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1 Introduction

1.1 Objectives of this Workshop

Progress in robotics has yielded physical platforms that are slowly becoming more competent in the unstruc-
tured physical world. These growing capabilities raise the prospects for realizing their huge potential value as
autonomous sensors: for survivors in search and rescue settings; for anomalies or threats in surveillance applica-
tions; for novelty or scientifically motivated collection in extraterrestrial exploration. At the same time, sensor
technology has taken off, and the materials, communications and computational technology underlying its advance
now raise the prospect of data torrents so vast that they cannot even be reasonably stored, much less processed
and interpreted without some active, real- time interpretive control. Whether in electromagnetic ranging, electro-
optical (laser, cameras), or, chemotaxis modalities, the multiplicity of tuning affordances and resulting highly
variable focus of attention invites and even demands that algorithms for autonomous sensor management move
into the realm of real time feedback control. Addressing such control problems raises novel questions of how to
formulate tasks whose goals have as much to do with the agents state of information as with its material situation;
how to couple internal variables such as belief state with physical degrees of freedom; and how to develop new rep-
resentations that facilitate that integration and promote the expression of information-sensitive mechanical goals.
This day-long workshop will sample the range of new opportunities, questions, and issues that arise as sensors
become robots, and robots become sensors. New sensing modalities such as chemo-sensitive nanoscale devices



raise the prospect of unparalleled access to perceptual domains long the unique province of animals: do we know
how to use them? Traditionally “high-end” modalities such as radar have been transformed both regarding cost
(in footprint and dollars) as well as realtime tunability by the advance of electronics and computation: can the
sophisticated offline designs that emerged over nearly a century of waveform and receiver engineering be adapted
for closed loop operation on mobile robots? Decades following the initial push for active vision in robotics, what
is todays state of the art, what theoretical insights have emerged, with what implications for practice, and how
close to realtime implementation? KEven assuming a nicely adaptive and computationally tractable sensorium,
how should information-sensitive tasks be formulated to express the appropriate tradeoff between exploration and
exploitation? How should strategic operation shift this tradeoff in the face of adversarial environments? How does
a “distributed body” enhance or complicate the opportunities for joint inference and control over the sensorium?
How does an imperfectly actuated body subject to a highly irregular, unpredictable environment support and
benefit from the tunable sensorium?

1.2 Intended Audience

We target robotics researchers working in the traditional area of active sensing as well as experts in technology
and policy seeking to understand emerging opportunities for multidisciplinary advances bearing upon robotics.
There has been a great deal of interest in this topic arising from various research communities and so we have a
very full day of speakers planned. The format for the workshop would be roughly one dozen 20 min individual
talks (e.g., two 1.5 hr sessions in the morning and afternoon respectively) followed by a panel discussion with
audience participation at the end of the day.

2 Invited Talks

2.1 Dynamic Belief States and Information-Theoretic Decision Making in Adver-
sarial Environments

Speaker Daniel Lee (University of Pennsylvania)

Abstract The need to properly account for uncertainty in sensing has resulted in the recent interest in robotic
applications of probabilistic inference techniques. In these algorithms, the role of maintaining a dynamic belief
state which describes the distribution over potential states as they evolve in time is critical. These belief states
can then be used as inputs to policies that attempt to choose optimal actions. I will discuss recent computa-
tional approaches to handling the unbounded dimensionality of these belief states. I will also show how recent
information-theoretic approaches to bounded rationality can be interpreted as optimal stochastic policies in an
adversarial environment.



Dynamic Belief States and
Bounded Rationality

Daniel D. Lee
Pedro Ortega

& PENN

Belief state

Distribution over possible poses:

p(s,)=p(x,,y,,6,)

Measurement update (Bayes rule): p(s)) < p(s,)p(o,1s,)

Motion update (convolution):  p(s,,,)= J. p(s)p(s,. s, ,u,)ds,

+ Probabilistic filter of state over time

Sensory data

+ Noisy high-dimensional signals from a variety of
multimodal sources

Kalman filter

Multidimensional Gaussian: ~ p(s,)= N(y,,C,)

Measurement update: ~ p(s)) o< p(s,)p(o, |'s,)

Gaussians are closed under multiplication.
p(s)
Motion update:  p(s,.,) = J p(s)p(s,,, |s,,u,)ds,
Gaussians are closed under convolution.
p(s,)

+ With Gaussians, just need to keep track of changes to
mean and covariance (or inverse covariance)

States

B Dynamics model:

. st+l=f(s1’u1)+rll

‘ B sf"lt\‘s

Measurement model:

1+l

Pose state:
Sl =(x/’y7’91)

Map: i =(m,,m,,... ’

0,=g(s,,m)+n,

Particle filter

w,=0.15
P(s)zzwiS(s—Si) w;o.z./ o« w=025
, wosy

/w5=0.l

Effective number of particles: N =

1
2w
Resampling: !

