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Universal Memory Architectures for Autonomous
Machines

Dan P. Guralnik†, Daniel E. Koditschek‡

Abstract—We propose a self-organizing memory architecture
for perceptual experience capable of supporting autonomous
learning and goal-directed problem solving in the absence of
any prior information about the agent’s environment. The archi-
tecture is simple enough to ensure (1) a quadratic bound (in the
number of available sensors) on space requirements, and (2) a
quadratic bound on the time-complexity of the update-execute
cycle. At the same time, it is sufficiently complex to provide the
agent with an internal representation which is (3) minimal among
all representations of its class which account for every sensory
equivalence class subject to the agent’s belief state; (4) capable, in
principle, of recovering the homotopy type of the system’s state
space; (5) learnable with arbitrary precision through a random
application of the available actions.

The provable properties of an effectively trained memory
structure exploit a duality between weak poc sets — a symbolic
(discrete) representation of subset nesting relations — and non-
positively curved cubical complexes, whose rich convexity theory
underlies the planning cycle of the proposed architecture.

I. INTRODUCTION

A. Motivation

A major obstacle to autonomous systems synthesis is the
absence of a capacious but efficient memory architecture. In
humans, memory influences behaviour over a wide range of
time scales, leading to the emergence of what seems to be a
functional hierarchy of sub-systems [1]: from non-declarative
vs. declarative through the split of declarative memory into
semantic and episodic [2]; and on to theories of attention and
recall [3]. This variety of scales is mirrored in the collection of
problems addressed by the synthetic sciences: from learning
dependable actions/motion primitives [4], [5]; through learning
objects and their affordances [6], [7] to demonstration-driven
task execution [8], [9]; through exploring and mapping an un-
known environment [10], [11], [12], [13] and motion planning
[14], [15], [16]; and on to general problem solving [17] using
artificial general intelligence (AGI) architectures [18], [19],
[20].

One idea stands out as common to all these approaches, be-
ginning with the formal notion of a problem space introduced
by Newell and Simon [17], [21]: the purpose of a memory
architecture is to learn the transition structure of the state space
X of the system comprised of the agent and its environment
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E while processing the history of observations into a format
facilitating improved future control.

It is often argued (e.g. [22], [23], [24]) that memory
architectures for general agents should enjoy a high degree
of domain- and task-independence. In general, however, clear
definitions of notions such as ‘domain’ and ‘task’ are not
readily forthcoming across the vast breadth of literatures dis-
cussing memory, agents and autonomy. Notions of ‘universal
learners’ have been proposed [25] based on optimizing gain in
estimators of predictive entropy, however there is evidence to
suggest that the resulting level of generality may be insufficient
for some tasks [26].

Absent broadly recognized formal foundations, we advance
an architecture provably satisfying intuitive universality prop-
erties, including, most centrally: (1) interactions with the
environment are encoded in the most generic, yet minimal,
manner possible, while requiring no prior semantic informa-
tion; and (2) learning obtains from direct binary sensory input,
automatically developing appropriate contextual links between
sensations of arbitrary modality. A key outcome is that the
architecture encodes its observation history in a model space
that supports the agent’s problem solving as a form of reac-
tive motion planning whereby atomic computations provably
correspond to nearest point projection in the reachable set.

B. Contribution

We consider a generic discrete binary agent (DBA): a ma-
chine sensing and interacting with its environment in discrete
time, equipped with a finite collection Σ of Boolean-valued
sensors, some of which serve as triggers for actions/behaviors
(switched on and off at will).

Given an instance of a DBA interacting with an environment
E, it is natural to view the set Ξ of sensory equivalence
classes of the associated transition system X as a subset of
the power set {0, 1}Σ. It is generally accepted [27], [28] that
a memory architecture must be capable of supporting internal
representations rich enough to account for the diversity [29]
of the transition system X: Exact problem solving, when
construed as abstract motion planning, requires an internal
representation capable, eventually, of accounting for all the
classes in Ξ and the transitions between them. Unfortunately,
as expressed forcefully in [29] and as we review at length
below, the task of obtaining an exact description of Ξ becomes
intractable in the absence of strong simplifying assumptions
about X, as the number of sensors grows.

