts. However it
is not immediately apparent under what circumstances this
scheme is correct, nor even that it converges in all application
situations. The analytical expression for internal and exter-
nal torques facilitates the identification of the appropriate
operating conditions and a proof of convergence assuming
they prevail. As this proof covers both round and stick legs,
the design choice makes no real difference for this behavior.
The controller provides up to a 90% reduction in power use
compared to an open-loop stand.
Why worry about the power used when the robot is idle?

In one urban search and rescue study researchers discovered
that for 49% of the robot’s deployment it remained station-
ary, as the operators needed that time to gain situational
awareness [35]. This is corroborated by RHex tests in the
Mojave desert, where in at least one specific instance during
a trial in March of 2010, the operator paused the robot in a
standing posture while deciding how to proceed, causing a
motor to burn out after less than a minute. Robots operating
on challenging terrain, especially in the heat of a desert, need
a low-energy standing posture for health andmission runtime.

2) PITCHING SENSOR SWEEP
For almost any exteroceptive task, perceptual capability can
be increased by extending a sensor’s field of view by moving
it. Rather than (or in addition to) adding dedicated ‘‘neck’’
actuators, Section IV-B documents how RHex’s legs can be
used to provide a change in pitch, increasing the vertical
field of view of any payload. Here the formal setup of the
constraints in different contact modes determines analytically
both the pitching range as well as the pitching velocity in any
mode. Furthermore the dynamical liftoff conditions provide a
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speed bound for safe execution.
Our empirical example of this general idea features a hor-

izontal (Dorsal) planar laser scanner, a sensor that has no
vertical extent and so the only way to build a two dimensional
depth map is to move it out of the plane. Prior work on this
behavior used an ad-hoc geometric model of the half circle
legs to numerically compute an operable scanning range of
about 10◦ [14]. Without an analytical form, the geometry
would have to be re-generated in each contact state. It turns
out that this behavior benefits from a different contact mode
(with the body sliding on the ground). Furthermore while
both round and stick legs can reach this same peak pitch, the
rounded legs require less torque to do so. Since the kinematics
and dynamics are analytically derived with this formalism
across all contact states, the pitching velocity can be con-
trolled, and the maximal velocity the behavior can execute
without breaking ground contact is found to be higher in the
sliding contact mode. The final behavior has a range of±17◦

that can be used for example to more easily detect stairwells
and cliffs [15].

3) PITCH CONTROL IN LEAPING
Recent work has raised the question of how best to use a leap
to ‘‘prepare’’ [16] a subsequent behavior by reaching some
goal state, whether that goal is across a gap, onto an obsta-
cle, or continuing into another leap [17]. In this prior work,
individual actuators were assigned a trivial control policy
(maximal torque), and the varied sequences of contact modes
achievable through their relative timing dictated the resulting
state. Here we consider a finer use of the actuators over
the course of a prescribed route through the contact modes
(notionally motivated by gap crossing or pronking [18], [36])
wherein the robot must at some point engage all its legs on
the ground and reach an aerial state with large forward but
low pitching kinetic energy.

We analyze three aspects of pitch control for such leaps in
Section IV-C—the behavior design (focusing on the splay or
the asymmetry in leg angle), the controller design (focusing
on stubbing the toes and using the legs as tails), and the robot
design (focusing on the shape and the mass of the legs). The
underlying dynamics of a splayed posture is beneficial in
several ways. While pushing with both legs equally maintains
a level pitch at first, the front leg provably break its ground
contact first, and so the robot pitches upwards. A splayed leap
(as used before and adjusted via hand tuning [18], touchdown
plane control [36], or exhaustive search [17]) minimizes this
liftoff imbalance. Furthermore a splayed pronk has the added
benefit of a higher possible velocity.

The best results for pronking on RHex have all resorted
to decelerating or stubbing the rear legs near the end of
stance [36], [37]. We show analytically that this negative
work does cut down the pitch of the robot, though at the
same time bleeding off some of the forward kinetic energy,
as demonstrated experimentally in an extreme case.

Next, to illustrate the role of leg design in leaping, the
dynamics are combined with the takeoff conditions in single

support to derive a bound on maximum forward velocity.
This bound suggests that the rounded leg design of RHex
enables a higher maximum speed than an equivalent stick
leg. Furthermore we consider the inertial effects of the nearly
massless legs [38], which in the air act as ‘‘tails,’’ [39], [40],
that are able to generate a non-trivial body rotation.

II. SELF-MANIPULATION
A. NOTATION
Table 1 summarizes the notation in this section, chosen where
possible to match [1]. Denote a rigid frame B, expressed in
the coordinates of rigid frame A (or, equivalently, a rigid
transformation that takes frame A into frame B) gab ∈ Ga :=
SE(d), where d = 2 for a planar model and d = 3 for a
spatial model. In local coordinates a rigid transformation will
be written as a vector, for example x = [x, y, z, φy, φp, φr ]T ,
where the Euler angles may be chosen as convenient but here
will be ZYX—Yaw, Pitch, Roll. The group product will be
denoted as gab · gbc. The velocity of frame B relative to frame
A as seen byA isVs

ab = ġab ·g−1ab , or in twist coordinates
[ vsab
ωsab

]
(the ‘‘spatial’’ velocity), while the same velocity written in the
coordinates of frame B is Vb

ab = g−1ab · ġab (the ‘‘body’’ veloc-
ity) [1, Section 2.4.2]. A body wrench (generalized force),
Fb :=

[
f
τ

]
, is defined such that work is Vb

a,b · Fb. An adjoint
transformation matrix, Adgab : TGa → TGb, relates the two
expressions of velocity, Vs

ab = AdgabV
b
ab [1, Chapter 2].

Denoting by πx a projection down to the x component,
πck a projection to some collection of components to be
defined by the friction conditions as specified below, and
the non-subscripted π the projection from an element of
SE(d) (position and orientation) to Rd (position only), we
express the origin of a frame, g, as (e.g. when d = 2)
(x, z) = π (g) ∈ π (G) ≈ R2. Similarly let Rab = πRgab
be the rotational component of the rigid transformation, in
matrix form. To convert between local coordinates and twist
coordinates, define (e.g. when d = 2), R :=

[
R 0
0 1

]
, so that

Vb
ab = RT

abẋ.

B. MODELING DECISIONS
This self-manipulation model follows the usual conventions
from manipulation [1]–[6]: the hand and object are separated
at the fingertips; the wrench bases at the fingers (i.e. the
motions that the contact resists) are considered in unison;
and (through the separated velocity constraints of the grasp
map and hand Jacobian) dictate the forces and torques on the
object and robot. However since the robot is the object, we
set the ‘‘Object’’ frame, O, to be coincident with the robot’s
‘‘Palm’’ frame, P.
Define the following coordinate frames, as shown in Fig. 1

(and corresponding to [1, Fig. 5.14]). Let P be attached to
the COM of the robot body segment, and the object frame,
O be co-located at P, but attached to the world. The usual
manipulation problem takes the palm frame as fixed, and so
from the robot’s perspective it appears that the gravitational
force is applied to the movable Earth (the object), and not the
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TABLE 1. Key symbols used throughout this paper, with section or equation of introduction noted.

a := |n− e| ∈ Z+ Internal or uncontrolled DOF (II-H)
a : Q→ C Base Constraint Function (9)
A : TQ→ TC Velocity Constraint Function (11)
Adgab : TGa → TGb Adjoint transformation from a to b (II-A)
Bc,k : T ∗Ck → T ∗Gck Wrench basis at contact (3)
c = dim(C) ∈ Z+ Number of active contact wrenches (II-C)
C : TQ2

→ T 2Q Coriolis matrix (30)
Ck ∈ Gc Contact frames (ground aligned) (II-C)
Ck ⊂ Gck , C = 5kCk Space of contact positions (II-C)
d ∈ {2, 3} Dimension of model (planar or spatial) (II-A)
D : TQ→ T 2Q Coriolis & internal dynamics (33)
E : T ∗Q→ T 2Q Applied & external dynamics (33)
e = q− c ∈ Z+ Unconstrained DOF (II-G)
f ∈ T ∗C Contact wrench magnitudes (6)
Fa ∈ T ∗Ga Generalized force (wrench) (II-A)
Fk ∈ Gf Finger frames (leg aligned) (II-C)
gab ∈ Ga := SE(d) Rigid transformation from A to B (II-A)
Gs : T ∗C → T ∗Gp Self-manipulation grasp map (15)
h : Y → Q,H := Dh Implicit kinematic mobility function (18), (19)
Jh : T2→ TC Hand Jacobian (16)
Jssf : T2→ TGc Finger Jacobians (II-E)

K ⊆ Z+, k = |K| Set of active contact points (1)
L : TQ→ R Lagrangian (28)
Lk ∈ Gl Leg segment frame (leg aligned) (II-C)
Ma : T 2Ga → T ∗Ga Mass matrix (25)–(26)
Mk ∈ Gm Motor frames (leg aligned) (II-B)
n = dim(2) ∈ Z+ Number of joints (II-B)

N : Q→ T ∗Q Nonlinear forces (gravity) (31)
O ∈ Go, Object frame (coincident with P) (II-B)
P ∈ Gp Palm frame (body aligned) (II-B)
q = n+ d(d+ 1)/2 ∈ Z+ Dimension of the combined state (II-B)
q ∈ Q := 2× Go Combined system state (II-B)
R ∈ SO(d) Rotation Matrix (II-A)
Sk ∈ Gs Leg attachment frames (body aligned) (II-B)
T : TQ→ R+ Kinetic Energy (24)
U : T ∗C → Rk Friction cone (4)
U ⊆ S1 Range of angles considered (II-B)
v ∈ TπG Linear velocity (II-A)
V : Q→ R+ Potential energy (27)
Vsab ∈ TGa,V

b
ab ∈ TGb Generalized velocity (twist) (II-A)

W ∈ Gw World inertial frame (II-B)
x ∈ G Body position and orientation (II-B)
xc ∈ C Contact location in the contact basis (5)
y := ψ(q) ∈ Y Lagrangian free variables (II-G)
α ∈ Ra Internal force magnitude (22)
ζ ∈ R Height function (II-I)
θ ∈ 2 := Un Joint angle vector (II-B)
λ ∈ T ∗C Lagrange multipliers (constraint forces) (29)
π : SE(d)→ Rd Projection down to linear components (II-A)
τ ∈ T ∗2 Torque (II-A)
ϒ ∈ T ∗Q External forces (including torques) (31)
φ ∈ SO(d) Body Orientation (II-B)
ψ : Q→ Y,Y := Dψ Lagrangian free variable map (II-G)
ω ∈ TSO(d) Angular velocity (II-A)

other way around. Co-locating the object and palm coordinate
frames allows for wrenches and twists that are referenced to
that point in the world, and the robot’s actual motion is simply
be the opposite sign (from a ground based observation), as
explored below. The true world inertial frame, W , is at some
unknown but fixed location relative to the ground, and aligned
with gravity. The position of the robot, gwp ∈ SE(d), or x
when written in local coordinates, is part of our state but we
strive to not necessarily need to know anything other than the
robot orientation relative to gravity, φ ∈ SO(d).
Each leg attaches at a frame fixed on the robot body, Si for

leg i, and for each joint of that leg j a rotating frame that moves
with the motor, Mi,j, at the center of the joint but rotated by
θi,j ∈ S1 about some joint axis (although it may be convenient
to restrict the available angles to θi,j ∈ U , for example U :=
[−30◦, 30◦]). Denote by gsimi,j (θi,1, . . . , θi,j) this open-chain
kinematic mapping from Tj into the appropriate rigid group.
Define a ‘‘leg’’ frame, Li,j, at the center of mass of link and
a ‘‘finger’’ frame, Fi, at the toe and fixed relative to the final
leg segment. The collection of n total joint angles, θ ∈ 2,
combinedwith the COMposition define our overall state, q =
[θ x] ∈ Q := 2 × Go ≡ Tn

× SE(d), having dimension
q := n+ d(d+ 1)/2.