Zwlﬁ(s—s,.)—> 2%5(5—5,{)

+ Sample-based approach to approximate arbitrary
distribution function




Rao-Blackwellized pose filter
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Legendre-Fenchel transform
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Discussion

# Sensory data and belief states

+ Belief state representations

# Optimal policies with beliefs

# Adversarial interpretation of free energy
+ Exponential cost penalty

# Dual interpretation




2.2 Bayesian Path Planning for Learning Spatial-temporal Processes

Speaker Fabio Ramos (University of Sydney)

Abstract In this talk I will present a novel technique for learning spatial-temporal environment processes such
as air pollution or wind speed with a mobile robot. The method is based on Bayesian optimisation and is able
to select paths that maximise the prediction performance for processes where tracking peaks is crucial (such as
air pollution), trading exploration-exploitation in a principled statistical manner. I will show applications in air
pollution monitoring, vibration modelling while navigating on uneven terrains, and lightening changes to illustrate
the benefits of the approach. Finally I will show a web-based app built for the Environmental Protection Agency
in Australia for real-time air pollution forecast in the Hunter Valley region, where coal mines, urban centres and
vineyards need to coexist.
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The mean of the vibration estimate shows a clear distinction between two

explored terrains, grass and asphalt.
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sypiey Indoor ST-Luminosity model

TABLE 11
RESULTS FOR REAL EXPERIMENT

Indicator | Method || Mean | Distance [m]
RMSE 1G 16.44 157.01
RMSE UCB 17.16 21745
RMSE DUCB 16.91 98.08
‘WRMSE 1G 5.41 157.01
WRMSE UCB 4.60 217.45
WRMSE DUCB 4.70 98.086

[Marchant, Ramos, IROS 2012]
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* We model air pollution as a spatial temporal model that is
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planning problems.

e There are many applications, and a lot of industry and
government interest.
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2.3 Autonomous Exploration of Large Scale Natural Environments

Speaker Stefan Williams (ACFR, Sydney)

2.4 Active Inference of Representations: Control’s Role in Visual Perception and
Vice-versa

Speaker Stefano Soatto (UCLA)

Abstract The “state” of a system or agent, understood as a function of measured data that is “useful” towards

a control or decision task, should ideally “separate” sensing and control: Sensing would infer the function of
all past data that is “sufficient” and hand it off to a control or decision module — agnostic of how the state
or “representation” is inferred — to accomplish the task. While this is indeed possible for linear systems in
Gaussian noise, complex sources of uncertainty make the separation imperfect if not impossible. Specifically, when
uncertainty is due to sensing mechanisms that involve occlusion and scaling — such as visual sensing, whether
in the visible or other spectra — control is actually necessary to infer a state that is sufficient to accomplish
even elementary decision tasks. In addition, there may be uncertainty on the task itself. In this talk, we will
explore ways of formalizing the properties that an “ideal representation” should have to support a variety of
decision, control and interaction tasks with physical space, where sensing is provided by visual as well as other
modalities. We will then see how some drastic simplifications yields to methods that are currently in use today,
and point to ways to improve them. We will show applications in visual recognition (finding a known object in
an unknown environment) as well as reconstruction (building a model of the environment to support navigation
tasks) exploiting visual and inertial sensors.

Speaker Bio Stefano Soatto is the founder and director of the UCLA Vision Lab (vision.ucla.edu). He received
his Ph.D. in Control and Dynamical Systems from the California Institute of Technology in 1996; he joined UCLA
in 2000 after being Assistant and then Associate Professor of Electrical and Biomedical Engineering at Washington
University, Research Associate in Applied Sciences at Harvard University, and Assistant Professor in Mathematics
and Computer Science at the University of Udine, Italy. He received his D.Ing. degree (highest honors) from
the University of Padova- Italy in 1992. Dr. Soatto is the recipient of the David Marr Prize (with Y. Ma, J.
Kosecka and S. Sastry) for work on Euclidean reconstruction and reprojection up to subgroups. He also received
the Siemens Prize with the Outstanding Paper Award from the IEEE Computer Society for his work on optimal
structure from motion (with R. Brockett). He received the National Science Foundation Career Award and the
Okawa Foundation Grant. He is a Member of the Editorial Board of the International Journal of Computer Vision
(IJCV), the International Journal of Mathematical Imaging and Vision (JMIV) and Foundations and Trends in
Computer Graphics and Vision.

2.5 Designing Efficient Low-latency Sensorimotor Control

Speaker Andrea Censi (MIT)
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» As a robotics researcher, you shouldn’t compete
with people doing “passive” perception.

perception in robotics

» As a robotics researcher, you shouldn’t compete
with people doing “passive” perception.

perception in robotics

}

perception for robotics

Zhou, Koltun. Color Map Optimization for 3D Reconstruction with Consumer Depth Cameras, SSGGRAPH 2014.

» As a robotics researcher, you shouldn’t compete
with people doing “passive” perception.

What is Robotics?

Zhou, Koltun. Color Map Optimization for 3D Reconstruction with Consumer Depth Cameras, SSIGGRAPH 2014.




What is Robotics?

1. The business of adapting cool techniques in other fields
to obtain a cute demo with a robot.

What'’s embodied intelligence about?

» It's (also) about doing well in the world
using limited resources.

What is Robotics?
1. The business of adapting cool techniques in other fields
to obtain a cute demo with a robot.

2. The scientific quest of understanding and replicating
embodied intelligence.

What’s embodied intelligence about?

» It's (also) about doing well in the world
using limited resources.

7N\

ugent resources

power
computation
memory
bandwidth
latency budget

What’s embodied intelligence about?

What’s embodied intelligence about?

» It’s (also) about doing well in the world
using limited resources.
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complexity

Doing well with limited resources

» Here’s a task T; X watts of power; and Z bytes of memory.
Design something that gives a reasonable answer in Y seconds.

X =500 watts

Y = 100 milliseconds

Doing well with limited resources

Doing well with limited resources

» Here's a task T; X watts of power; and Z bytes of memory.
Design something that gives a reasonable answer in Y seconds.

X =50 milliwatts X =500 watts
Y =1 millisecond Y =100 milliseconds

Doing well with limited resources

» Here’s a task T; X watts of power; and Z bytes of memory.
Design something that gives a reasonable answer in Y seconds.