To circumvent this obstacle, rather than imposing any spe-
cific structure on X, we propose to relax the requirement for
precise reconstruction by introducing an approximation whose
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discrepancy from Ξ we characterize exactly and show to be
the smallest possible in its (computationally effective) class of
objects.

The new memory and control architecture we propose here
consists of two layers:

• A data structure S – called a snapshot – keeping track of
the current state and summarizing observations in terms
of collection of real-valued registers, of size quadratic
in the number of sensors, summarizing the history of
observations made by the agents.

• A reactive planner, built on a weak poc set structure
P ([30], [31] and defn. A.1) constituting a record of
pairwise implications among the atomic sensations as
observed by the agent; P is computed from S in each
control cycle.

A crucial property of our architecture is that P and M are
formally reconstructible from each other. The model space
M takes the form of a CAT(0) cubical complex, or cubing1,
whose 0-skeleton is contained in {0, 1}Σ. As the snapshot S is
updated by incoming observations, the space M, as encoded
by P, is transformed along with it. We can state our main
contributions – albeit, necessarily, informally at this point – in
terms of provable properties of the architecture and its model
spaces:

(i) Universality of Representation. M is the minimal
model guaranteed to represent all the sensory equivalence
classes of any sensorium Σ satisfying the record P (see
A-E3). In particular, in the absence of information not
already encoded in P, it is impossible to distinguish the
0-skeleton of M from the set of sensory equivalence
classes, Ξ.

(ii) Topological Approximation. As a topological space,
M is always contractible2. Provided a sufficiently rich
sensorium, the sub-complex M× ⊂ M of faces all of
whose vertices lie in Ξ inherits from M the topology3 of
the observed space X (see appendix A-E3-A-E4).

(iii) Low-complexity, effective learning. The proposed ar-
chitecture requires quadratic space (in the number of
sensors) for storage, and no more than quadratic time
for updating. Furthermore, an agent picking actions at
random learns an approximation of the resulting walk’s
limiting distribution on X (see II-E2).

(iv) Efficiency of Planning. Planning the next action given
a target sensation takes quadratic time in the number of
sensors, while eliminating the need for searching in the
model space. With sufficient parallel processing power,
this bound may be reduced to a constant multiple of the
height — the maximum length of a chain of implications
of P (see III-B).

To the best of our knowledge, this combination of provable
properties has not previously appeared in the literature.

1For a good introduction CAT(0) cubical complexes, see [32]. For a tutorial
on cell complexes see [33], chapter 0 and appendix.

2The formal notion of being ‘hole-free’ — see [33], chapter 0.
3Up to homotopy equivalence — see definition in [33], chapter 0.

C. Overview and Related Literature
To establish the novelty of our contribution we now briefly

review the copious literature bearing on these topics as arising
from three distinct traditions: robotics; connectionist compu-
tation; and artificial general intelligence. After presenting our
technical ideas we will explore at the end of the paper in a
more discursive form their relation to and implications for the
broader field.

1) Relation to Mapping and Navigation: Formulating navi-
gation and mapping problems in terms of a point agent moving
through a homotopically trivial ambient space while avoiding
a collection of geometrically defined obstacle regions repre-
senting forbidden states is fundamental to motion planning
[14], [15] and mapping [12], [34]. The ubiquity of obstacles
in these settings introduces topological considerations whose
primacy is well established in the algorithmic literature [34],
[35], [36], [37], [38], [39], [40], governing the complexity of
not only motion planning [41] but even set membership [42].

Our strategy is to reduce the general problem of memory
storage and its use for motion planning in the underlying
transition structure of a problem space (as sensed by a DBA)
to the geometric problem of motion planning in the agent’s
model space M (playing the role traditionally assigned to
Euclidean space). Generalizing the Euclidean setting, M has
a very strong convexity theory [31], [43] enabling low-cost
greedy navigation.

The topological point of view has been shown to be well
warranted in the discrete setting as well. As was demonstrated
by Pratt [44], oriented topological structures (cubical com-
plexes, in fact) may be used to encode the causal relations
among actions and states in symbolic transition systems. Ap-
proaches generalizing Pratt’s have since been used to formulate
very general models of reconfigurability and self-assembly
[45], [46].