C. CONTACT CONDITIONS
In order to determine which parts of the robot are in contact
with the ground we first define a contact frame, Ci, at each

potential contact point (toe or other body part, and located
at Fi in the case of a toe). The contact frame is typically
oriented with the z axis pointing into the object, however here
the object being manipulated is the robot. We choose to keep
the definition consistent with respect to the legs, and so the
z axis points into the ground (which on flat terrain aligns Ci
with W ). Note that body contact under this system simply
involves a zero jointed ‘‘leg’’ with an appropriate contact
frame. Section II-F extends these ideas to rolling contact.
Which contact points are active can be determined by

checking the distance to the surface of the local world, with
contact of some sort occurring when that distance is zero
[6, Section 27.2] (the type of contact is specified below). This
condition can be reduced to checking the contact point height,
ζci (q) := πz(gciw) − ζ̂ci , for some local terrain height ζ̂ci
(where ζ̂ci := 0 for flat level ground). Call the set of k active
contact point indices K, such that,

K := {k|ζck (q) ≡ 0}. (1)

The set can be updated inductively if the current contact con-
ditions are known by checking the friction conditions (defined
below) on all active contact points and the touchdown con-
ditions on all non-active contact points. The set of contact
conditions for a quasi-static RHex is needed in the analysis of
Section IV-B (see Fig. 4—and these boundary conditions are
used throughout) however it is important to note that none of
the control—algorithms we develop in this paper require that
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the robot actually know anything about their location.
There are a number of different types of contact possible

once a contact point is known, for example RHex has both
sliding and non-sliding point contacts (see [2, Table 2–3], [1,
Table 5.2] for a full list of examples). In each contact frame
define a subspace consisting of only the degrees of freedom
that friction keeps fixed, Ck ⊆ Gck , k ∈ K, with a projection
(whose expression in coordinates is a sub-block of the identity
matrix), xck := πck (gckw). However the standard grasping
analysis instead focuses on the wrenches that the contact can
resist (as is required for the non-holonomic constraints of
rolling contact), and so in that spirit define the wrench basis
as the image of the pullback of πck from the allowable contact
wrenches to all possible contact wrenches at a contact point
point [1, Section 5.2.1], Bck : T

∗Ck → T ∗Gck , (written in
coordinates, BTck := Dπck ). The contact conditions enforce
zero motion in these directions as well—giving rise to the
familiar dual pairing,

ẋck = BTckV
b
w,ck , ẋck ∈ TCk (2)

Fck = Bck fck , fck ∈ T
∗Ck . (3)

This contact constraint holds only when the contact forces
are in some Coulomb friction cone relating the normal and
tangential forces,3

Uk (fck ) ≥ 0, Uk : T ∗Ck → Rck (4)

[1, Section 5.2.1], [6, Section 27.3], satisfying,

Uk (fa) ≥ 0, Uk (fb) ≥ 0

⇒ Uk (αfa + βfb) ≥ 0 ∀α, β ∈ R+

which in the planar case (d = 2) is simply a matrix multipli-
cation, Uk fck ≥ 0.
For multi-finger robots, and now multi-legged robots, it

is often convenient to deal with the collection of contact
positions (and similarly for twists and wrenches) among all
contact points,

xc := (xc1 , . . . , xcn ) ∈ C := 5k∈KCk (5)

fc := (fc1 , . . . , fcn ) ∈ T
∗C (6)

U(fc) := (U1(fc1 ), . . . ,Un(fcn )) ≥ 0 (7)

where c := dim(C) =
∑

k∈K dim(Ck ) is the total number of
constraints on the system.

D. KINEMATIC LOOP CLOSURES
The friction holding the contact points in place along
some dimensions sets up the following constraint functions,
expressing the k th contact condition by the equality,

xck = πck (gckw(q)) = πck
(
gck sk (q) · gskw(x)

)
(8)

(see further discussion in the Appendix Section A), motivat-
ing the definition of the constraint function

ak (q) := πck
(
gckw(q)

)
− x̂ck (9)

3The given frame convention for the z axis of Ck means that the normal
forces are negative in general, see Appendix (76), (78).

whose zeros, a−1k [0], comprise the constraint set for some
initial contact position x̂ck . Collectively, the c kinematic con-
straints are,

0 ≡ a(q). (10)

This constraint sets up the initial pitching sensor behavior
presented in Section IV-B.1, though this is quickly extended
to include rolling contact as described in Section II-F.

E. INFINITESIMAL KINEMATICS: THE GRASP MAP AND
HAND JACOBIAN
The infinitesimal kinematics over the base constraint (10),
relates wrenches and twists between the body and joints and
contacts, through induced tangent constraints. Given a con-
strained motion, qa(t) : R→ Q, satisfying (10), a ◦ qa ≡ 0,
these induced constraints can be given coordinate expression
by differentiating the constraint equation, however by using
the fact that the constraint equation must be true no matter
where the world frame is, some of the interdependence is
removed. Therefore we claim that,

d
dt
ak ◦ qa ≡ 0

⇒ Ak (q)q̇ := [−BTckAdgck fk J
b
sk fk − BTckAdgck pR

T
wp]q̇ ≡ 0

(11)

where the leg Jacobian Jbsk fk is defined such that, Vb
sk fk =

Jbsk fk (θ )θ̇ . The proof of this claim may be written out using
either a homogeneous representation or a twist representation,
as shown in the Appendix Section A. Here instead we show
that this equality (11) is equivalent to the standard manipula-
tion constraint,

Jhθ̇ = GTVb
po (12)

[1, Eqn. 5.15], typically derived directly in terms of twists
by defining the grasp map and hand Jacobian, and not by
differentiating a base constraint (10).
In manipulation literature, the grasp map, G : T ∗C →

T ∗Go, takes wrenches at the contact points (i.e., forces at
the contact points), fc ∈ T ∗C to wrenches on the object,
Fo ∈ T ∗Go, and its dual, GT , acts covariantly, taking body
twists of the object, Vo ∈ TGo, to twists at the contact point,
ẋc ∈ TC, all expressed in coordinates as,

Gfc = Fo GTVb
po = ẋc (13)

G :=
[
AT
gc1o

Bc1 · · · AT
gcno

Bcn
]

(14)

[1, Section 5.2.2, Fig. 5.15], where G ∈ R3×c if d = 2,
and G ∈ R6×c if d = 3. As this is a self-manipulation,
Vb
po is the opposite of the body velocity one would normally

consider, as it is the velocity of O, attached to the world.
This opposite direction comes from the more general iden-
tity, Vb

po = −AdgopV
b
op, [1, Lemma 2.16] (see Appendix

Section F for proof), but in this case the adjoint matrix is
simply identity. Therefore a self-manipulation ‘‘grasp’’ map
is defined as,

Gs := −G, GT
s V

b
op = ẋc, Gsfc = Fp (15)
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where recall thatVb
op = Vb

wp is the body velocity of P relative
to any world coordinate frame, and Fp is the body wrench.
Next, the hand Jacobian, Jh relates infinitesimal motion

at the joints, θ̇ ∈ T2 to twists at the contact points, ẋc ∈ TC,
and has a dual, the pullback from contact wrenches, fc ∈ T ∗C
to hip torques, τ ∈ T ∗C, all expressed as,

Jhθ̇ = ẋc JTh fc = τ (16)

[1, Section 5.5.1, Fig. 5.15], where Jh ∈ Rn×c. The hand
Jacobian definition carries over directly from manipulation,

Jh :=


BTc1Ad

−1
gsc1

Jssf1 0 0

0
. . . 0

0 0 BTcnAd
−1
gscn

Jssfn

 .
Note that in the case of body contact, the hand Jacobian has
a column of all zeros, that is contact wrenches at that point
have no direct projection onto the joint torques (see Appendix
Section B for further discussion).

Combining (13) and (16), and recalling that Vb
op = RT

wpẋ,
we see that as claimed in (11),

A(q)q̇ =
[
−Jh GT

s R
T
pw

][
θ̇

ẋ

]
=

[
−Jh GT

s

] [
θ̇

Vb
op

]
= 0

(17)
asserting that the motion of the contact frames as seen from
the robot and the world agree (so long as the friction con-
straints hold (7)).

F. ROLLING CONTACT
Rolling contact, when the contact frame Ck is not fixed
relative to either the body or object, can be treated as a simple
extension to the above analysis. At each instant the velocity
of the body and joints is as if the leg was a simple stick leg,
with a toe at the point of contact,4 however the evolution of
the contact location is dictated by the relative geometry. The
underlying contact velocity constraint is still correct, as the
contact instantaneously cannot move in the constrained direc-
tion, however in general this constraint is non-holonomic [24]
(i.e. there is no corresponding base constraint (8)).

Therefore in general the velocity constraint componentsGs
and Jh also depend on parameterized contact coordinates, η,
which update as some function of the local geometry [26]. For
RHex, the geometry is simple enough that no extra η param-
eters are needed (the rolling contact frames can be described
fully by elements of q), and so in the interest of space we
direct the reader to [1, Chapter 5.6] for a full derivation (with
similar notation) as well as [24]–[26]. In addition see [27],
[28] for higher order considerations—for now it is sufficient
to note that while the constraint,A (11), is the same for rolling
contact as an equivalent stick leg, Ȧmay not be, and so while
quasi-statically both follow the same trajectory, the dynamics
are different in order to account for the changing constraints.
This fact is used for example in Result C.4.

4See the Appendix Section C for simple proof for RHex like circular legs.

G. PARAMETERIZATION OF THE CLOSED-LOOP
KINEMATICS
In most of the applications settings considered below, given
the c constraints (10), it is convenient to work with a local
parameterization of the e = q − c dimensional manifold of
remaining mobility. This amounts to the choice of an implicit
function, h : Y → Q, where Y is some convenient open
subset of Re. To simply answer certain questions about the
robot motion in terms of particular components of q, it is
convenient to identify Y with a problem-specific Euclidean
submanifold of our generalized coordinates, i.e. Y := ψ(Q),
where, in coordinates, ψ is some fixed linear combination
of the components of q corresponding to the directions of
interest in the problem (and often a projection whose matrix
representation is a subcollection of columns from the identify
matrix). The tangent map, Y := Dψ,Y ∈ Rq×e, results in a
combined constraint equation,[

A 0
Y −Ide

] [
q̇
ẏ

]
= 0

such that the associated implicit function (split into hand and
object components),

hh(y) = θ, ho(y) = x, h = (hh,ho) : Y → Q
(18)

is a local immersion—i.e., its Jacobian maps,

θ̇ = Hhẏ, ẋ = Hoẏ, H := Dyh (19)

H =
[
A
Y

]−1 [ 0
Ide

]
(20)

is full rank (never passing through the origin) in both tan-
gent spaces (for some local region in Y). In this paper
we assume that such a parameterization exists. The matrix
inverted in (20) is dimension q×q, and invertible except at
singularities in the kinematics or parameterization. Note that
Hh can be thought of as the instantaneous gear ratios for n
independentmotor shafts coupled rigidly to an external output
load with e DOF.

This implicit function is used to show that the change of
basis in Section IV-A is a good approximation, and again in
Section IV-B.3 thatHo can be used to control the pitching rate
of the robot.

H. QUASI-STATIC FORCES AND TORQUES
The wrench due to the gravitational potential field, Fg, is
derived from the height ζ : Gp → R in that potential field
and, at static equilibrium, it is exactly balanced by the contact
forces through the grasp map (13),

Gsfc = −Fg. (21)

If the number of DOF in the closed-chain analysis, e, is less
than the number of motors, n, there is some ‘‘internal’’ force
components, which lies in the subspace [1, Definition 5.3],

ker(Gs) = Im(fN ) :=

{
a∑
i=1

αifNi|αi ∈ R

}
(22)
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that forms the homogeneous solution, i.e. contact wrenches
that are internal in that they can perform no work on the
object, where a := n− e.
To invert (21) and determine the contact forces required to

balance the external wrench, torque constraints5 of the form
tTi τ = 0, i ≤ a must be imposed upon the hip joint torque
vector, τ ∈ T ∗2, (16). Pulling back through the infinitesimal
kinematics, this now constrains the contact wrenchmagnitude
vector fc ∈ T ∗C leading to a unique solution of the full rank
augmented version of (21) taking the form,

tT JTh fc = 0, fp := −
[

Gs
tT JTh

]−1 [Fg
0

]
. (23)

Thus the overall vector of contact wrench magnitudes is,

fc = fp +
∑
i

αifNi

and the internal and external components may be projected
back into motor torques through (16).

These quasi-static internal and external forces are the key
to the reactive standing behavior in Section IV-A, and cal-
culating the torque requirement in the pitching sensor sweep
(Section IV-B.2).

I. DYNAMICS
This section derives a Lagrangian formulation for the robot
dynamics in terms of some local coordinates, arriving at a
relationship between q, q̇, and q̈ in (33). We allow for the
option of having massless legs, and so expressions of the
dynamics cannot involve directly inverting the mass matrix.