Joint inference and control:
opportunities and challenges




Joint inference and control:
opportunities and challenges
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» A (deterministic) agent is a tuple (T, /. g)
where T is any set representing the agent memory;

f:I'xY—T defines the memory dynamics;
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» The “canonical” probabilistic agent:

» The “canonical” probabilistic agent:

I' = beliefs (probability distributions on world’s state) I' = beliefs (probability distributions on world’s state)
e = belief about world’s state
f = Bayesian filter
g = solver ofa POMDP
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» The “canonical” probabilistic agent: » The %eanonieal” probabilistic agent:
T = beliefs (probability distributions on world’s state) T = belicefs (probability distributions on world’s state)
Y& = belief about world’s state Yk = belief about world’s state
f = Bayesian filter
g = solver ofa POMDP
ROESRS Y €T
+ +
y €Y agent u € U yr €Y agent up € W
— — — —
observations | "' £, ui) commands observations | "' £, ui) commands
* * wk = (ks Yr) Tl we= g0 w)
realistic
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» The “eamenieal” probabilistic agent:

» The “canonical” probabilistic agent:
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» The %eanonieal” probabilistic agent:

opportunities and challenges

T = beliefs (probability distributions on world’s state) /
Yk = belief about world’s state solving the joint problem
F = Bayesian filter is more resource-efficient
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g = solver of aPOMBP stochastic optimal control problem
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There are many formalizations
(only partially compatible)




Joint inference and control:
opportunities and challenges
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solving the joint problem
is more resource-efficient

|

There are many formalizations
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(only partially compatible)

Doing well with limited resources

1. Find an optimal agent

that uses the fewest resources.
2. Find a suboptimal agent

with given resources bounds.

Doing well with limited resources Offline design ~ vs online execution
Doing well with limited resources Offline design Vs online execution
bl
1. Find an optimal agent Prgpegm

that uses the fewest resources.

agent
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1. Minimality of sensing / control

» What can you do with minimal sensing / control?
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1. Minimality of sensing / control
» What can you do with minimal sensing / control?
Offline design VS online execution O'Kane, LaValle. On comparing the power of robots. IJJR 2008
Localization with limited sensing. TRO 2007
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1. Minimality of sensing / control 1. Minimality of sensing / control
» What can you do with minimal sensing / control?
O'Kane, LaValle. On comparing the power of robots. IJJR 2008
Localization with limited sensing. TRO 2007
» Sensing data is very redundant for place recognition
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1. Minimality of sensing / control

» What can you do with minimal sensing / control?

O'Kane, LaValle. On comparing the power of robots. IJJR 2008
Localization with limited sensing. TRO 2007
» Sensing data is very redundant for place recognition
Y 5
" - -

Milford. Vision-based place recognition: how low can you go? IJRR 2013

7 €D
yr€Y agent up €U
— —
observations er1 = S (s ) commands
uk = g(k: )

3. Penalizing the control information

2. Penalizing the cost of computation

Ortega, Braun. Thermodynamics as a theory of decision-making with information-processing costs, 2013
Braun, Ortega, Theodorou, Schaal. Path Integral Control and Bounded Rationality, 2011
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yk €Y agent u € U

Ye+1 = f(k, yk)
up = y("/myk)

3. Penalizing the control information
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2. Penalizing the cost of computation
Ortega, Braun. Thermodynamics as a theory of decision-making with information-processing costs, 2013

Braun, Ortega, Theodorou, Schaal. Path Integral Control and Bounded Rationality, 2011

| pv updating information state takes work

N (\ ‘ (1-pV FVAN (physical work)
B | l

variational problem

A Vivi v

ner

+

yk €Y agent up €U

Y1 = (Vs )
ue = g(Vi: Y)

3. Penalizing the control information

Yk = Sk agent

Up ~ T,

up €U




3. Penalizing the control information

Rubin, Shamir, Tishby. Trading value and information in MDPs. 2010

3. Penalizing the control information

policy

= deviation from random policy = E {10 o s (1) }

pu)

a blind random policy

-0

Expected value ()

Gontrol Informaton (bis)

Rubin, Shamir, Tishby. Trading value and information in MDPs. 2010

Yk = Sk agent up €U Uk = Sk agent u €U
—_ — — —
Up ~ T, U ~ T,
3. Penalizing the control information 4. Minimizing the agent-world bandwidth
= deviation from random policy =
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3. Penalizing the control information
policy

= deviation from random policy = E {10g ﬂl‘" () }
Aw)

~ a blind random policy

Rubin, Shamir, Tishby. Trading value and information in MDPs. 2010
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4. Minimizing the agent-world bandwidth
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4. Minimizing the agent-world bandwidth
Tishby, Polani. Information Theory of Decisions and Actions. 2011
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4. Minimizing the agent-world bandwidth
Tishby, Polani. Information Theory of Decisions and Actions. 2011

“information to go” =

4. Minimizing the agent-world bandwidth
Tishby, Polani. Information Theory of Decisions and Actions. 2011

“information to go” = Dk1,(pr || D)
\ distribution of states, actions under random policy
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Yk = Sk agent up € U Yk = Sk agent up €U
— — — —
Up ~ T, Up ~ T,
4. Minimizing the agent-world bandwidth 4. Minimizing the agent-world bandwidth
Tishby, Polani. Information Theory of Decisions and Actions. 2011 Tishby, Polani. Information Theory of Decisions and Actions. 2011
“information to go” = Dx1,(px || D) “information to go” = Dx1,(p= || D)
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4. Minimizing the agent-world bandwidth
Tishby, Polani. Information Theory of Decisions and Actions. 2011

“information to go” = Dkr,(px || D)

\ distribution of states, actions under random policy

Yk = Sk agent

U ~ T,
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4. Minimizing the agent-world bandwidth
Tishby, Polani. Information Theory of Decisions and Actions. 2011

“information to go” = Dxr,(pr || P)
\ distribution of states, actions under random policy
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4. Minimizing the agent-world bandwidth
Tishby, Polani. Information Theory of Decisions and Actions. 2011
“information to go” = Dkr,(px || D)
\ distribution of states, actions under random policy

distribution of states, actions under policy

reward

5. Minimality of representation (size of agent state)

1. Find an optimal agent

that uses the fewest resources.
2. Find a suboptimal agent

with given resources bounds.