2) Mechanisms for Learning and Planning: Snapshots use
an evolving estimate of pairwise intersections of sensor foot-
prints to form a record of implications among the atomic
sensations of the DBA. The necessity of such a record for
planning goes back (at least) to [47], yet ideas about applying
it as a way to encode context are fairly recent and specialized
[4], [23], [48]. Our internal representation takes the additional
step of applying this principle to all the sensations available
to a DBA, including the control signals it uses to interact with
its environment.

The resulting learning and control mechanisms may be
realized in a highly simplified and idealized, yet highly plastic,
network of neuron-like cells simulating the structure of P
[30]. This analogy with neural networks is not a coincidence:
estimating arbitrary intersections from near-synchronous ac-
tivation of sensors in a planar sensor field has been explored
as a means for topological [39] as well as metric mapping by
competitive attractor networks (RatSLAM [13], [24], [48]),
as the study of the structure of stability properties vis-a-vis
topology and plasticity in more general networks is just taking
off [49], [50].

3) Model Spaces: The necessity to maintain high-
dimensional representations of the state space X poses a
major challenge for current approaches to learning [51], [52],
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[22] and general problem solving [53], [54]. The method
closest to ours in its formalism seems to be that of [29] —
and even lends itself to learning by a connectionist network
[55] — but still requires an exponentially large representation
for planning purposes. By contrast, in our case, the ability
to translate action planning in M into what is essentially a
flow problem in a network constructed from the underlying
sensorium obviates the need for maintaining M in memory,
allowing us to evade the curse of dimensionality. Nevertheless,
we are still guaranteed a model space that is sufficiently rich
to account for all sensory equivalence classes perceivable by
the DBA [27].

The computational advantages of our approach come at a
cost that is largely driven by topology, as expressed in (ii):
M necessarily has trivial topology4 [56], [31], [57], and our
own result [30] establishes formal conditions on Σ under
which the complex M× reproduces the ”topological shape”5

of X (as discussed above), which may not be topologically
trivial. The basic algorithm driving planning in our agents,
however, achieves its efficiency by disregarding this mismatch.
The introduction of auxiliary intrinsic motivation mechanisms
[58], [59] as a means of steering the agent away from obstacle
states in M and towards desirable behaviours (not necessarily
states!) seems to be a possible way out of this predicament,
as well as towards a solution of the problem of closing the
control loop. At this early stage, as a feasibility study for
the overall approach, we only consider very simple excitation
mechanisms causing the agent to choose actions with the
desire to maximize immediate excitation gain, to the extent
that may be sensed by Σ (and otherwise to choose random
actions).

D. Organization of the Paper
Having already given proofs of the formal results underlying

(i) and (ii) in our previous paper [30], we defer the technical
discussion of poc sets to appendix A. This appendix is
intended as an introductory overview of the theory of weak
poc sets and the geometry of their dual spaces – our agents’
model spaces — as well as a repository of proofs of technical
results we require but could not find elsewhere in the literature.

Section II discusses (iii). We formally state the observation
model for DBAs, describe snapshots and their learning mech-
anisms, and present our early numerical work illustrating the
practical implications of the claims regarding learning.

Section III is dedicated to item (iv) in the list of contribu-
tions. Actions are introduced to the observation model, and
control algorithms are defined and validated.

Finally, following an extended discussion of our results in
relation to existing literature in section IV and the aforemen-
tioned appendix dealing with poc sets, a second appendix
presents the proofs of technical results about snapshots.

II. SNAPSHOTS: FROM OBSERVATION SEQUENCES TO A
MEMORY STRUCTURE

We begin with a formal statement of what we mean by a
DBA and its observation model. We then proceed to construct

4Again, in the sense of M being contractible.
5In the sense of homotopy type — [33], chapter 0.

TABLE I
TABLE OF MATHEMATICAL SYMBOLS

Topic/Notation Ref.

DBA Model (general)

E Environment (with points p, q, . . .) Sec.II-A1

X State space of the experiment (with points
x, y, . . .)