If the body of the robot has massmb and inertia Ib, and each
leg segment may have mass mli and inertia Ili , then observe
that the total kinetic energy is,6

T =
1
2

[
θ̇T VbT

op
]
M̂
[
θ̇

Vb
op

]
=

1
2
q̇TMq̇ (24)

M̂ :=

 ∑
i J
bT
pliMliJ

b
pli

∑
i J
bT
pliMliAdg−1pli∑

i Ad
T
g−1pli

MliJ
b
pli Mb +

∑
i Ad

T
g−1pli

MliAdg−1pli

 (25)

Mi :=

[
miIdd 0
0 Ii

]
, M :=

[
Idn 0
0Rwp

]
M̂
[
Idn 0
0RT

wp

]
(26)

(see Appendix Section D for full derivation) where recall that
Jbpli θ̇ = Vb

pli .
The potential energy depends on the world-referenced

height of the body in the gravitational field, ζo(x), and the
configuration-dependent height of each link relative to the
body, ζl(θ, φ),

V (q) = mbgζo(x)+
n∑
l=1

mlg(ζo(x)+ ζl(θ, φ)). (27)

5Alternatively a ‘‘no internal force’’ constraint may be encoded as fTN fc =
0 [2], however in general we allow some internal force to achieve some other
goal, such as no internal torque.

6This ‘‘self-manipulation’’ inertia tensor (25) is much simpler when the
legs are taken to be massless, Mli = 0⇒ M̂ =

[ 0 0
0 Mb

]
, and quite different

than in manipulation, M̂ =
[∑ JTMiJ 0

0 Mb

]
, (as in [1, Eqn. 6.24]), where the

extra terms in (25) arise from the coupling inherent in self-manipulation.

Using these statements of the kinetic and potential energy,
and applying Lagrange’s equations [1, Eqn. 6.4], [41,
Sec. 5.1],

L(q, q̇) =
1
2
q̇TM(θ, φ)q̇− V (q)=

1
2

q∑
i,j=1

M ijq̇iq̇j − V (q)

(28)

0 =
d
dt
∂L
∂ q̇i
−
∂L
∂qi
+ ATλ− ϒ

d
dt
∂L
∂ q̇i
=

d
dt

 q∑
i,j=1

M ijq̇j

 = q∑
i,j=1

(
M ijq̈j +

˙M ijq̇j
)

∂L
∂qi
=

1
2

q∑
j,k=1

∂M kj

∂qi
q̇k q̇j −

∂V
∂qi

. (29)

The Coriolis terms may be grouped in the usual way,7

C ij =
1
2

q∑
k=1

(
∂M ij

∂qk
+
∂M ik

∂qj
−
∂M kj

∂qi

)
q̇k (30)

and the nonlinear (gravitational) and applied forces are,

N i(θ, φ) =
∂V
∂qi

, ϒ(τ ) =
[
τ

0

]
(31)

where N depends only on θ and φ as the force due to grav-
ity is position independent. Note that damping may also be
modeled with N, in which case it depends on q̇.
The constraint forces, ATλ, arise from the closed-loop

constraint (11), and the contact force magnitudes must satisfy
the friction constraint (7), U(λ) ≥ 0.
Rearranging (29) into the familiar form, where note that

A is the only term that varies with contact mode,

M(θ, φ)q̈+C(θ, φ, q̇)q̇+N(θ, φ)+AT (q)λ = ϒ(τ ) (32)

the dynamics and the constraints may be combined in a few
different ways to solve for q̈ and λ, here we choose,[

q̈
λ

]
=

[
M AT

A 0

]−1[
ϒ − N

0

]
︸ ︷︷ ︸

E(θ,φ,τ )

−

[
M AT

A 0

]−1[
C
Ȧ

]
︸ ︷︷ ︸

D(θ,φ,q̇)

q̇ (33)

where we assume that the inverted matrix in (33) is nonsin-
gular even ifM is not (see Appendix Section D).
This formulation of the dynamics is sufficient to determine,

for example, that the front leg always lifts off the ground
before the rear leg in a symmetric leap (Section IV-C.1). How-
ever it is convenient to use the parameterization of Section II-
G to separate the free dynamics from the constraint forces, as
shown in the next section.

J. REDUCED DYNAMICS
Instead of working with the complete dynamics we can
instead consider only the e free Lagrangian variables in y, as
introduced above. In this case the dynamics are,

7TheCmatrix does not have any particular block diagonal structure as was
the case in a manipulation problem [1, Eqn. 6.24]. If the legs are considered
massless then C may all be zeros, depending on parameterization.
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M̃(q)ÿ+ C̃(q,H(q)ẏ)ẏ+ Ñ(q) = ϒ̃ (34)

ÿ = M̃−1(q)
(
ϒ̃ − Ñ(q)

)
︸ ︷︷ ︸

Ẽ(q)

− M̃−1(q)C̃(q,H(q)ẏ)︸ ︷︷ ︸
D̃(q,ẏ)

ẏ (35)

where,

M̃ := HTMH, C̃ := HTCH+HTMḢ (36)

Ñ := HTN, ϒ̃ := HTϒ, (37)

(see Appendix Section E for derivation). Note that while the
base constraint is a function of the initial conditions (x̂c),
the Jacobian constraint is not, and so any analysis that holds
across any initial conditions needs the full q. Furthermore in
general rolling contact requires non-holonomic constraints,
and so h may not exist. Therefore we have left q in explicitly
in (35) and write out the reduced dynamics in terms of both
the reduced variables, y, and original variables, q, (although
h(y) may be substituted for q when possible).

To recover the original configuration space accelerations
and Lagrange multipliers,

q̈ = Hÿ+ Ḣẏ. (38)

λ = A∗(ϒ − N)︸ ︷︷ ︸
Ẽλ(q)

−A∗(MḢ+ CH)︸ ︷︷ ︸
D̃λ(q,ẏ)

ẏ (39)

where A∗, a left inverse of A, is chosen to also satisfy
A∗MH = 0, that is,[

A∗

(MH)∗

]
:=
[
AT MH

]−1
⇒ A∗AT

= Idc, A∗MH = 0 (40)

(see Appendix Section E for derivation).
These reduced dynamics lead to, for example, a simple

proof that stubbing the toe at the end of stance in pronk is
beneficial to the robot’s pitch, as described in Section IV-C.3.

K. SUMMARY OF ASSUMPTIONS
For convenience, the assumptions made by the self-
manipulation framework just presented are summarized as
follows:
A.1) There is a distinguished (pre-selected) rigid body on the

robot with a frame, P, attached at the COM.
A.2) There is an inertial world frame, W , at some (possibly

unknown) fixed location, and at each instant is rigidly
connected to a frame, O, co-located at P.

A.3) The robot is in contact with the world at some finite
number of points, Ck , and the set of all possible contact
points is known (albeit, in general, not their location).

A.4) The combined mass matrix M does not need to be full
rank (i.e. there may be massless limbs), however the
reduced mass matrix, M̃, is (i.e. any massless links
are constrained such that the overall system motion is
well defined).

A.5) Some choice of generalized coordinates, i.e., a
non-singular minimal parameterization of the free
motion, y, is available in any mode of interest.

Furthermore the following assumptions are made in this
paper, but not fundamental to the structure of the framework,

B.1) There are no elastic or compliant components.
B.2) Any damping or air resistance is negligible.

Some additional assumptions are made when this general
framework is instantiated in the next section.

III. SELF-MANIPULATION FOR RHex
A. MODEL PARAMETERS
When RHex uses pairs of contralateral legs in phase on level
ground, it is very effectively anchored to the sagittal plane,
and so here we develop a planar model for RHex (d := 2),
with only two legs modeled, each with one joint (n := 2,
q = 5), as shown in Fig. 3. In addition the body is allowed to
contact the ground at up to two locations (front and rear), so
that k ≤ 4. The rubber treads on the toes have a relatively high
coefficient of friction (especially on rough outdoor terrain)
that we assume always resists tangential (sliding) motion,
while the hard shell of RHex’s body has a very low coefficient
of friction and so we assume that the body always is able to
slide. There are thus 2 contact wrenches at each toe and 1 at
the front and rear of the robot, implying that c ≤ 6. We do
not assume that the robot is endowed with any exteroceptive
sensors, and as such must assume instead that the robot is on
flat level ground, and so the contact normals are aligned with
gravity.
The location and orientation of the various frames are

shown in Fig. 3. In the palm frame, let the+x axis be aligned
with the robot, +z in the ‘‘downward’’ direction from the
robot, and thus+y exiting the page (this is a standard ‘‘North,
East, Down’’ orientation). Hip i (Si) is located `i away from
the P frame along the positive x direction, and the leg length
is ρi putting the Fi frame at ρi along the positive z direction
from Mi, thus,

gpc1 (θ, φ) := [ `1 − ρ1 sin θ1, ρ1 cos θ1, −φ]T

gpc2 (θ, φ) := [−`2 − ρ2 sin θ2, ρ2 cos θ2, −φ]T

when the leg is supported on its toe (0 ≤ θi − φ < π , as with
leg 2 in Fig. 3). While the leg is in rolling contact (as with
leg 1 in Fig. 3),

FIGURE 3. Coordinate frames and key dimensions for RHex under the
self-manipulation formulation.
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TABLE 2. Physical quantities used in the RHex model. Note that ml , Il ,
and τs are doubled in practice as contra-lateral legs are used in parallel
in this paper, though all but the last behavior assume massless legs.

Symbol Value Definition

mb 7.15 kg Body Mass

Ib 0.15 kg·m2 Body Inertia

ml 0.063 kg Leg Mass

Il 0.00046 kg·m2 Leg Inertia

`1, `2 20.5 cm Body-Hip Length

ρ1, ρ2 17 cm Leg Length

ρb 5 cm Body Radius

τs 15 N·m Saturated Maximum Torque

gpc1 (θ, φ) :=
[
`1 −

ρ1

2
(sin θ1 + sinφ),

ρ1

2
(cos θ1 + cosφ), −φ

]T
gpc2 (θ, φ) :=

[
− `2 −

ρ2

2
(sin θ2 + sinφ),

ρ2

2
(cos θ2 + cosφ), −φ

]T
.

The body has semi-circular ends with radius ρb about the hips
and so the two potential body contact points are,

gpc3 (θ, φ) := [ `1 − ρb sinφ, ρb cosφ, −φ]T

gpc4 (θ, φ) := [−`2 − ρb sinφ, ρb cosφ, −φ]T.

The body pitch is φ = 0 when the robot is horizontal and a
positive pitch when hip 1 is higher than hip 2. The leg angles
are measured as θ1 and θ2 in the clockwise direction from the
body+z direction. In Fig. 3, θ1 < 0, θ2 > 0, φ > 0. Physical
values used, including lengths and masses, are summarized in
Table 2.

B. RHex KINEMATICS
The definitions of the previous subsection completely
describe the kinematics and dynamics of the robot in any
contact configuration. A full list of the resulting matrix for-
mulation of the kinematics and dynamics is included in the
Appendix Section G, while here we only look at the base
constraint and explore the quasi-static state space.

From Section II-D, the base kinematic constraint is defined
by composing the inverse of the specified maps for gpck with
the body coordinates, x, which for stick legs (0 ≤ θi−φ < π),

ak (q) = π (gckw(q))− x̂ck , k ∈ 1, 2

=

[
−x − `k cos(φ)+ ρk sin(θk − φ)
−z+ `k sin(φ)− ρk cos(θk − φ)

]
−

[
x̂ck
ẑck

]
(41)

while for rolling contact (−π ≤ θi − φ < 0),

ak (q) = π (gckw(q))− x̂ck , k ∈ 1, 2

=

[
−x − `k cos(φ)+

ρk
2 sin(θk − φ)

−z+ `k sin(φ)−
ρk
2 (1− cos(θk − φ))

]
−

[
x̂ck
ẑck

]
.

(42)

Similarly for the body contact, the base kinematic map is,

ak (q) = πz(gckw(q))− x̂ck , k ∈ 3, 4

=
[
−z+ `k sin(φ)− ρb

]
−
[
ẑck
]

(43)

which is the equivalent of setting θk = φ.
As introduced in Section II-C, the active contact constraints

can be found by checking the height of each potential contact
frame, ζck (x). If however the robot does not know its exact
place in the world (π (x)), the contact condition can still be
found by relying on the assumptions of flat level ground and
quasi-static operation. First since the robot is quasi-static,
choose the world reference frame to be W ≡ O, and so
π (x) = 0. In this case the active contact points are simply
those that are farthest from the body in their z direction, which
recall is always non-positive by convention,

πz(gcko) < πz(gcio), ∀k ∈ K, i /∈ K.

To consider the difference between rolling contact (on the
rounded part of the half circle leg) and point contact (on the
toe of the leg) a further condition is needed that specifies
which part of the leg are rounded. In particular, the leg
presents the rounded half of its shape when−π < θi−φ < 0
(as opposed to e.g. [42] which is rounded on the other half).