4. Minimizing the agent-world bandwidth
Tishby, Polani. Information Theory of Decisions and Actions. 2011
“information to go” = Dx1,(px || D)
\ distribution of states, actions under random policy

distribution of states, actions under policy

reward

5. Minimality of representation (size of agent state)

1. Find an optimal agent

that uses the fewest resources.
2. Find a suboptimal agent

with given resources bounds.

Roy, Gordon, Thrun. Finding Approximate POMDP Solutions Through Belief Compression. JAIR 2005

(b) An unlikely belief

(a) A common belicf

5. Minimality of representation (size of agent state)

» Most of the computation cost
is in updating the representation.

» Penalize size of representation:

min |T|

Y€l

+

yr€Y agent up €U

Vi1 = f (Vi )
uk = gV Y

5. Minimality of representation (size of agent state)

1. Find an optimal agent

that uses the fewest resources.
2. Find a suboptimal agent

with given resources bounds.




5. Minimality of representation

Tovar, Guilamo, LaValle Gap Navi, Trees: Minimal Rep ion for Visibility-based Tasks. WAFR 2004

» Arange-finder can be abstracted as a “gap sensor”

» Map can be represented as graphs

e

Q: Can we automatically synthesize
minimal representations?

5. Minimality of representation

» Task: find-object

- Arobot must find a static object
in a known environment.

robot
position

possible object positions
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in a known environment.
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» Task: find-object
- A robot must find a static object
in a known environment.

» Sensors:
- Camera that detects object on sight.

- Observable robot position

(to be relaxed) robot

position

possible object positions
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in a known environment.
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» Task: find-object

- Arobot must find a static object
in a known environment.

» Sensors:
- Camera that detects object on sight.

- Observable robot position
(to be relaxed)

robot
position

possible object positions

field of view




5. Minimality of representation

» Task: find-object

- Arobot must find a static object
in a known environment.

» Sensors:
- Camera that detects object on sight.

- Observable robot position hot
1000
(to be relaxed) position

» Actions:
- move (up, down, left, right)
- declare where the intruder is

possible object positions

5. Minimality of representation

» Optimal agent only needs to represent
optimally reachable beliefs.

5. Minimality of representation

» Formalized as POMDP.

» Solution obtained from
the MDP in belief space.

5. Minimality of representation

» Optimal agent only needs to represent
optimally reachable beliefs.

Fig. 1. Belief space B, reachable space R(bo), and optimally reachable
space R*(bo). Note that R*(bo) C R(bo) C B.

Kurniawati, Hsu, Lee. SARSOP: Efficient Point-Based POMDP Planning by Approximating Optimally
Reachable Belief Spaces. RSS 2008

5. Minimality of representation

» Formalized as POMDP.

» Solution obtained from
the MDP in belief space.

5. Minimality of representation

» “policy graph”: optimally
reachable beliefs and
corresponding optimal
commands




5. Minimality of representation

» “policy graph”: optimally
reachable beliefs and
corresponding optimal
commands
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» Minimal representation is even smaller!

min |T|

» Q: What is the size of the minimal representation?

A: IT| =3 states

Here’s a minimal representation that we obtain automatically.

IIIIIIIIIII=

YeT
¥
yr €Y agent up €U
— —
Va1 = F (Vs Yr)
ur = gV, Yk)

» Q: What is the size of the minimal representation?

A: IT| =3 states

7 €D
¥
y €Y agent u € U
— —
Ye+1 = f(Vk, yk)
ur = g(Vk, Yk)

» The size of the agent’s representation
depends on the sensorium power.

more powerful

less powerful

» Q: What is the size of the minimal representation?

A: IT| =3 states
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agent

Vi1 = f (i, Yk)
ur = g(Vk, Yk)

up €U

» The size of the agent’s representation
depends on the sensorium power.

more powerful
Il

less powerful

Observable robot
position
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5. Minimality of representation

» “What is the simplest neural process
that realizes the observed behavior?”

visual ions
stimulus n actions
animal
brain
rec 1

Joint inference and control:
opportunities

/

solving the joint problem
is more resource-efficient

5. Minimality of representation

» “What is the simplest neural process
that realizes the observed behavior?”

visual .
stimulus actions
animal
brain

tracked
trajectories

Joint inference and control:
opportunities

/

solving the joint problem
is more resource-efficient

|

There are many formalizations
(only partially compatible)

Joint inference and control:
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solving the joint problem
is more resource-efficient
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There are many formalizations
(only partially compatible)

. Minimality of sensing / control

. Penalizing computation

. Penalizing control information

. Penalizing agent-world bandwidth
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Joint inference and control:
opportunities and challenges

/

solving the joint problem
is more resource-efficient

|

There are many formalizations
(only partially compatible)

. Minimality of sensing / control

. Penalizing computation

. Penalizing control information

. Penalizing agent-world bandwidth

U W N =

. Minimality of representation

Joint inference and control:
opportunities and challenges

solving the joint problem Death by generality

is more resource-efficient . .
Q: What is robotics?

Q: What's special about
embodied intelligence?