Sec.II-A1

pos The position map X→ E Sec.II-A1

T Time, the set of integers Sec.II-A2∣∣
t

Reads as: ”at time t” Eqn.(1)

DBA model (sensing)

Σ Sensorium (elements are a, b, c, . . .), with
involution a 7→ a∗

Eqn.(6)

ρ Realization map of the sensorium Σ Eqn.(7)

〈a : x〉 Evaluation, e.g. of a ∈ Σ on x ∈ X Eqns.(4-5)

DBA computational model (at time t)

S
∣∣
t

Agent’s snapshot Sec.III-B1

Γ
∣∣
t

The derived poc graph, Dir(S
∣∣
t
) Sec.III-B1

P
∣∣
t

Derived (weak) poc set structure on Σ,
Poc(S

∣∣
t
)

Sec.II-B1

M
∣∣
t

The model space Cube(P
∣∣
t
) Sec.II-B3

M×
∣∣
t

The punctured model space Cube×(P
∣∣
t
) Def.III.8

O
∣∣
t

Raw observation Sec.II-B2

S
∣∣
t

Recorded observation Sec.II-B4

A
∣∣
t

Decision (action) following the observation

Contents/parameters of a snapshot S

KΣ The complete graph on Σ with all aa∗
edges removed

Def.II.2

#S State of the snapshot Def.II.3(a)

wab Weight on the edge ab Def.II.3(b)

τab Learning threshold for the pair a, b ∈ Σ Def.II.3(c)

ω(ab) Orientation cocycle of S Prop.II.7

µ(ab) Dissimilarity measure of S App.B-C

Objects derived from a snapshot S

Dir(S) Derived poc graph Prop.II.8

Poc(S) Derived weak poc set structure Def.II.10

Weak poc sets and their duals

P,Q, . . . Poc sets (with and without indices) Def.A.1

P ◦ The set dual of P , the 0-skeleton of
Cube(P )

Def.A.8(b)

Dual(P ) Dual graph of P , the 1-skeleton of
Cube(P )

Def.A.8(c)

Cube(P ) Dual cubing of the poc set P Def.A.8(a)

Cube×(P ) The punctured dual Cube(P, ρ) with re-
spect to a realization ρ

Def.A.28

f◦ The dual map f◦ : Q◦ → P ◦ of a poc
morphism f : P → Q

Defs.A.2,A.24
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snapshots, their updating mechanisms and the derived weak
poc set structures, and conclude the section with results on
the learning capabilities of snapshots. Table I reviews notation
that will persist throughout the paper.

A. Observation Model for DBAs

1) Environment and State: We place an agent in an envi-
ronment E. The state space of the system will be denoted by
X, where we assume there is a map pos : X→ E producing
the location pos(x) of the agent in E, given the state x ∈ X of
the system as a whole. As it turns out, no further mathematical
structure on X is required for the results that follow, hence,
with a mind toward inviting the broadest range of applications,
we impose none, much in the spirit of McCarthy and Hayes
discussion of situation calculus [47].

2) Time and Transitions: We model time T as the set
of integers (the subjective time of the agent), with t = 0
corresponding to the initial time. The basic objects of study
are then trajectories, or maps of the form

ϕ : T→ X , ϕ = (ϕ
∣∣
t
)t∈T (1)

We define abstract transitions in X as follows:

Definition II.1 (n-transitions). An element of the (n+1)-fold
Cartesian power Xn+1 will be referred to as an n-transition.
For any trajectory ϕ : T→ X and n ≥ 0 we define the map

dnϕ :

{
T → Xn+1

t 7→ ϕ
∣∣
t−n × · · · × ϕ

∣∣
t

(2)

We refer to 0-transitions as states, and to 1-transitions simply
as transitions. �

Any setting where E, X and the transition structure of the
system are specified (though, possibly, in an implicit fashion),
implies constraints on the set of achievable trajectories. We
will refer to such settings as experiments, within the frame-
work of which each allowed trajectory will be referred to as a
run of the experiment, while observations produced by sensors
during a run (below) will be called experiences.

3) Discrete Binary Agents: A discrete binary agent (DBA)
is endowed with a collection of binary sensors indexed by a
finite set Σ. We will assume that each a ∈ Σ is assigned an
order na ≥ 1, and a realization ρ(a) ⊆ Xna+1. We then
say that a is a na-sensor, or a sensor of degree na. For
example, a 0-sensor – or state sensor – responds to the system
entering a certain subset of X (a ”macro-state”), while a 1-
sensor responds to the system experiencing a transition of a
particular kind.

Evaluation of sensors is best viewed in the context of
trajectories: a n-sensor a ∈ Σ is applied to a trajectory ϕ
and assigned a value at time t ∈ T according to the rule

〈a : ϕ〉
∣∣
t

= 1
def.