Once contact mode is determined, pitch is an implicit
function of the equality of the constraint (10), 0 ≡ ack (q).
As before, take π (x) ≡ 0, and so,

πz(aci )− πz(acj ) ≡ 0, ∀i, j ∈ K
πz(gcio) ≡ πz(gcjo) (44)

fromwhich we can locally derive the body pitch as an implicit
function of the joint angles. These conditions are combined

FIGURE 4. Quasi-static contact modes over the entire state space of joint
angles (2 ≈ T2). Each region is distinguished by front and rear contact
conditions that can be Body, Rolling, or Toe contact, as indicated by the
respective letter.
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to create Fig. 4, which shows the various quasi-static contact
conditions across the entire joint space, 2.

C. ASSUMPTIONS FOR RHex
As a summary, the following assumptions, in addition to
those listed in Section II-K, are made about the RHex
model,
C.1) RHex is anchored to the sagittal plane by using con-

tralateral legs together, and so d = 2.
C.2) The middle legs are not used, and so n = 2.
C.3) The body can contact in up to two locations but has a

low coefficient of friction that never resists tangential
friction forces.

C.4) The rubber toes have a high coefficient of friction and
therefore always resist tangential forces (as the surface
normal and frictional coefficients for novel terrain is
unknown—if they are assumed to be known then the
friction cone could be checked with (7)).

C.5) The robot is on flat level ground (Ck aligned with W ,
assumed everywhere except Section IV-A).

C.6) The legs are massless (ml ≡ 0, Il ≡ 0, assumed
everywhere except Section IV-C.5).

Furthermore the following simplifying assumptions are
made in some of the following behaviors as marked,
D.1) The robot is near a nominally standing posture, i.e. the

legs are ‘‘under’’ the robot, θk ∈ U := [−30◦, 30◦],
and the robot is close to level, φ ∈ [−10◦, 10◦].

D.2) The robot is symmetric (`1 ≡ `2 := `, ρ1 ≡ ρ2 := ρ,
implicitly assumed for numerical calculations based on
Table 2).

D.3) The robot is a point mass (Ib ≡ 0).

IV. BEHAVIORS
A. REACTIVE STANDING
In this section we document a quasi-static RHex standing
controller that delivers up to a 90% reduction in power use rel-
ative to an open-loop stand on unmodeled rough terrain [13].
The scheme is extraordinarily simple: the controller seeks
simultaneously to reduce the variance of joint torques around
their mean (right side of Fig. 5), while fighting to ‘‘lean
up’’ against the mean load (left side of Fig. 5). The self-

FIGURE 5. Two examples of how the balancing stand works, noting the
relationship between motor torques. On the left, start and end conditions
for fighting an external force, on the right start and end conditions for
relaxing an internal force.

manipulation model is needed to formalize these insights and
establish the correctness of the controller.
This notion of fighting an external force and relaxing the

internal force has been used before on legged robots, usually
without stating it in this way. For example, prior work on
RHex pushes the body uphill to be centered over the legs
while climbing steep terrain [43], and separately regulate
individual leg torques such that no one leg pushes harder
than the rest [44]. These ideas were further developed on
RiSE [45], [46] whose reactive gait phase adjustments were
designed to balance forces within and between the sides. Sim-
ilar internal forcemanagement strategies have been suggested
on quadrupeds [47] and highly articulated bipeds [48], though
without a proof of convergence.
To analyze this behavior, Section IV-A.1 decomposes the

motor cost into average and difference terms, ε and δ, and
derive the quasi-static torques necessary to fight external
(gravity) and any internal (legs fighting) wrenches. The key
to this decomposition is to apply the closed-loop constraint to
find the internal and external forces at the toes (Section II-H),
and projecting that back into motor torques (Section II-E).
Section IV-A.2 sets up the controller summarized in Fig. 5,
in part by using an approximation to the closed-loop velocity
constraint (Section II-G). Section IV-A.3 brings these parts all
together and show convergence of the controller. This entire
behavior is analyzed using stick legs with point contact, but
as Section II-F has shown, the free motion of rolling contact is
the same as that of a stick leg with appropriate radius, and so
by showing Lyapunov convergence for any angle and any leg
lengths (within appropriate bounds), the rolling contact can be
ignored. Note that this proof does not rely on Assumption C.5
but instead simply uses Assumptions C.4 and D.1. Finally
Section IV-A.4 tests this controller on a variety of indoor and
outdoor terrain, with results documented in Table 3.

1) PROBLEM SETUP
For this problem we are trying to minimize the thermal cost
needed to stand, which is proportional to the square of current
(which in turn is proportional to torque). A natural goal to
set is 5 := 1

2

(
τ 21 + τ

2
2

)
. A key insight is to break apart

the functional form of 5 = ε(τ1, τ2) + δ(τ1, τ2), where
ε(τ1, τ2) := τ 2m is the squared mean torque, and δ(τ1, τ2) :=
τ 2d , is the squared difference in torques,[

τm

τd

]
:= Tτ T :=

[
tTm
tTd

]
=

1
2

[
1 1

1 −1

]
(45)

and analogously [θm θd ]T := Tθ . Section IV-A.3 shows
that ε captures the cost due to gravity while δ captures the
cost due to internal forces, andmore importantly the proposed
controller drives both costs to zero.
Similarly wemay choose to parameterize the implicit func-

tion associated with the closed-loop constraint by the average
velocity, with y ≡ θm = tTmθ , i.e. ẏ = Yq̇ := 1

2 [1 1 0 0 0]q̇.
This choice is motivated by the observation that motion has
equal cost in both motors, though selection of y ≡ θ1 or
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y ≡ θ2 also works well. The Jacobian of the associated
implicit function (19) on some open neighborhood of the
origin, U ⊂ R, is,

Hh := Dθmhh =
2

γ1 + γ2

[
γ1
γ2

]
(46)

γi := (`1 + `2)ρj cos θj + ρ1ρ2 sin(θ2 − θ1), j = 3− i

(47)

and is full rank (never passing through the origin) in both
tangent spaces as the ‘‘gear ratios,’’ γk , are always positive
and nearly equal (bounded numerically by 0.83 ≤ γ1/γ2 ≤
1.19 under Assumption D.1 in [13]).

The ‘‘internal’’ component of the forces at the toes lies in
the subspace defined by (22), which form the homogeneous
solution, i.e. toe forces that are internal in that they can per-
form no work on the object. To specify a particular solution,
apply (23) with tT ≡ tTd . This choice of particular solution,
depicted in the lower sketches of Fig. 5, corresponds to toe
forces that cancel gravity with the ‘‘right amount’’ of internal
force, here defined by the difference condition.

The torque produced by these toe forces is given by the
hand Jacobian, JTh , as in (16). It is convenient to work in a
new basis for the joint-space torques, τ ∈ T ∗2, given by the
scaled rotational transformation T into the mean and differ-
ence of the torques as defined in (45). The torque implication
of the particular solution (α = 0) is,[
τm

τd

]
p

:= TJTh fp = −mbgρ1ρ2

×
`1 cos θ1 sin(θ2 − φ)+ `2 cos θ2 sin(θ1 − φ)

γ1 + γ2

[
1
0

]
(48)

where τd,p = 0 because the particular solution has no com-
ponent in the tTd direction (23). Therefore all of the virtual
work against gravity must show up in τm,p, so that τm,p =
1
2F

T
gHo =

1
2mbgDζ ◦ Dho (see [13] for proof).

The torque projection of the homogeneous solution is,[
τm

τd

]
h

:= αTJTh fN =
α

2

[
γ2 − γ1

γ2 + γ1

]
. (49)

Here there is not an exact decomposition—we would like
τm,h to be zero so that τm is exactly τm,p. However we have
observed (in (47) and related discussion) that γ1 ≈ γ2, and
in any case if our controller is successful we can achieve this
by simply canceling the internal force magnitude, α. Having
derived an expression for the various torque components in
(48)–(49), we can now apply a controller to this system and
observe the effect on the component cost functions, ε and δ.

2) CONTROLLER DESIGN
In this section, we show how direct current readings at the
hips yield intrinsic sensors that approximate the gradient of
two costs, ε and δ, eliminating all need to know or compute
the exact kinematics online. The change of basis in torque
space, T, allows the robot to use these sum and difference

torque measurements to closely approximate the gradient of
its power-use cost function.
Because the motor controller is highly overdamped and

rate limited we adopt ‘‘generalized damper’’ mechanics and
model the motor as velocity controlled in general, θ̇ = κpθ̃ ,
for some command θ̃ ∈ T2. To guarantee that the system
remains quasi-static, this command is rate limited to ensure
θ̃ ≤ κσ . However the motion is constrained by the closed-
loop condition (12), and so the constrained motion is approx-
imately,

θ̇m = κpθ̃m (50)

θ̇d = 0 (51)

since the system can move freely in approximately the θm
direction (exactly, in the Hh (46) direction). In contrast, in
the approximate θd direction (exactly, along infinitesimal
motions orthogonal toHh), motion is locked, hence generated
torque must increase as,

τ̇d = κt θ̃d , (52)

i.e. any differentially applied command increases the torque
as the system cannot move in that direction.
Again, we emphasize that this locked leg assumption is

merely an approximation (as ∂θd/∂θm is small), but no matter
how large the shift, so long as γ > 0 for all angles, i.e. the
sign of the direction of motion is correct, we can simply allow
the internal force controller to compensate for this ‘‘distur-
bance’’ in θd as the robot moves.8 Moreover this misalign-
ment between the approximate and true parameterization of
the free motion does not affect the zero point—in either case
the zero has τ1 = τ2 = 0 and so the controller converges to
the correct place, even if it does not take the ‘‘most direct’’
route.

3) INTERNAL AND EXTERNAL COST
Note that the internal cost, δ = τ 2d = α2(γ1 + γ2)2/4 (49),
vanishes if α = 0. Therefore since the particular solution
makes no contribution to τd (48), based on our actuator model
(51)–(52), it is straightforward to reduce δ by asserting a
control policy, θ̃d := −κdτd , resulting in,

δ̇ = 2τd τ̇d =
{
−2κdκtτ 2d |θ̃d | ≤ κσ

−2κdκtκσ |τd | |θ̃d | > κσ .
(53)

Thus the positive definite function, δ, has a negative definite
derivative along the motions of (52) under the specified con-
trol and, thus, as a Lyapunov function,
Result A.1: Relaxing the difference in torque (53) assures

that τd , and therefore the internal cost δ, decays to zero from
any nominally standing posture (Assumption D.1).
The exponential decay of the homogeneous (internal)

torque solution leaves the second term of the cost function,
ε = τ 2m = (τm,p + τm,h)2, determined by the gravitational
torque field through τm,p (48), which can be minimized by
bringing θm to a critical point of ζo. For φ ∈ U , the closest

8Without this dependence, the two controllers could be run sequentially.
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FIGURE 6. X-RHex performing a reactive stand on rocks.

critical point is a local maximum. Therefore, we consider
minimizing the function −ζo, and implement the quasi-static
dynamics θ̃m := κmτm, since this implies,9

−ζ̇o = −Dζo · θ̇m =
{
−mbgκmκp|Dζo|2 |θ̃m| ≤ κσ
−κpκσ |Dζo| |θ̃m| > κσ

(54)

i.e., −ζ0 (a smooth positive definite function in the neigh-
borhood of a maximum), has a negative definite derivative
under the control input as it enters the dynamics (50), and
therefore,
Result A.2: Fighting the mean torque (54) assures that θm

converges to the local minimum of −ζ0, the local maximum
of ζo, and therefore the external cost ε, decays to zero from
any nominally standing posture (Assumption D.1).
Furthermore, as discussed in Section II-F, since quasi-

statically rolling is the same as an equivalent stick leg, and
the above proof holds for any leg angle and length so long as
γi > 0, we find that,
Result A.3: The convergence of (53)–(54) holds even

under rolling contact, and so either leg shape converges to
near-zero cost.
Thus for this first behavior, either leg shape is
acceptable.

4) EXPERIMENTAL RESULTS
We implement this controller on the robot by straightforward
generalization of the difference torque controller (53), for
each leg individually, and the mean torque controller (54),
now applied to the mean of all six legs [13, Section III.D].
The controller was tested on a variety of terrains by having the
robot execute a reactive stand from either a sitting or walking
posture. Fig. 6 shows a test on a pile of rocks, and Table 3
summarizes the results.
Note that regardless of the initial conditions, the reactive

power was reduced to around 4 W. In fact every trial except
for one on the rocks reduced the power to below 5 W. In
that outlier, with a final power usage of 21.2 W, the robot

9The coupling of τm,h adds a sign indefinite term to the top line,
−ακmκp

γ2−γ1
2 Dζo, but α is exponentially driven to zero by (53).