There are many formalizations

(only partially compatible)

. Minimality of sensing / control

. Penalizing computation

. Penalizing control information

. Penalizing agent-world bandwidth

g = LW N =

. Minimality of representation

Joint inference and control:
opportunities and challenges

solving the joint problem Death by generality

is more resource-efficient . .
Q: What is robotics?

Q: What's special about
embodied intelligence?

There are many formalizations
(only partially compatible)

Death by abstraction
. Minimality of sensing / control
. Penalizing computation Q: What can we integrate
. Penalizing control information within realistic architectures?

. Penalizing agent-world bandwidth

I S R S

. Minimality of representation




2.6 Information-based, Multi-target Localization Using Small Teams of Mobile
Sensors

Speaker Philip Dames (University of Pennsylvania)

Abstract There are many situations in which teams of robots can be used for active information acquisition,
such as security and surveillance, infrastructure inspection, target tracking, and search and rescue. All of these
scenarios share a common problem: while the types of objects of interest are known (e.g., a cell phone signal from
a trapped individual) the number of such objects in the environment will not be a priori. The estimation problem
is further complicated by the sensors returning false positive measurements, missing detections, and returning
noisy estimates of true objects. We utilize a mathematical tool called the probability hypothesis density (PHD)
filter that allows us to simultaneously estimate the number of objects in the environment and their positions
while dealing with imperfect sensors. Then using the resulting estimate of the target set, the robot team follows
a receding horizon, information-based control law which maximizes the mutual information between the target
set and the binary event of getting no target detections, effectively hedging against non-informative actions in a
computationally tractable manner.

In some of these scenarios, such as surveillance, the robot team operates in an environment with existing com-
munication infrastructure. In such instances, the robots may leverage that infrastructure to quickly disseminate
information across the robot team without requiring direct peer-to-peer links to other robots in the team. In this
case we model the information trade off between directly taking measurements of objects in the environment and
receiving measurements through communication channels with base stations.

Suggested reading | , ; , ) ) ]
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ICRA 2014 Workshop on Opportunities and Challenges of
Joint Inference and Control in Mobile Robotics

Information-based,

Multi-target Localization
Using Small Teams of
Mobile Sensors

Philip Dames and Vijay Kumar

Challenges

® Unknown number of objects a priori

B Imperfect sensors
False positive and false negative detections
Limited field of view (FoV)
Noisy measurements

B Potentially limited communication range

31 May 2014
® Unknown data association
@
L &Penn 4
" SR * SEEENWESEIE
Problem Statement Assumptions

® Goal: determine the number of objects of interest and
their locations within the environment using a small team
of mobile robots

31 May 201

B Obstacle map is known
® Robots are able to self-localize
® Targets are stationary

® There may be a base station with one or
more access points in the environment

31 May 2014 5

Example Scenarios

® Search and rescue

Localize trapped individuals via cell phone
signals

B |nfrastructure inspection

Localize sensors in a smart building
® Environmental monitoring

Search for a species of interest

31 May 2014 3

System Overview

Base
Sensor _ Station
Measurement A f { é
aggregator %
N A3
PHD filter ‘R-l —|r3| ; ’R 6
R-Z"\
Receding horizon, — "(’ R—5“
information-based R-7 . / ,
control law ! R-4
31 May 2014 6




Related Work

" DDF
Cooperative search [Grocholsky 2002], [Cole 2009]

® Receding horizon control
Survey [Mayne and Michalska 1990], [Mayne, et al 2000]
Target tracking [Ryan 2009]

® |nformation-based control
Target tracking [Grocholsky 2002], [Bourgault, et al 2002]
Tractable information approximations for target localization
[Hoffmann, Tomlin 2010], [Charrow, et al 2013]

® Control using finite set statistics
Renyi divergence [Ristic, Vo 2010], [Ristic, Vo, Clark 2011]
MI gradient [Schwager, et al 2011], [Dames, et al 2012]

PHD Filter Assumptions

® For computational tractability, [Mahler 2003]

assumes
New/existing targets independent
Targets i.i.d.

Targets move independently

Targets generate measurements independently
Clutter i.i.d. and independent of measurements
Number of targets, clutter is Poisson

31 May 2014 7 31 May 2014 10
g o
Sensing — Range-only PHD Filter

® Robot pose ¢
B Detection model

pa(x;q) = {f(|£ —dl2) |

xr — qHQ S dmax

0 else o
® Measurement model o
9(z | z39) = N(zi lz — qll2,07) %o

B Clutter model

L <z< dma.x
K(z) = { Uszs

dmax
31 May 2014

0 else

® Update equation
v'(z) = (1 = pala))o'~*(z)+

palzoz | =)
2 T Trdes o @ @

z€Z?t

® | ow complexity updates
Linear in number of particles and measurements
Avoids data association

31 May 2014 11

Probability Hypothesis Density

® Probability hypothesis density (PHD) v(z)
Target density field over environment

Integral over any region is expected number of targets
in that region

B Typically implemented as:

Weighted particle set [Vo, Singh, Doucet 2003]
GMM [Vo, Ma 2006]

31 May 2014 9

Joint Estimation

® Robots and base station maintain their
own filters

® Robots exchange measurement sets

B Measurement aggregator ensures robot
doesn’t double count information

31 May 2014 12




Control Law

® Maximize mutual information between
target set and binary detection events

q" = argmax I[X,Y;q]
qeQ

B Using full measurement sets is

" JNER——
Information Value of
Communication
® Robots can receive measurements by:

Directly taking them
Communicating with a base station

® Updated control law
q¢* = max(argmax I[X,Y;q], I|X, Yeomm])

computationally intractable P 7€0
Use binary approximation ¥ = {1 s If second term is higher, robot visits base station
31 May 2014 13 31 May 2014 16
" JEENNEN " JINNRI—