⇐⇒ dnϕ
∣∣
t
∈ ρ(a) (3)

Here 〈a : ϕ〉
∣∣
t

denotes the measurement provided by the
sensor a at time t given the trajectory ϕ. To avoid a profusion
of parentheses and subscripts we will generally use bracket

notation to denote the evaluation of Boolean- and scalar-valued
functions:

〈a : x〉 := 1ρ(a)(x) whenever a ∈ Σ (4)
〈g : s〉 := g(s) whenever g : S → [0, 1] (5)

and so forth. The symbol 1A will always denote the indicator
function of a set A with respect to the appropriate super-set.

We will assume that Σ comes endowed with a map a 7→ a∗

satisfying the following for all a ∈ Σ:

a∗∗ = a , a∗ 6= a , (6)

as well as

ρ(a∗) = ρ(a)c := Xna+1 r ρ(a) (7)

We also introduce the virtual sensors 0,0∗ ∈ P evaluating to

〈0 : ϕ〉
∣∣
t
≡ 0 , 〈0∗ : ϕ〉

∣∣
t
≡ 1 (8)

on any trajectory ϕ and at any time t ∈ T. For subsets A ⊆ Σ
we will always use the notation A∗ to denote the set of all a∗,
a ranging over A.

The database structure we will be using is designed to
maintain an approximate record of the relations among sensors
in Σ believed by the agent to hold true throughout time. This
record at time t ∈ T is encoded in a weak poc set structure
P
∣∣
t

over Σ (definition A.1).
For two n-sensors a, b ∈ Σ this requirement translates

into a ≤ b in P
∣∣
t

being treated (for planning purposes) as
the inclusion ρ(a) ⊆ ρ(b) in the space Xn+1. Note how
the equivalent containment ρ(b∗) ⊆ ρ(a∗) is encoded by the
contra-positive implication b∗ ≤ a∗, which, by the definition
of a weak poc set, holds if and only if a ≤ b does.

When a, b have different orders we are forced to replace
this requirement by a weaker one: at any time t, our agents
will interpret a ≤ b in P

∣∣
t

as

〈a : ϕ〉
∣∣
t′
≤ 〈b : ϕ〉

∣∣
t′

(9)

holding for all t′ ∈ T. In other words, our agents assume that
relations among sensors do not change over time6.

For example, if a, b ∈ Σ where a is a state sensor and b is
a transition sensor, consider the statements:

(†) 〈a : ϕ〉
∣∣
t
≤ 〈b : ϕ〉

∣∣
t
, (‡) 〈b : ϕ〉

∣∣
t
≤ 〈a : ϕ〉

∣∣
t

treated as identities over both ϕ and t. We see that (‡) states
all transitions of type b must terminate in a state of type a,
while (†) means that only transitions of type b could produce
state a. It is clear that both kinds of statement are essential
for planning.

6This is not to say that our agents are not allowed to change their minds
regarding which relations hold true and which do not: the purpose of keeping
a dynamic record of relations is to eventually uncover the ‘correct’ relations.
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B. The Model Spaces

1) A Record of Implications: Informally, a “record of
implications in Σ” is a partial ordering on Σ reflecting the
standard interactions between Boolean complementation and
Boolean implication. Formally, our DBA will maintain, at any
time t ≥ 0, a weak poc set structure P

∣∣
t

on Σ consisting of
a partial order relation ≤ satisfying, for all a, b ∈ Σ:

1) 0 ≤ a;
2) a ≤ b⇒ b∗ ≤ a∗.

Note that a∗ 6= a by the construction of Σ and compare with
the definition in appendix A.1.

2) Observations as vertices of a cube: From the agent’s
viewpoint, the current state of the experiment at time t
is completely characterized by the measurements 〈a : ϕ〉

∣∣
t
,

where ϕ is the agent’s trajectory. Equivalently, the state may
be encoded in a subset O

∣∣
t
⊂ Σ satisfying

∣∣O∣∣
t
∩ {a, a∗}

∣∣ = 1
for all a ∈ Σ. Such subsets of Σ are called complete ∗-
selections. An incomplete measurement of the state would then
correspond to a subset O ⊂ Σ satisfying |O ∩ {a, a∗}| ≤ 1 for
all a ∈ Σ, called an (incomplete) ∗-selection – see definition
in appendixA.6, along with remarks on the notation to follow.