TABLE 3. Reactive stand power from seated position. Each row is an
average of five trials, and idle (‘‘hotel’’) power has been removed. First
group started from a sitting posture, second group started from walking
posture.

Terrain Slope Normal Reactive Change

Power Power

Asphalt None 6.02 W 3.64 W 39.6%

Rocks Various 6.32 W 3.73 W 40.1%

Grass −14.0◦ pitch, 11.1◦ roll 5.89 W 4.12 W 30.0%

Grass 1.2◦ pitch, 5.5◦ roll 11.43 W 4.34 W 62.0%

Dirt 18.8–19.9◦ pitch 22.50 W 4.01 W 82.2%

Carpet None 36.63 W 3.97 W 89.2%

Smooth 10.6◦ pitch 15.55 W 3.98 W 74.4%

Rocks Various 31.25 W 7.30 W 76.6%

slipped partway through execution of the smart stand, and, as
the current behavior executes for a fixed time, the robot did
not have time to completely recover. Anecdotally, the entire
robot can typically be turned off after this behavior runs and
the robot remains standing (implying that the remaining 4 W
may came from the control electronics or noise). Furthermore
since the experiments that started from a walk contained a
mixture of leg contact conditions (some legs on the rounded
half and some on the toe), these results supports the claim that
both round and stick legs converge to near-zero power under
this controller.

B. PITCHING SENSOR SWEEP
The behavior developed in this section allows the robot to
actuate around the pitch component of its body frame. While
prior work has posed the problem and initiated an analy-
sis [14] and empirical application [15] of such behaviors, both
efforts introduced point solutions that focused on a single
contact mode with ad-hoc geometry. Here the formal deriva-
tion of an expression for the pitch as an implicit function
of the leg state, hφ(θ ), allows analytical solutions in any
contact condition, with consequent formal insight into the
implications of leg shape.
Section IV-B.1 uses the domains of the various quasi-

static contact conditions for RHex (Section II-C, Fig. 4) and
the implicit function for pitch based on the base kinematic
constraint (Section II-D) as in (44) in order to evaluate across
all contact conditions to find the maximum range (as shown
in Fig. 7). This range is extended from about 10◦ of pitch
when both legs are in rolling contact (as first discovered
in [14]), to about 35◦ when all modes are considered, greatly
increasing the view of the world afforded to any payload
sensors. Furthermore Section IV-B.2 compares the torque
(Section II-H) needed to hold a pitched pose with different
leg shapes, finding that the rounded leg uses less power than
the stick leg. Section IV-B.3 shows that the pitching rate is
exactly controlled by the analytical expression (59), based
on the closed-loop constraint (Section II-G), eliminating the
need for a numerical solution to guarantee constant pitching
velocity [14]. Finally, Section IV-B.4 checks the dynamic
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FIGURE 7. Contour plot of pitch φ as a function of θ1 and θ2, (55) over
entire quasi-static configuration space (Fig. 4). Flow lines show
constrained motion of the joints during double support (19). The red
highlighted flow is solution from [14].

effects (Section II-J) to maintain the integrity of the sensory
behavior by ensuring that the platform maintains frictional
contact with the ground.

1) SCANNING RANGE
Within a given quasi-static contact mode (Fig. 4), pitch is an
implicit function of the equality constraint (44), which for
example in rolling contact on both legs (for simplicity written
here for a symmetric robot, Assumption D.2),10

hφ(θ ) = arctan
(
4`+ ρ(sin(θ2)− sin(θ1))
ρ(cos(θ2)− cos(θ1))

)
. (55)

The value for φ for all quasi-static contact modes is shown in
the contour plot of Fig. 7, as well as flow lines showing the
constrained motion as a pushforward of a vector field over Y
through (19).

The behavioral design problem is then to find the extrema
of this pitch, formally set up as either a constrained optimiza-
tion in each contact mode, or an unconstrained optimization
over the combined implicit value for φ. This combined func-
tion is continuous as the active constraints in two neighboring
contact conditions are subsets of the constraints on the bound-
ary. The easiest way to solve this analytically is to choose
y = θ1 − φ, the global leg angle, and then parameterize the
implicit function (55) in terms of y, (here shown for the case
of a stick leg in front and body contact in the rear),11

hφ(y) = arcsin
ρ1 cos(y)− ρb
`1 + `2

(56)

10Calculated by solving (44) for φ with the appropriate a (i.e. a concate-
nation of (42) for each leg).

11Calculated by solving (44) for φ with the appropriate a (i.e. a concate-
nation of (41) for the front and (43) in the rear) and replacing θ1 with y+ φ.

FIGURE 8. Robot performing two pitching sensor sweeps with a planar
laser scanner: (Left) upward (φ > 0) to scan a staircase, (Right) downward
(φ < 0) to check for a cliff.

which is maximized at φ = arcsin(ρ1 − ρb/`1 + `2) ≈ 17◦.
It is clear from Fig. 7 that this maximal upward pitch of φ ≈
17◦ is achieved at θ1 = 17◦ and θ2 < −100◦, and from sitting
(θ1 = θ2 = −180◦) this pitch is only reachable when the
rear body is sliding along the ground. Similarly the maximal
downward pitch of φ ≈ −17◦ is achieved at θ2 = −17◦ and
θ1 < −130◦, i.e. when the front body is on the ground. This
proves that,
Result B.1: The maximal pitching sensor sweep reaches

φ = ± arcsin(ρ1 − ρb/`1 + `2) ≈ ±17◦ by using the sliding
contact modes (56).
Such behaviors are shown in Fig. 8, where the robot is using
a planar laser scanner to detect a stairwell and check for
cliffs, as in [15]. However depending on the exact task a
path through the double stance region may be useful in order
to smoothly access both positive and negative pitches. If
restricted to only rolling contact, then the maximal pitch is
about 10◦, as found in [14], and shown in Fig. 7.

2) TORQUE REQUIREMENT
While both round and stick legs reach these same extrema in
pitch, the torque required is not the same. Under quasi-static
operation the leg torque required to resist gravity is dictated
by (16) and (23), however in these sliding contact modes n =
e = 1, and so there are no internal forces, and Gs is directly
invertible. Thus,

τ1 = −JThG
−1
s Fg

which can be compared for different leg shapes. Evaluating
for round legs,12

τ1 = −
`2ρ1mbg cos(φ) sin (θ1 − φ)

2 (`1 + `2) cos(φ)− ρ1 sin (θ1 − φ)
(57)

while for stick legs,13

τ1 = −
`2ρ1mbg cos(φ) sin (θ1 − φ)

(`1 + `2) cos(φ)− ρ1 sin (θ1 − φ)
. (58)

While both leg shapes have the same zero torque point (when
the leg is vertical, as found for the previous behavior), in
general,14

12Calculated with the appropriateGs (i.e. a concatenation (84) of (82) for
the front and (83) for the rear) and Jh (i.e. simply (86) for the front).

13Calculated with the appropriateGs (i.e. a concatenation (84) of (81) for
the front and (83) for the rear) and Jh (i.e. simply (85) for the front).

14Recall that these different contact conditions have different implicit
relationships between φ and θ1, however the factor of 2 in the denominator
of (57) is the dominant factor.
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Result B.2: A round leg (57) requires less torque to hold
a pitched position than a stick leg (58) at the same angle.
This is easy to see intuitively, as the rounded leg has a shorter
effective lever arm.

3) VELOCITY CONTROL
As the robot is pitching its sensor, the data can be correlated
by recording the pitch as measured or calculated at each
instant. However it may be necessary to sweep the sensor with
some constant pitching speed. In [14] this was achieved by
numerically inverting the forward kinematics to choose a leg
angle velocity that produced the desired pitch velocity.

Here we take advantage of the analytical expression of
Ho (19), the velocity Jacobian that arises from the closed-
loop constraint. Take for example rolling contact for the front
leg and body contact in the rear, and let y := θ1, then a
desired pitch velocity of φ̇d can be achieved by setting the
leg velocity,15

φ̇ = Hφ θ̇1 := πφHθ̇1 ⇐⇒ θ̇1 = (Hφ)−1 φ̇,

where (Hφ)−1 =
ρ1 sin(θ1 − φ)− 2(`1 + `2) cos(φ)

ρ1 sin(θ1 − φ)
(59)

which can be implemented as an online feedback controller
based on local measurements of θ1 and φ, or can be calculated
in advance numerically by using (18), (19), and thus,

Result B.3: A desired sensor pitch rate, φ̇d can be exactly
achieved by joint velocity tracking control around the refer-
ence signal (59) as derived from the velocity Jacobian (19).

Note that the denominator of (19) goes to zero when θ1 −
φ = 0, i.e. when the leg is vertical, as in fact the maximal
pitch has been reached and the velocity control can no longer
be applied.

4) DYNAMICS
The maximum speed at which the scanning behavior can
be executed is limited by the takeoff condition, Uλ ≥
0, (7), based on the dynamics, (39) i.e. above a certain speed
(ẏ := θ̇1) one of the contact points may lift off the ground.
Themaximum joint speed that avoids liftoff of either leg (with
no torque, i.e. when the behavior reverses) is,

max ẏ

s.t. Uλ ≥ 0

λ = −D̃λẏ+ Ẽλ
τ = 0.

This speed is shown in Fig. 9 for a subset of the config-
uration space, along with a trace of the solution from [14].
Now we can bound the speed of the system to be below the
minimum over this range, which is about 300 ◦/s for the
entire rolling contact range, or a little higher for most specific
trajectories. In the rear body sliding contact case there is no

15Calculated from (20) with y as given and the appropriate A (i.e. (17)
with Gs and Jh as in (57).

FIGURE 9. Leg speed (ẏ := θ̇1, in ◦/s) at takeoff. The discontinuity at
around θ2 = −110◦ occurs when the rear leg engages the ground. The red
highlighted flow is solution from [14], but any behavior that engages only
the front leg (θ2 < −110) may be run faster.

solution to λ2,n = 0, i.e. the front leg acting alone cannot
lift the body off of the ground. However at high speeds the
front leg loses contact, but those speeds are about twice that
of the rolling contact case, and so, the maximum speed still
consistent with full frictional contact is found numerically to
be higher in the sliding modes (Fig. 9).

C. PITCH CONTROL IN LEAPING
Leaping with a low pitching velocity but high forward veloc-
ity (e.g. for gap crossing [17] or a pronking gait [18]) is very
challenging for RHex because it entails in the high energy
regime the delicate interaction of dynamics (Section II-I) with
contact conditions (Section II-C) that we have already found
to play a critical role in the quasi-static setting. For example,
the pronk gait is known to have ‘‘severe pitch instability’’ on
RHex [36], and as such several methods of pronking pitch
control have been suggested16—modifying torques during
stance, adjusting the leg angles before touchdown, and rear
leg stubbing (rapid leg deceleration at the end of stance).
The first strategy applies a differential torque between the
motors [18], but under rigid assumptions the robot motion is
constrained to a single DOF (as noted in the standing behav-
ior). Even assuming leg compliance, this control authority is
near-singular for typical leg angles for pronking [36].
The second strategy considers the plane generated by the

toes when landing, as the robot quickly pitches until all toes
are on the ground [18]. This effect can be canceled by setting
the toes to be parallel to the ground [36], or exploited by
adjusting it to a desired pitch [18]. This had limited success, as
it, ‘‘appeared to disturb the robot’s touchdown angles enough

16Of the first two, [37] notes, ‘‘Unfortunately ... neither method could be
used successfully to control pitch during pronking.’’
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FIGURE 10. Pitching velocity ( φ̇, in ◦/s) at apex after a forward leap
versus relative timing (t2 in s). Highlighted region are leaps that included
a double stance period.

to cause skidding’’ [37]. However the partial success of such
strategies suggests that it may be beneficial in other ways,
as it results in a splayed posture. The intuitive motivation to
enforce symmetry between the legs does, at first, appear to
control the pitch of the robot in stance as the parameterized
free motion (19) has zero pitch. However when the friction
constraints are considered (7), Section IV-C.1 proves that the
front leg lifts off the ground first due to an unavoidable imbal-
ance in toe normal forces (60), resulting in a positive pitch
velocity. The same is not true when a fixed splay between the
legs is applied, and Section IV-C.2 proves that a leap that uses
such a splay inherently lowers the difference between front
and rear normal forces, resulting in a lower pitch velocity
(Fig. 10).The dynamics of the resulting rear leg support mode
are higher dimensional and underactuated, but by following
Section II-J we show in Section IV-C.3 that the faster the rear
leg is moving, the more the robot pitches upwards (63). This
effect explains the ‘‘stubbing’’ strategy used by some pronk
controllers [36], [37], and is shown in an extreme case in
Table 4 (based on [17]), where over 20◦ of pitch correction is
generated by a last minute reversal in leg torque. Furthermore
the liftoff conditions in this mode bound the possible forward
velocity, which can be used to answer both leg and behavioral
design questions (Section IV-C.4). This bound is lower for
stick legs than rounded legs, and lower for level jumps than
for pitched jumps, further supporting the need for a splayed
leap.