Joint Control

B Split team into coalitions
Members of a coalition have overlapping sensor FoV
® Computational complexity

O ((PRT + 28T )2RT AR)

A = # of actions per robot

P = # of particles in PHD

R = # of robots in coalition

T = length of planning horizon

31 May 2014 14

Base Station Data

® Data available at the base station, Y.omm,
is unknown until robot reaches the access point
Number of new measurements
® Assume geometric rate of return to base station
Locations measurements taken
® Average over possible locations
Correlations between measurements
" Measurements independent

31 May 2014 17

Trajectory Generation

® For each robot:
Select all points a
specified distance away
Remove points sufficiently
close together

® Maintain action diversity
while reducing complexity

Interpolate paths at a fixed
distance to get waypoints

X
X
31 May 2014

L

Example Maps

B 3 robots, 3 step horizon, infinite
communication range

5 10 15 20 25 30 35 40 45
*[m]
(a) Environment | (b) Cnvironment 2

(©) Environment 3

31 May 2014 18




" [ " JEI—
Environment 1 Environment 2 Environment 3 . . .
B Multi-target estimation
> e ) R Avoids data association
R T AN i 3 = Communication strategy
< ia i, i 1 Allows for a consistent estimate across the team
© e s ; = = Prevents double counting information
e i T Allows for decentralized estimation and control
i ® |nformation-based, receding horizon control law
a By . w a| S Computationally tractable
z T = - Trades off information benefit of sensing versus communication
g Twf M LY ® Simulation results show performance with 1's to 100’s of
v = g O - 5 targets in indoor environments
5 10 15 20 25 - R R
x [m]
31 May 2014 19 31 May 2014 22
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" JENENERN
Results — Low Target Density

® | imited communication range
® 4 robots, 5 access points

Error: 029m False Positive Error: 021m
o0 8
" o -4
4 z T w
2 r Ex = £ a
40 4 y " -10) 1
2
-12 -10 -8 10 15 28 30 32 08
= X [m] x[m] x[m]
E 2 6
- Error: 0.09 m Error: 0.33m Error: 0.88 m 04
4 I 0.2
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= e | @
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2.7 Toward Dynamical Sensor Management: Reactive Wall-following on RHex

Speaker Avik De (University of Pennsylvania)

Absract We propose a new paradigm for reactive wall-following by a planar robot taking the form of an actively
steered sensor model that augments the robot’s motion dynamics. We postulate a foveated sensor capable of
delivering third-order infinitesimal (range, tangent, and curvature) data at a point along a wall (modeled as
an unknown smooth plane curve) specified by the angle of the ray from the robot’s body that first intersects
it. We develop feedback policies for the coupled (point or unicycle) sensorimotor system that drive the sensor’s
foveal angle as a function of the instantaneous infinitesimal data, in accord with the trade-off between a desired
standoff and progress-rate as the wall’'s curvature varies unpredictably in the manner of an unmodeled noise
signal. We prove that in any neighborhood within which the third-order infinitesimal data accurately predicts the
local “shape” of the wall, neither robot will ever hit it. We empirically demonstrate with comparative physical
studies that the new active sensor management strategy yields superior average tracking performance and avoids
catastrophic collisions or wall losses relative to the passive sensor variant.
This work was presented in poster form at ICRA 2013.

Suggested reading | , , ) ) ]
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Toward Dynamical Sensor Management:
Reactive Wall-following and Beyond

Avik De, Daniel Koditschek
Joint Inference and Control Workshop at ICRA 2014 p
This work was supported by AFOSR MURI FA9550-10-1-0567.

End Result: Wall-following with RHex

Inspiration for Wall-following

Why is wall-following useful?
¢ Useful behavior with sparse sensing
*  Online navigation problem with obstacle

Some Exemplar Prior Work

American cockroach

[Lamperski 05] Passive antenna robotic wall-following

[Matveev 11] Boundary patrol using “disk” sensors

Could an actively-controlled foveating sensor help the control

L

Plant Model

Locomotion Model

® RHex: kinematic unicycle
® Non-holonomically constrained

Sensor Model

Hardware: fixed-pitch Hokuyo laser

scanner
Idealized sensor has an infinitesimal
sensorium: range, tangent, curvature (e.g.
antenna)

Implemented with numerical pre-
processing

Sensor is actively steerable

@

Related: Biological & Bio-inspired Active Tactile Sensing

In Biology,
® Rats “whisk” [Hartmann 01]
® Cockroaches?

In bio-inspired mechanics,

® Active feedforward whisking => better
SNR on depth [Kim & Moller 06]

® Active antennae sense depth and
texture [Kaneko 98]

Envi

ronment / Task Model

P_(gate of progress)

/0 (sensorsqale)

-

World fr;afn’e

® Wall = unknown smooth simple plane curve of bounded curvature
@ (violation of latter doesn’t affect performance in practice)

® Taskis to
® maintain a desired offset, q,, from the wall (with g, small),
® and a desired rate-of-progress, p.




Illustrative Result for Particle Robot (1) Extension to Kinematic Unicycle

Proposition 1 (Point robot convergence). With active sens-
ing, we can assure (a) p = 1 (desired rate of progress), (b)
G2 — 1, and (c) g1 — 0, whereas with passive sensing we
can only guaraniee (a) and (b).