Thus, one thinks of the collection S(Σ)0 of all complete
∗-selections on Σ as enumerating the possible sensory equiv-
alence classes in the sensed space. However, some of the
elements in this collection are redundant given the record P

∣∣
t
:

an implication a ≤ b means that no O ∈ S(Σ)0 containing
{a, b∗} is expected by the agent to be witnessed by any
observation (see fig.9). Formally, a set O ⊂ Σ is coherent
(definition A.7), if no pair of elements a, b ∈ O satisfies
a ≤ b∗.

3) The model spaces: The model space M
∣∣
t

corresponding
to the record P

∣∣
t

takes the form of a cubical complex — a
topological space constructed from a collection of vertices (the
0-skeleton), a set of edges (the 1-skeleton), and successively
higher dimensional connecting cells in the form of cubes [32].
We choose the vertex set of M

∣∣
t

to coincide with the set of
coherent ∗-selections in S(Σ)0. Edges are inserted to join any
pair of vertices A,B satisfying |A r B| = 1 (this condition
turns out to be symmetric). The hop-distance on the resulting
graph may be seen as a variant of the crude, ‘information
motivated’, Hamming distance on {0, 1}Σ. The 1-dimensional
skeleton of M

∣∣
t

is further enriched with higher dimensional
cubes to yield the space Cube(P

∣∣
t
), as described in appendix

A (definition A.8) for the interested reader. While a fairly
detailed knowledge of the geometry and topology of spaces
obtained in this way is essential for following our formal
arguments regarding the modeling capabilities of this class,
much of it is unnecessary for this section’s account of how
the agent obtains its representation of M

∣∣
t
, the record P

∣∣
t
.

4) Maintaining a record of the current state: Returning to
the problem of representing the current state, observe that P

∣∣
t

is expected to change as time progresses, possibly giving rise
to observations O

∣∣
t

that are incoherent with respect to P
∣∣
t
, and

therefore represent points ‘outside’ the model space. While
the raw observation O

∣∣
t

must be applied to the agent’s data
structure in hopes of improving P

∣∣
t
, the agent must resolve

the contradiction within the framework of its current model,

replacing the incoherent complete observation O
∣∣
t

in its role as
the record of the current state kept by the agent with a coherent
but incomplete observation (104), S

∣∣
t

:= coh(O
∣∣
t
), satisfying

certain naturality requirements — see appendix B-E2 for the
complete technical discussion.

This means the agent resolves the contradiction at the price
of introducing ambiguity into its record of the current state:
instead of having a single vertex of M

∣∣
t

representing the
current state (“complete knowledge”), any vertex containing
the set S

∣∣
t

may turn out to be the correct current state.
The complexity of coherent projection (lemma III.4) and its

role in the agent’s reasoning processes, its interplay with the
convexity theory of the model space M

∣∣
t

and its interpretation
as the basis for viewing our architecture as a connectionist
model (albeit a very limited one) of cognition will all be
discussed in section III-B.

C. Snapshots

In [30] we have introduced the rather loose notion of a
snapshot, aiming to outline a class of database structures
for dynamically maintaining weak poc-set structures from a
sequence of observations made by an agent along a trajectory
ϕ through X. A rigorous treatment of this tool requires some
careful definitions.

Definition II.2. Denote by KΣ the graph obtained from the
complete graph over the vertex set Σ by removing all edges
of the form aa∗, a ∈ Σ. Edges of KΣ will be referred to as
proper pairs in Σ. We will abuse notation and write ab ∈ KΣ

for the edge {a, b} of KΣ. �

The graph KΣ is the scaffolding for snapshots:

Definition II.3 (Snapshot). A snapshot S over Σ consists of
the following:
(a) State. Each vertex a ∈ Σ of KΣ is assigned a binary

state #aS ∈ {0, 1}. The set

#S = {a ∈ Σ |#a = 1} (10)

is called the state vector of the snapshot S and is required
to be a ∗-selection on Σ (definition A.6).

(b) Edge weights. Each edge ab ∈ KΣ is assigned a non-
negative real number denoted wab = wab(S).

(c) Learning Thresholds. Each edge ab ∈ KΣ carries a
non-negative real number τab = τab(S) satisfying

τab = τa∗b = τab∗ = τa∗b∗ ≤ 1
4 .