Finally Section IV-C.5 tests the inertial effects of the
nearly-massless legs, as derived from the robot dynamics.
Leaping experiments verify that the legs can generate about
14◦ of body rotation (Fig. 14).

1) SYMMETRIC LIFTOFF CONDITIONS
Before the undesirable pitching velocity can be corrected, it is
necessary to determine the source of the instability. Consider
a symmetric robot (Assumption D.2) engaged in a ‘‘perfect’’
symmetric leap, i.e. with two stick legs locked in parallel
(θ1 ≡ θ2 ⇒ φ ≡ 0). This would at first glance appear to be a
desirable target for stable pronking (as was used, e.g, in [36]),
since there is no pitch and the pitch velocity is zeroed out by

the infinitesimal kinematics,17

Hφ :=
∂φ

∂θm
=

2ρ2 sin(θ2 − θ1)
γ1 + γ2

= 0

implying the same condition holds for the pitch accelera-
tion, φ̈. Why then does this gait fail? The answer lies in the
liftoff conditions, Uλ ≥ 0,18

λ = −Dλq̇+ Eλ

=


−
τ tan(θ2)

`
+
τ cos(θ2)

ρ
−

1
4mbg sin(2θ2)−

1
2mbρ sin(θ2)θ̇

2
2

τ
`
+

mbg
4 +

τ sin(θ2)
ρ
+

1
4mbg cos(2θ2)+

1
2mbρ cos(θ2)θ̇

2
2

τ tan(θ2)
`
+
τ cos(θ2)

ρ
−

1
4mbg sin(2θ2)−

1
2mbρ sin(θ2)θ̇

2
2

−
τ
`
+

mbg
4 +

τ sin(θ2)
ρ
+

1
4mbg cos(2θ2)+

1
2mbρ cos(θ2)θ̇

2
2

.

Thus the difference between the rear toe normal force (4th
row, denoted ‘‘2n’’) and front toe normal force (2nd row,
denoted ‘‘1n’’) is (note that in the normal force direction,
U = −1, as in (76)),

(Uλ)2n − (Uλ)1n =
2τ
`

(60)

i.e. the rear normal force is always larger than the front normal
force, and so,
Result C.1: In a symmetric jump (θ1 = θ2), the front

leg lifts off the ground first (60) as an unavoidable conse-
quence of the dynamics (19) and contact constraint (7) (under
Assumption D.2).
If this were a bilateral constraint (e.g. pin joint), the front

leg would continue to pull down on the robot to maintain the
neutral pitch that the closed-loop constraint suggests.

2) SPLAYED LIFTOFF CONDITIONS
For the non-symmetric jumping case (θ1 6= θ2), the analytical
solution to λ is complicated enough to obviate any benefit
of direct visual inspection. However we can look at how the
imbalance of (60) changes with the splay angle, θd := tTd θ
(45) (under Assumptions D.2 and D.3),

∂ ((Uλ)2n − (Uλ)1n)
∂θd

∣∣∣∣
θd=0
= −

2ρτ sin2(θm)

`2 cos(θm)
< 0 (61)

(and numerically true even for Ib in Table 2), thus with
otherwise equivalent conditions,
Result C.2: A positive splay angle (θd ) reduces the imbal-

ance between the front and rear normal forces (61) for RHex
performing a forward leap (under Assumptions D.2 and D.3).
This splayed posture result is supported by the leaping

dataset [49]. In those experiments, the robot performed a
family of forward leaps while applying maximally available
motor shaft torque with variations only in the relative timing
of torque onset, t2, which can be seen in that dataset to be well
correlatedwith θd . Looking at the pitchingmoment at apex, as

17Calculated from (20) with y ≡ θm (as in (47)) and the appropriate A
(i.e. (17) where Gs is a concatenation (84) of (82) for each leg and Jh is
block diagonal (87) with (86) for each leg), under Assumption D.2.

18Calculated from (33), using (88)–(92) and the same A, or equiva-
lently (39), under Assumption D.2.
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listed in [49, Table I] and plotted in Fig. 10, it is clear that the
pitching moment generated from a single leap decreases with
increasing splay. Therefore a leap or pronk with a higher pitch
(θd > 0, i.e. below the main diagonal in the double rolling
contact region of Fig. 7) on average incurs less deviation from
that initial pitch during this first phase of the leap.

3) SINGLE LEG DYNAMICS
Once the front leg has lifted off the ground, the hybrid dynam-
ics admit two degrees of freedom, and so we drop θ1 from the
state as under AssumptionC.6, themassless front leg can have
arbitrary position in the air, which would otherwise violate
Assumption A.4. Note that this contact mode is not accessible
quasi-statically, and as such is not shown in Fig. 4. Choosing
y = [θ2, φ]T , the constrained motion of (19) evaluated with
A for a stick leg in the rear and no contact in the front,19

q̇ = Hẏ =


θ̇2

ρ2 cos(θ2 − φ)(θ̇2 − φ̇)− `2 sin(φ) φ̇
ρ2 sin(θ2 − φ)(θ̇2 − φ̇)− `2 cos(φ) φ̇

φ̇

 (62)

leading to the reduced dynamics of (35) for pitch,20

φ̈ = −D̃φ q̇+ Ẽφ

=

`2mb cos(θ2)
(
ρ2(θ̇2 − φ̇)2 + `2 sin(θ2) φ̇

2
)

Ib + `22mb cos
2(θ2)

+

τ2(1+
`2
ρ2

sin(θ2))− `2mbg cos(θ2) cos(θ2 − φ)

Ib + `22mb cos
2(θ2)

(63)

where it is clear that,
Result C.3: Once the front leg has lifted off the ground,

the harder the rear motor is pushing (τ2), and the faster the
rear leg is moving (θ̇2, when | φ̇| < |θ̇2|), the more the robot
accelerates counterclockwise in pitch (i.e. ‘‘upwards’’, in the
positive φ direction) (63).
Thus the controller design problem for a pronk-like leap

becomes a balancing act between the conflicting criteria to
both move quickly and maintain pitch control. Some pronk
implementations on RHex reconcile this conflict by signifi-
cantly reducing the torque at the end of stance, rapidly decel-
erating the leg [36], [37], essentially stubbing the toe in order
to quickly correct the pitch. This toe stubbing effect was also
anecdotally demonstrated as a leaping task in [17, Section IV-
A.2]—here we present additional data from that experiment.
To show the possibilities of this strategy in an extreme case,
the apex state for two leaps, one with a strong toe stub and one
without, are included in Table 4. This confirms that rapidly
slowing down the rear leg at the end of a jump can induce
a large pitch correction, greatly affecting the pitch velocity,
though at the cost of 17% of the forward velocity.

19Calculated from (20) with Y = [1, 0, 0, 1] as given and the appropriate
A (i.e. (17) where Gs is simply (81) and Jh is simply (85).

20Calculated from (35)–(37) with (88)–(92) and H as shown in (62).

TABLE 4. Comparison of forward leaps: the toe stub (Result C.3) has
significant control authority over body pitch, in this extreme example
changing the pitch by 24◦.

Toe Stub? φ φ̇ |ẋ| T
Without 10.4◦ 57◦/s 1704 mm/s 11.4 J
With −13.5◦ −145◦/s 1414 mm/s 8.3 J

4) IMPLICATIONS OF THE TAKEOFF CONDITION
As in the prior subsection, consider the case where the front
leg has taken off and only the rear leg remains in contact.
The friction cone (7) sets up an implicit bound on torque
based on the contact forces (39),21

(Uλ)2n ≥ 0⇒

τ ≥

{
Ibmbρ2 cos(θ2 − φ)(ρ2(θ̇2 − φ̇)2

+`2 sin(θ2) φ̇ − g cos(θ2 − φ))

}
{
`2mb cos θ2(ρ2 cos(θ2 − φ)
+`2 sinφ)− Ib sin(θ2 − φ)

} (64)

(here shown for a stick leg). Thus the faster the robot is
moving (θ̇2), the more torque is required to maintain contact,
and so with any limited-torque actuator, the system speed
exhibits a corresponding upper bound. However in general
the faster an actuator is moving, the less torque it can produce.
Applying a motor model of τ ≤ κPκG(1− κGθ̇ ) [50] (where
κP is proportional to peak motor power and κG is propor-
tional to gear ratio), we can substitute for τ in (64) to get
an equality that imposes a necessary condition for liftoff on
the robot’s state. This equality constraint can now be solved
with a variety of different implicit functions to gain insight
into the manner in which different design choices—either
entailing physical parameters, or various behaviors entailing
controllers which aim for different state space trajectories—
can potentially influence the resulting conditions at liftoff.
The simplest of these obtains by considering the equality to be
a quadratic form in θ̇ , so that the resulting root functions can
be passed through the infinitesimal kinematics (62) yielding
a closed-form expression for the maximum forward velocity
at liftoff, here shown for mid-stance (θ2 = 0 and φ = 0) with
stick legs,

ẋ =
−κb +

√
κ2b+ 4Ibκc

2Ib

κb := `2κ
2
GκP, κc := κbρ2

(
1
κG
− φ̇

)
+ ρ2gIb. (65)

For rounded legs, the same maximum forward velocity is,

ẋ =
−κb +

√
κ2b+ 4 Ib2 κc

2 Ib2
. (66)

Fig. 11 shows this forward velocity bound for a robot with a
stick leg and for a rounded leg across a range of leg and body
angles typically found for stance. We conclude that,

21Calculated from (39)–(40) with (88)–(92) andH as shown in (62). Note
that the denominator of (64) is positive under Assumption D.1, i.e. normal
standing/running ranges, for values listed in Table 2.
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FIGURE 11. Forward velocity (|ẋ|, in m/s) at takeoff point of second (rear)
leg for various leg angle θ2 and pitch φ, assuming φ̇ = 0, and gear ratio
G = 23. On top, takeoff based on a stick leg, while on bottom takeoff
based on a round leg.

Result C.4: The dynamical bound on the forward speed is
higher for rounded legs (66) than for stick legs (65).
as is true analytically for mid-stance22 and therefore by
smoothness for some neighborhood around that point, and is
numerically shown to be at least 0.6 m/s faster over the entire
range of Fig. 11 (all assuming φ̇ ≈ 0).

This bound is very rough as it does not consider compliance
or damping (or in this figure, pitching velocity), but does
shed considerable light on the new considerations that emerge
in the dynamical regime whereby the rounded legs of RHex
when running forward afford a higher speed limit, even at
the point of mid-stance whereas, in contrast, quasi-statically
the two morphological variants are equivalent (as described
in Section II-F).

In contrast, the liftoff constraint (64) can be used in a more
conventional numerical manner, for example determining the

max ẋ

s.t. (Uλ)2n ≥ 0

λ = −D̃λẏ+ Ẽλ
τ ≤ κPκG(1− κGθ̇ )

allowing ẏ to vary. Specifically, note that for each φ in Fig. 11,
there is a unique θ2 that maximizes ẋ. As shown in Fig. 12
(shown for φ̇ ≈ 0), the optimal gear ratio lies somewhere
around 25:1 depending on the pitch at take off, only slightly
above the actual value of 23:1 for this robot.

Similarly, using this maximal takeoff point to eliminate
θ2 from (64) we can now test the desirability of φ̇ ≈ 0.
Calculated numerically and shown in Fig. 13, we see that a
positive pitch φ but small pitching velocity φ̇ (as results from
a splayed posture) results in the highest maximum forward
speed (numerically calculated based on Table 2).

22Compare (65)–(66) with the quadratic formula and note that the factor
of 2 in the inertia (ẋ2 term when written out in quadratic form) makes (65)
smaller than (66) for any set of positive parameter values and φ̇ < 1/κG, i.e.
the motor no-load speed.

FIGURE 12. Forward velocity (ẋ , in m/s) at takeoff point of second (rear)
leg under rolling contact for various gear ratios G and pitch φ, shown for
φ̇ = 0, and optimal θ2. Gear ratio for XRL is typically 23:1, just below the
optimal of between 25–30.