-

World frame blo)
L] “ "
® Start with a point robot (no unicycle constraint) ® The active sensor system is fully actuated! Ca'nnot ‘cancel” the
® Simple kinematics: ® In contrast, the passive sensor system for noise vector as I_JEfOFE,
T p=1is but can control its
p=E"u, ¢=uv, 0 magnitude by p (rate-of-

1= \|a | — RJ

4 [ vy i] 4 progress)

® Needed for proof, but
experiments still succeed

for rapid rates

® Rate-of-progress related by trigonometry:
o 2 ® Easy to see that q is uncontrollable!
p=1u+ ﬂ%l—v.

® Local frame kinematics even simpler:

q=u+pn,
® Only difficulties are unmodeled “noise” vector,
n = —e; — kJg,

® _.andp. 7 10

lllustrative Result for Particle Robot (2) Experiment: Unmodeled Hallway

Active Passive

® Tracking error is highly correlated with
curvature spikes (corners)

® Traditionally, sharp corners and clutter
have been challenging for smooth wall-
following controllers

Intuitively,

® Active sensing: three
dof (g, g, p) and
three inputs (u,, u, v)

Active Passive V.

® Passive sensing: three
dof and two inputs (u,,

2 2 u, only).
1 1
O—————— Time o e Time
2 4 6 8 10 12 14 2 4 6 8 10 12
-1 -1
8
Result: Local Wall-avoidance Guarantee Experiment: Active vs. Passive Sensing (1)

Passive sensor with small look-ahead (right-
looking) fails at concave corner

Proposition: The feedback controller
guarantees safety in a local

neighborhood of radius ¢, around the
sensed point b(0). Passive sensor with large look-ahead (forward-
looking) fails at convex corner (recall, system is
Proof: Wall is repelling in a memoryless)
neighborhood where a quadratic approx

is valid

Active sensor automatically adjusts look-ahead
according to rate-of-progress, curvature, state.




Experiment: Active vs. Passive Sensing (2)

Active Passive
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Navigation Functions (NF’s)

® Dynamical navigation ‘
(goal-seeking while
avoiding obstacles) is a
solved problem (right
[Rimon 89])—when the
world is known a priori
Real-world problems:

® underactuation,
exteroception is
local

Looking Ahead: The Problem of Local Navigation from Infinitesimal Data

Local Navigation
Posit ability to measure local gradients
G = [vv.V8]

(as well as its rate-of-change for either

dynamic systems or dynamic tasks)

Key ideas:

¢ Work in local frame

® Compose the requirements as a
weighting Gl

Problem when G loses column rank

® WF: columns always orthogonal!
Eg: Hill climbing (simulation)

£ e

Active (Foveated / Pointed) Sensors

® How do we estimate VB? Assuming the
world is static, obstacle surface must be in
the direction of motion.

® Dithering / curvature estimation

Conclusion

We

® presented a novel outlook to real-time control of a coupled sensorimotor system,

® provided analytical proofs of stability, convergence and guarantees against failure as
long as the robot stays near the sensed point, and

® demonstrated qualitatively favorable real-world performance
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Sampling-based Algorithms for Optimal Planning

e RRT fails to converge to optimal solutions

* RRT* guarantees asymptotic optimality:
almost-sure convergence to optimal solutions

e RRT and RRT* have the same asymptotic computational complexity

RRT RRT*

o+ . o .

2
‘ . :
5 s

o s € 4 2 0 z 4 s & w0 Mo e s =

[Karaman and Frazzoli, IJRR’11] -

Practical Algorithms for Motion Planning

Robot motion planning:
Find a path from point A to point B
® Fundamental problem in robotics.
e Computationally challenging; Practical algorithms exist

5

Rapidly-exploring Random Tree (RRT) .| IS
[LaValle, Kuffner, '01] j I
* Randomly sample states 1 ¥

e Connect samples into a tree 2

Sampling-based Algorithms for Motion Planning

[Jeon, Karaman, and Frazzoli,'12]

* Drive 60 miles in urban traffic in less than 6 hours

- Abide by the rules of the road, e.g., lanes,
intersections, passing, u-turns, etc.

[Leonard et al.,’08]

Anytime Sampling-based Algorithms

Anytime flavor:

1. Quickly find an approximate solution

2. Improve the approximation provably
towards an exact solution

Anytime computation of the value function

e Differential games

* Provably-correct trajectory synthesis
from high-level LTL specifications

e Continuous-time stochastic optimal
control (including sensing uncertainty). ¢ ®
[Huynh, Karaman, Frazzoli, '12]
[Chaudhari, Karaman, Erazzoli, ’13]

AERO




Opportunities and Challenges in Sampling-based
Algorithms for Joint Sensing and Control

+ High-dimensional state spaces.
» Amenable to anytime computation.

« Formal guarantees, e.g., computational
complexity, probabilistic completeness, and
asymptotic optimality.

« Algorithms can benefit from better inference
algorithms, better optimization methods, etc.

* Meaningful special cases: Minimal predictive
models of potential environments.

« Parallel computation, e.g., on GP-GPUs.

I. High-speed Navigation in Cluttered Environments

On Perception Capabilities of Agile Robotic Vehicles

BBC Documentary: Goshawk Flight in Woodland

On Bio-inspired Agile Robotics

Agile Inspired by the Nature, the
community aspires to build
small, agile, efficient robots

Small

» Tremendous progress in designing/building hardware.

+ Can we characterize the fundamental limits of agile motion, e.g.,
in terms of the perception capabilities of the robot?

Engineering High-speed Robotic Vehicles?

« What is the maximum speed that this robot can achieve maintain for a long time?

« How does this performance depend on perception, actuation,
and computation capabilities of the robot?