FIGURE 13. Forward velocity (|ẋ|, in m/s) at takeoff point of second (rear)
leg under rolling contact for various pitching velocities φ̇ (in ◦/s) and
pitches φ (in ◦), for optimal θ2, and gear ratio G = 23.

These maximal speed points are specific positions and
velocities (y, ẏ) that may or may not be reachable—in fact
as shown in Fig. 10 all of the jumps with double support in
this way still had a non-zero positive pitching moment [49].

5) INERTIAL LEG EFFECTS
In the air, the dynamics of the robot are not restricted by the
closed-loop constraint (12), as there are no contact forces,
however conservation of angular momentum in the absence
of external forces now imposes a nonholonomic constraint.
Solving the dynamics as in Section II-I takes these conser-
vation laws into account, ensuring that the time derivative of
momentum is equal to the applied force, which here is zero.
Recall that up until this point under Assumption C.6 we have
used massless legs (as ml/mb < 1%), but here we drop that
assumption to test what effect the very light legs do have.
The leg effectiveness [40] is defined as the body velocity per
differential leg velocity, which can be calculated by placing
the world reference frame, W , at the system center of mass
and solving the conservation of angular momentum equation
as follows (for a single leg),23

πφ

(
∂L
∂ q̇

)
= πφ

(
AdTgpwM̂

[
θ̇

Vb
op

])
= 0⇒

εn :=
φ̇

θ̇1
= −

Il + mr
(
(ρ12 )

2
− `1

ρ1
2 sin θ1

)
Ib + It + mr

(
`21 + (ρ12 )

2 − 2`1(
ρ1
2 ) sin θ1

)
mr :=

mbml
mb + ml

(67)

23Calculated with πgpw :=
ml

ml+mb
πgpl1 . Note that the conservation

of momentum laws apply only to body velocities at the center of mass, as
used here.
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FIGURE 14. Robot state just prior to touchdown after two jumps: (Left)
the legs completely recirculated clockwise, (Right) the legs went directly
to the final angle counterclockwise.

which is the same as [40], up to notation. Note that the
effectiveness is shape dependent—the relationship between
leg velocity and body velocity is not constant over all θ .
However an interesting simplification arises when two legs
equally spaced from the robot COM (Assumption D.2) are
controlled so as to be locked in parallel, θ1(t) ≡ θ2(t),

εn :=
φ̇

θ̇1
= −

2Il + mr2(
ρ1
2 )

2

Ib + 2Il + 2ml`1 + mr2
ρ1
2

mr2 :=
mb(2ml)

mb + (2ml)
(68)

i.e. the configuration dependence goes away. With all six legs
included, the effectiveness for RHex is only εn = 0.035,
though it is almost twice a naïve estimate of 6Il

Ib
= 0.018

(see Table 2).
To verify the inertial effects of the legs, the robot performed

a single jump (as in [17]) and the legs were sent to a given
position, but in one case they were controlled to recirculate
completely, while in the other they were not. Thus between
the two tests the leg angles θ differ by exactly 360◦. This
resulted in a difference in body pitch of 14◦ (median taken
across 5 jumps of each type), as shown in Fig. 14. Thus the
measured effectiveness is εm = 14/360 = 0.039, quite close
to what the model predicts, and critically,

Result C.5: The legs act as inertial tails and, when locked
in phase, can produce a body rotation of εn (68) for each
complete rotation they execute during flight (Fig. 14).

V. CONCLUSION
We have presented a formal framework for the generation
of quasi-static and dynamic equations of motion for legged
robots across multiple contact conditions. This framework
matches as closely as possible the modeling decisions typi-
cally used for the analysis of multi-fingered hands, thereby
highlighting the similarities and differences between the two
classes of problems. The resulting systematic, unified and
general methodology for modeling all contact conditions of
a jointed, partly actuated, rigid-bodied mechanism that can
move by generating ground reaction forces against a lumped
parameter substrate promotes analysis of a rich variety of
behaviors for common place scenarios that arise as legged
robots leave the laboratory and enter the real world.

After the tutorial leading up to a ‘‘master equation’’ (33),
we illustrate the utility of this methodology for behavior
design in the context of a specifically imagined episode in
an autonomous mission of a RHex robot. Along the way to
this equation we recall from the manipulation literature the
notion of a grasp map, G (13) whose null space introduces a
transparent account of internal and external forces, yielding
a simple, general, and provably correct algorithm (53)–(54)
for standing still over unknown terrain with minimal power
draw (Table 3). Reducing the influence of the highly varied
mechanics across the multiplicity of contact conditions to the
appearance of one term (17) promotes a straightforward com-
parison of the quality of exteroception (55)–(59) across all
quasi-statically reachable configurations, enabling the robot
to act as as an active laser wall/cliff detector (Fig. 8). Formal
reasoning about the intrinsic conflict between leg torques
and liftoff speed (60)–(66) sheds new light on the problem
of how to leap forward most energetically without pitching.
Finally, in each of these task settings, the formal nature of
the results affords clear answers to morphological design
questions such as the consequences of leg shape. Tracing
back more systematically similar threads between the various
design parameter values (Table 2) and the behavioral results
they promote or constrain ought to be useful in future redesign
of this and other legged robots.
Looking ahead, it is useful to compare the results of

this paper with those resulting from a more combinatori-
ally focused study of how to use ground reaction forces in
legged self-manipulation. In [17] we examined the dynamic
effects different strings of multiple contact modes could
impose assuming very simple controls. In contrast, this paper
has focused on the effects of much more finely varied
control policies implemented within individual (and, some-
times, pairwise sequences of) contact modes. Legged self-
manipulation will require a combination of both styles of
planning and control: the combinatorial challenge of planning
sequences of modes, and the refinement of control strategy
within each mode, will both be critical in general for extract-
ing themost capability legged robots can achieve in a complex
world.

APPENDIX
A. KINEMATIC CONSTRAINTS
The base constraint (8) may be expanded as,

xck = πck (gckw(q)) = πck
(
gck sk (q) · gskw(x)

)
where,

gck sk (q) := gck fk (q) · gfk sk (θ )

gskw(x) := gskp · gpw(x)

however note that while gck fk depends on q, the projection
πck (gck fk ) does not vary over time (i.e. it may be thought of
as being parameterized by the initial value, qa(0), but not a
time varying function of q). This frictional restriction is much
clearer when expressed as a velocity constraint,BTckV

s
ck fk ≡ 0,
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which is one reason most multi-fingered manipulation texts
often skip the base constraint and directly apply a velocity or
force constraint (including refs. [1]–[6]).

The velocity constraint equation (11) is proven in twist
coordinates by using the following identities (see [1, p. 59]
for proof of (69) and Section F, below, for a proof of (70)),

Vs
ac = Vs

ab + AdgabV
s
bc (69)

Vs
ab = −V

b
ba (70)

[1, Prop. 2.14, Lemma 2.16], and the friction constraint,

BTckV
s
ck fk ≡ 0 (71)

[1, Eqn. 5.9] (ensuring no motion in the constrained direc-
tions) and so,

0 =
d
dt
ak ◦ qa = BTck ġckw · g

−1
ckw · gckw ⇒ 0 = BTckV

s
ckw

= BTck (V
s
ck sk + Adgck skV

s
skw)

Vs
ck sk = Vs

ck fk + Adgck fkV
s
fk sk = −V

b
fkck − Adgck fkV

b
sk fk

Vs
skw = Vs

skp + Adgsk pV
s
pw = 0− Adgsk pV

b
wp

0 = BTck (−Adgck fkV
b
sk fk − Adgck skAdgsk pV

b
wp)

= −BTckAdgck fk (q)J
b
sk fk (θ )θ̇ − BTckAdgck p (q)R

T
wpẋ.

An alternate proof of (11) is given here using a homoge-
neous representations of velocity, V̂ := (V)∧, by using the
following identities (in addition to (70), proven below),

V̂s
ab := ġabg−1ab(

AdgabV
s
bc
)∧
= gabV̂s

bcg
−1
ab

[1, Eqn. 2.53, Lemma 2.13] (and indeed all of [1, Section 2.4]),
and the friction constraint (71) so,

0 =
d
dt
ak ◦ qa

= BTck
(
ġck fkgfk skgskw + gck fk ġfk skgskw

+gck fkgfk skgskpġpw
)∨

= BTck
(
(ġck fkg

−1
ck fk + gck fk ġfk skg

−1
fk skg

−1
ck fk

+gckpġpwg
−1
pwg
−1
ckp)gckw

)∨
⇒ 0 = BTck (V

s
ck fk + Adgck fkV

s
fk sk + Adgck pV

s
pw)

= 0− BTckAdgck fk J
b
sk fk θ̇ − BTckAdgck pR

T
wpẋ = Ak (q)q̇.

B. GRASP MAP AND HAND JACOBIAN
The definition of the grasp map (13) is often given in terms of
body velocity,Vb

po, but computation of the dynamics is easiest
in some local coordinates, ẋ. Here we have also defined
a grasp map in terms of the more relevant body velocity
Vb
op. These various versions of the grasp map are, of course,

equivalent as summarized here:

GT
s R

T
wpẋ = GT

s V
b
wp = GT

s V
b
op = GTVb

po.

For further notes on this see [1, Eqn. 6.18] as opposed to [1,
Eqn. 5.15], discussion on [1, pp. 279, 283], and paragraph
surrounding [6, Eqn. 28.1].

As for the hand Jacobian, note that the contact wrenches (or
twists) at one toe have no direct effect on joints on a different
leg (hence the block diagonal structure of Jh). The indirect
effects are captured by the closed-loop constraint (11,12).
That the legs can be decoupled in this way is less obvious
than in the multi-finger manipulation case, where each finger
is rigidly attached to a fixed inertial frame. This decoupling
comes from Newton’s third law of motion, that every action
has an equal and opposite reaction, and thus we may calculate
the joint torques equally well by adding up the effects on
either side of the joint.

C. ROLLING CONTACT
As noted in Sec. II-F, the fact that RHex’s legs are not simple
sticks does not change any of the analysis thus far, it simply
makes the Gs and Jh matrices more complicated. The free
motion of the hip at any given moment under rolling contact
is identical to the motion of an equivalent stick leg connecting
the hip to the contact point.
To prove this, consider a point on the circumference of a

circle as it rolls—it follows a cycloid path. If we first assume
that the world frame W is attached to the ground at the toe
when the robot is standing (θ = 0), with the z axis pointing
into the ground, then the hip location is (xc, zc) := πgws(0) =
(0,−2ρh) (where ρh := ρ1/2 is the leg radius) then the
position of the hip as a function of the motor angle θ is,

xc = ρhθ + ρh sin(θ ), zc = −ρh − ρh cos(θ ).

Note that the definition of θ used in this paper has the leg in
contact on the rounded half of the leg when θ < 0, i.e. the
leg is on the rounded half before mid-stance, and on the toe
afterwards (as opposed to other robots whose half-circle legs
are used in the opposite direction [42]).

Now consider a virtual leg extending from the hip to the
contact point. Let the angle that this virtual leg makes with
vertical be ϑ and the leg length be ρl . The hip position relative
to the true world frame at that moment, (xf , zf ) := πgws(ϑ),
for a fixed leg of length ρl and angle ϑ is,

xf = ρl sin(ϑ), zf = −ρl cos(ϑ).

First note that the triangle consisting of the center of the
leg, the hip, and the contact point must be isosceles, as two of
the sides are length ρh, and the third length ρl . The angle at the
center of the circle must then be π − θ as the supplementary
angle is θ . Therefore by noting that the equal angles in that
triangle are ϑ , we find that ϑ = θ/2.
Now the infinitesimal direction of freemotion for each case

(i.e. the tangent of the trajectory),

∂xc
∂θ
= ρh + ρh cos(θ ),

∂zc
∂θ
= ρh sin(θ )

∂xf
∂ϑ
= ρl cos(ϑ),

∂zf
∂ϑ
= ρl sin(ϑ)

∂zc
∂xc
=

sin(θ )
1+ cos(θ )

,
∂zf
∂xf
=

sin(ϑ)
cos(ϑ)
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can be compared using the double angle identity to find,

∂zc
∂xc
=

2 sin(ϑ) cos(ϑ)
1+ 2 cos2(ϑ)− 1

=
sin(ϑ)
cos(ϑ)

=
∂zf
∂xf

.

Therefore the twist direction is the same whether you follow
the full cycloid curve, or at each instant follow a virtual leg.
This property is much more general than just for half circle
legs, as shown in [1, Chapter 5.6].