Phase Transitions: The General Case

A marked point process

Forest process: generates locations and sizes of trees.
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The Single-integrator Bird in a Poisson Forest

fateral oo

Bird dynamics: xe)= ( u(t) ) Hu(g) <1 =t " | "
(8) = x( :

£)

« Locations of the trees are generated by a
Poisson process with intensity p (tree density).

vi

Forest process:

« Radii of the trees are the same, say r (tree radius).

Super-critical Flight Sub-critical Flight

Theorem Theorem
P(“An infinite collision-free trajectory exists") = 0 P(“An infinite collision-free trajectory exists”) = 1
pr? pr?
when ——— > 0.219450 when —— < 0.071921
sin(a) sin(a)

Phase Transitions: The General Case

x(t) = f,(x(t), u(t))  x(t) € R", y(t) € R?,
Bird YO =g(t)  veRu
DynamICS: Speed Model: Non-decreasing path sets with decreasing v.

Assumption: Dynamics of the bird is translation invariant.
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+ We look for infinite collision-free trajectories

Phase Transitions in a Poisson Forest

Empirical probability of tracing a long forest segment
constructed using computational simulations.

250,
200)
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Tree Density

0.020

Phase Transitions: The General Case

A spatial marked point process

Forest process: generates Jocations and sizes of trees.

()= Fx().u(t)  x() € R y(1) € B2,

Bird dynamics: y(t) = & (x(t)) " vERs.
Speed Model: Non-decreasing path sets with decreasing v.
Assumption: Dynamics of the bird is translation invariant.

Theorem: Phase transitions in ergodic forests
Suppose the forest generating process is ergodic.
Then, there exists a critical speed, Ve, such that

o Forall v > v,
P(“An infinite collision-free trajectory exists”) = 0.

o Forall v < v,
P(“An infinite collision-free trajectory exists”) = 1.

Proof Techniques from Percolation Theory

@ Percolation theory studies global properties of random graphs
(in particular, random vertices in discrete/continuous domains)

Global properties:
» Connectivity
» Average degree

» Giant components

@ Main results in terms of phase transitions and phase diagrams.
@ Immediate applications in statistical mechanics

‘_;A\

@ More recent applications in
communication/social /financial /political networks. == .

@ We heavily utilize percolation theoretic arguments.

@ Often, the resulting percolation models are unique.




How are Perception Capabilities
and Performance Related?

+ The performance increases rapidly with increasing perception range:

+ Assuming the forest distribution is “light-tailed,” an optimal
planning algorithm achieves the following performance:

Theorem

Let R denote the perception range and L(R) denote the
maxinum distance that the robot can travel without col-
lisions. Then, there arc constants ¢ and p such that

P(L(R)>e") > p
for all R >0

Avaraga dtrca raveins

Performance and Agility: Experiments

" use [left] and [right] arrow
keys to dodge obstacles

advanced settings B Radi
adius:

Randomize

new game cancel

How about Agility?

+ Performance drops sharply with decreasing agility

x10°

Average distance traveled

Max fo speed
Max lateral speed

Performance and Agility: Experiments

players by date data points by date

3500}

3000

2500}

players
3

2000
1500

1000}

week of the year Week of the year

« Significant interest; Presentations encourage people to play.

Experiments with Pigeons at Harvard University

by Andrew Biewener at the Harvard University Department of Evolutionary Biology.

Performance and Agility: Experiments

Max Survival Time
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Il. On High-performance Information Collection

A Different Interpretation: On the Power of
(even a little) Local Perception/Planning

« Logarithmic sensing range (planning horizon) is enough, under mild assumptions:

Corollary
With range O(log(L)), the robot can travel a distance of
L almost as good as if it had infinite perception range.

« Example: Consider i.i.d. rewards distributed Exp(1).

No Range O(log(L)) range L range

Time-average
Reward 1 2 2

« Rather than rewards, we can consider data collection and inference
(e.g., adaptive sampling for hypothesis testing, sparse recovery, ...)

[Ma and Karaman, WAFR’14 (to appear)]

Online Planning and Sensing for Information Gathering

Model
« Target locations are not known a priori; they are discovered on the fly.
« Spatial statistics for the target locations are available, e.g., from past experience.

Fundamental Questions
» How much information can the smartest algorithm possibly collect?
» How does performance scale with perception, actuation, computation capabilities?

AERO,

Novel Connections between Planning/Sensing
and Nonequilibrium Statistical Mechanics (NESM)

NESM in biological transport
« The Methodology: ke e K

« Establish novel connection between this
problem and fundamental problems of
nonequilibrium statistical mechanics.

* Robot treated like a particle moving in a field.

- The Results regarding p ption

« The problem is in the Kardar-Parisi-Zhang
universality class (not Gaussian).

« The optimal reward converges to the
Tracy-Widom distribution (not Gaussian).

« Fluctuations from the expected value is
of order 1/3 (not 1/2 as in Gaussian).

- Results also for actuation and computation capabilities.
[Ma and Karaman, WAFR’14 (to appear)]

On Performance and Perception Range

« In other words, we can go very far optimally with little perception range.

Thm: With range r the vehicle can travel
a exp(c 8213 r) distance and collect ¢* —§
reward per unit time with high probability.

s-01

Expected Maximl Distance.

[Ma and Karaman, WAFR’14 (to appear)]

Conclusions and Remarks

* The design of agile robotic vehicles for
« high-speed navigation through cluttered environments;
* rapid information collection.

+ Tradeoff between performance and robot’s capabilities, e.g.,
in terms of perception (as well as actuation and computation).

» Novel connections with statistical mechanics.




Conclusions and Remarks

+ Deeper connections with statistical mechanics.

« Planning in the sensor/information space, in particular realistic
sensor models should include sensing uncertainty, occlusions.

» Performance with respect to actuation and computation
capabilities as well as perception.
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