D. DYNAMICS
The generalized mass matrix, M, is derived by summing the
contribution of each link,

T =
1
2
mb||vbwp||

2
+

1
2
Ib||ωbwp||

2

+

n∑
i=1

(
1
2
mli ||v

b
wli ||

2
+

1
2
Ili ||ω

b
wli ||

2
)

=
1
2
(Vb

wp)
TMbVb

wp +

n∑
i=1

1
2
(Vb

wli )
TMliV

b
wl,

Vb
wli = Adg−1pli

Vb
wp + Vb

pli

T =
1
2
(Vb

wp)
TMbVb

wp +

n∑
i=1

1
2
(Adg−1pli

Vb
wp + Vb

pli )
TMli

×(Adg−1pli
Vb
wp + Vb

pli )

=
1
2
(Vb

wp)
TMbVb

wp +

n∑
i=1

(
1
2
(Vb

pli )
TMliV

b
pli

+ (Vb
pli )

TMliAdg−1pli
Vb
wp

+
1
2
(Vb

wp)
TAdT

g−1pli
MliAdg−1pli

Vb
wp

)
where bothAdg−1pli

and Jli both depend only on θ . Substituting

Vb
wp = RT

wpẋ results in the inertia tensor given in (26).
The accelerations and constraint forces may be solved for

as follows (33),

M(θ, φ)q̈+ C(θ, φ, q̇)q̇+ N(θ, φ)+ AT(θ, φ)λ=ϒ(τ )[
M AT C
A 0 Ȧ

] q̈
λ

q̇

 = [ϒ − N
0

]
[
M AT

A 0

] [
q̈
λ

]
=

[
ϒ − N

0

]
−

[
C
Ȧ

]
q̇[

q̈
λ

]
=

[
M AT

A 0

]−1[
ϒ − N

0

]
−

[
M AT

A 0

]−1[
C
Ȧ

]
q̇.

Some dimensional analysis—the dynamics provides q
equations, and the constraint equation provides c. Total, there
are 2q + c unknowns, so in non-singular configurations we
can solve for the q + c unknowns q̈ and λ in terms of the q
remaining variables, q̇, as shown above. Note that this does
not require M be invertible, which is not the case with mass-
less legs, or require Jh be invertible (as with [1, Eqn. 6.22]),
which never is the case with ‘‘simple’’ legs like on RHex.

Instead this method solves for both the system accelerations
and constraint forces at the same time by inverting a block
matrix that includesM andA that in general is non-singular so
long as rank(M)+ rank(A) ≥ q+ c, or rank(M) ≥ e = q− c
and the constraints are non-singular (this is equivalent to the
requirement that the mass matrix of the reduced dynamics,
M̃, to be defined in the next section, be full rank).
Now putting the whole system together we arrive at the

differential equation (and splitting up the rows of D and E
as suggested by the subscript),

d
dt

[
q̇
q

]
=

[
−Dq̈ 0
Idq 0

] [
q̇
q

]
+

[
Eq̈
0

]
λ = −Dλq̇+ Eλ. (72)

As used in [1, Eqn. 6.23], and [6, Eqn. 28.20], the dynamics
may re-written in twist coordinates (though only after we have
derived them in local coordinates), where (33) becomes,

M̂(θ )ν̇ + Ĉ(θ, ν)ν + N̂(θ, φ)+
[
−Jh
Gs

]
λ = ϒ(τ ),

ν :=

[
θ̇

Vb
op

]
, (73)

where M̂ is the combined body inertia tensor as given in (25),
while Ĉ, and N̂ have been suitably rotated by Rwp. However
the lower line of (72) must reflect ẋ = RwpVb

op.
If M is invertible, the Lagrange multipliers may be solved

for first and then used to calculate q̈,

λ = (AM
−1

AT )−1
(
AM
−1

(ϒ − Cq̇− N)+ Ȧq̇
)
,

q̈ = M
−1
(
ϒ − Cq̇− N− ATλ

)
,

[1, Eqn. 6.5, 6.6].

E. REDUCED DYNAMICS
The reduced dynamics can be found by using the Lagrangian
written in the reduced coordinates,

T̃ (y, ẏ) :=
1
2
ẏTHT (h(y))M(h(y))H(h(y))ẏ =

1
2
ẏT M̃ẏ

Ṽ (y) := V (h(y))

L̃(y, ẏ) =
1
2
ẏT M̃(h(y))ẏ− Ṽ (h(y))

and following along as above, or by noting that HTAT
= 0

and working from (32),

M(θ )q̈+ C(θ, θ̇ )q̇+ N(θ, φ)+ AT (θ, φ)λ = ϒ

HTMq̈+HTCq̇+HTN+HTATλ = HTϒ

HTM(Hÿ+ Ḣẏ)+HTCHẏ+HTN+ 0 = HTϒ

M̃ÿ+ C̃ẏ+ Ñ = ϒ̃

leading to (35) and summarized as,

d
dt

[
ẏ
q

]
=

[
−D̃(q, ẏ) 0
H(q) 0

] [
ẏ
q

]
+

[
Ẽ(q)
0

]
. (74)
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To recover the Lagrange multipliers, using the pseudoin-
verse A∗AT

= Idc as chosen in (40),

λ = A∗(ϒ −Mq̈− Cq̇− N)

= A∗(ϒ − (MH)ÿ− (MḢ+ CH)ẏ− N)

= A∗(Idq −MH(HTMH)−1HT )

×(ϒ − (MḢ+ CH)ẏ− N)

= A∗(ϒ − (MḢ+ CH)ẏ− N).

Note that the other term in (40) has an interesting (though
here unused) interpretation, as (MH)∗AT

= 0 implies that
when q̇T ∈ (MH)∗, Aq = 0, i.e. its rows are the state veloc-
ities that imparts no contact force whatsoever. Furthermore
since (MH)∗(MH) = Ide, such velocities also impart unit
compliment momentum in the reduced system, i.e. HTMq̇ is
a unit basis vector.

F. PROOFS OF LEMMAS
The proof of [1, Lemma 2.16],

Vb
ab = −V

s
ba,

Vb
ab = −AdgbaV

b
ba,

uses the following properties of rigid transformations and
skew symmetric matrices,

Rab = R−1ba = RT
ba,

RT (p)∧R = (RTp)∧, (p)∧R = R(RTp)∧,

ṘRT
= −(ṘRT )T ,

R(S)∨ = (RSRT )∨,

(p)∧q = −(q)∧p,

g−1ab = (−RT
abpab,R

T
ab) = (pba,Rba) = gba,

[1, Sec. 2.2.1, 2.4] and the definitions

Vs
ab =

[
−ṘabRT

abpab + ṗab
(ṘabRT

ab)
∨

]
,

Vb
ab =

[
RT
abṗab

(RT
abṘab)∨

]
,

Adgab =
[
Rab (pab)∧Rab
0 Rab

]
,

Vs
ab = AdgabV

b
ab,

[1, Eqn. 2.58–2.61] and so the second part of the Lemma is
proven as,

−AdgbaV
b
ba = −

[
Rba (pba)∧Rba
0 Rba

] [
RT
baṗba

(RT
baṘba)∨

]
= −

[
RbaRT

baṗba + (pba)∧Rba(RT
baṘba)∨

Rba(RT
baṘba)∨

]
= −

[
ṗba + Rba(RT

bapba)
∧(RT

baṘba)∨

(Rba(RT
baṘba)RT

ba)
∨

]
= −

[
ṗba − ṘbaRT

bapba
(ṘbaRT

ba)
∨

]

= −

[
(−ṘT

abpab − RT
abṗab)− ṘT

abRab(−RT
abpab)

(ṘT
abRab)∨

]
=

[
RT
abṗba

(RT
abṘab)∨

]
= Vb

ab

and thus the first part is also proven by combining this with
the definition of Adgba ,

Vs
ba = AdgbaV

b
ba = −V

b
ab.

G. VALUES FOR RHex
Based on the specification of Section III-A.
From Section II-C, the point contacts with friction at the

toes implies a projection πck := π down to the linear com-
ponents, x and z, which thus leads to a planar wrench basis
of,

Bck :=

 1 0
0 1
0 0

 , k ∈ 1, 2 (75)

corresponding to tangential and normal forces in the contact
frame. The corresponding friction cone (7) is (where recall
that Ck is defined with the z axis pointing into the ground),

Ukλck :=

[
±1 µk
0 −1

] [
λkt
λkn

]
≥ 0, k ∈ 1, 2 (76)

where the sign of the coefficient on the tangent components
is selected to be the opposite of the sign of λt , or alternatively
both signs may be included in separate rows, and µk is the
usual static friction coefficient.
When the body contacts the ground, the sliding contact

implies a projection πck := πz down to only the normal
component, z, and thus has a wrench basis of,

Bbk :=

 0
1
0

 , k ∈ 3, 4 (77)

and the friction cone is,

Ukλck :=
[
−1

] [
λkn

]
≥ 0, k ∈ 3, 4. (78)

The combined U for all k contacts is then defined as (7),

Uλ :=

U1 0 0

0
. . . 0

0 0 Uk


 λc1...
λck

 ≥ 0. (79)

From Section II-D, the active components ak of the base
kinematic constraint are shown in (41)–(43), which combine
to form a in each contact mode,

a :=

 a1
...

ak

 . (80)

From Section II-E, the component of the self-manipulation
grasp map for each toe contact (0 ≤ θk − φ < π, k ∈ 1, 2) is
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FIGURE 15. Mass and Coriolis tensors. Note that in the interest of compactness only the upper half of the symmetric M is shown.

thus,

Gs,k =

 − cosφ sinφ

− sinφ − cosφ

`k sinφ−ρk cos(θk−φ) `k cosφ−ρk sin(θk−φ)

 (81)

while the component of the grasp map for rolling contact
(−π < θk − φ < 0, k ∈ 1, 2) is,

Gs,k =

 − cosφ sinφ

− sinφ − cosφ

`k sinφ−
ρk
2 (1+cos(θk−φ)) `k cosφ−

ρk
2 sin(θk−φ)

 .
(82)

The component of the grasp map for each body contact k ∈
3, 4 is thus,

Gs,k =

 sinφ
− cosφ
`k cosφ

 . (83)

A complete grasp map is then the concatenation of all active
components (14),

Gs :=
[
Gs,1 . . . Gs,k

]
. (84)

The hand Jacobian for legs in toe contact (0 < θk − φ <

π, k ∈ 1, 2) is thus,

Jh,k =
[
−ρk cos(θk − φ)
−ρk sin(θk − φ)

]
(85)

while the hand Jacobian for rolling contact (−π < θk − φ <

0, k ∈ 1, 2),

Jh,k =
[
−
ρk
2 (1+ cos(θk − φ))
−
ρk
2 sin(θk − φ)

]
(86)

and the hand Jacobian is zero for k ∈ 3, 4. A complete hand
Jacobian is then a block diagonal of all active components,

Jh :=

 Jh,1 0 0

0
. . . 0

0 0 Jh,k

 . (87)

The combined velocity constraint matrixA for each contact
mode is defined from these components (17). For example the
combined constraint A in the mode shown in Fig. 3 (front leg
rolling, rear leg toe contact, no body contact) is,

A =
[
−Jh GT

s R
T
pw

]

=


ρ1
2 (1+cos(θ1−φ)) 0 −1 0 `1 sinφ−

ρ1
2 (1+cos(θ1−φ))

ρ1
2 sin(θ1−φ) 0 0 −1 `1 cosφ−

ρ1
2 sin(θ1−φ)

0 ρ2 cos(θ2−φ)−1 0 −`2 sinφ−ρ2 cos(θ2−φ)

0 ρ2 sin(θ2−φ) 0 −1 −`2 cosφ−ρ2 sin(θ2−φ)

 .
From Section II-G and II-H, see examples worked out in

Section IV.
From Section II-I, the combined mass matrix (26) and

Coriolis matrix (30) are shown in Fig. 15, Eqn. (81), (82).
Recall that these are the same in every contact state.
Howeverwhen assumingmassless legs,M is much simpler,

Mmassless =


0 0 0 0 0

0 0 0 0 0

0 0 mb 0 0

0 0 0 mb 0

0 0 0 0 Ib

 (88)

and Cmassless is all zeros.
The potential energy is (recall that z points ‘‘down’’),

V = −mbgz (89)

and thus the nonlinear forces (gravity) are,

N =


0
0
0
−mbg
0

 (90)

while the body wrench due to gravity is (recall that the body
wrench is the negative of the object wrench),

Fg = −RT
wpNo =

−mbg sinφmbg cosφ
0

 . (91)

The applied force is,

ϒ =


τ1
τ2
0
0
0

 . (92)

From Section II-J, the constituent matrices are different in
each contact mode and parameterization of the closed-loop
parameter, but can be derived from (75)–(92).
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