For every ab ∈ KΣ, the restriction of S to the subgraph
induced by the vertices a, a∗, b and b∗ will be denoted by
S|ab and referred to as a square in S. �

The original motivation of [30] for the notion of a snapshot
is twofold:

1) Maintaining a consistent representation of the cur-
rent state. For this purpose we will generally assign
the coherent projection of the current state measurement
to be stored in #S.

2) Learning implications in the sensorium. To learn
an estimate of the implication order on Σ inherited
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wab*

small

Fig. 1. determining edge orientations in a snapshot by restricting attention to
S|ab .

from its realization in X it should suffice to maintain a
system of weights wtab on S

∣∣
t

quantifying the relevance
(e.g. frequency) of the event a ∧ b, allowing one to
partially orient the snapshot according to the rule of
thumb illustrated in figure 1.

The graphical representation derived from a snapshot in this
manner does not automatically define a weak poc set, but is
nearly there:

Definition II.4 (poc graph). A poc graph Γ over Σ is a
subgraph of KΣ endowed with an orientation which satisfies,
for every ab ∈ KΣ:

- If ab ∈ Γ then b∗a∗ ∈ Γ;
- If ab ∈ Γ then a∗b, ba∗, b∗a, ab∗ /∈ Γ.

By abuse of notation, we use the symbol ab to mean the
directed edge emanating from a and pointing to b (if it exists
in Γ). �

In order for a poc graph to represent a weak poc set structure
on Σ one needs:

Lemma II.5 (derived poc set). The transitive closure of the
orientation relation on a poc graph Γ over Σ is a weak poc
set structure on Σ if and only if Γ has no directed cycles.

Proof. This follows directly from the discussion in example
A-A2.

The rest of this section mainly deals with characterizing a
large class of snapshots encoding acyclic directed poc graphs
and with means of evolving snapshot representations of X
from trajectories. Given a trajectory ϕ of our agent through
X, the collection of coincidence indicators

ctab := 〈a : ϕ〉
∣∣
t
· 〈b : ϕ〉

∣∣
t

(11)

may be used to evolve a sequence of snapshots S
∣∣
t

repre-
senting, at any time t > 0, the cumulative influence of the
agent’s observations on its perception of implications in the
sensorium.

D. Probabilistic Snapshots and Acyclicity

The following set-theoretic identities among the coincidence
indicators are easily verified for all a, b, c ∈ Σ:

ctaa∗ = 0
ctab = ctba
ctaa = ctab + ctab∗
ctab + cta∗b + cta∗b∗ + ctab∗ = 1
ctab∗ + ctbc∗ + ctca∗ = cta∗b + ctb∗c + ctc∗a

(12)

These identities motivate considering snapshots with weights
obeying analogous constraints:

Definition II.6 (Probabilistic Snapshot). We say that a snap-
shot S is probabilistic, if #S is a coherent ∗-selection and the
edge weights satisfy the following:
• Consistency constraint. if ab, ac ∈ KΣ then:

wab + wab∗ = wac + wac∗ (13)

• Normalization constraint. for any ab ∈ KΣ:

wab + wa∗b + wa∗b∗ + wab∗ = 1 (14)

• Orientation constraint. if ab, bc, ac ∈ KΣ then:

wa∗b + wb∗c + wc∗a = wab∗ + wbc∗ + wca∗ (15)

We denote the set of all probabilistic snapshots over Σ by P
Σ

,
or simply P when there is no danger of confusion. �

A fundamental observation regarding probabilistic snap-
shots is the following

Proposition II.7 (Acyclicity Lemma). Suppose S is a proba-
bilistic snapshot over Σ and Γ is a poc graph satisfying the
orientation cocycle condition:

ab ∈ Γ⇒ ω(ab) := wa∗b − wab∗ > 0 (16)

Then Γ contains no directed cycles.

Proof. See appendix B-A.

This proposition puts the vague notion from figure 1 on how
to derive implications from a snapshot on a firm footing:

Proposition II.8 (Poc graphs from snapshots). Let S be a
probabilistic snapshot. Construct a poc graph Dir(S) by
setting

ab ∈ Dir(S)⇔ wab∗ < min

{
τab,

wab, wa∗b, wa∗b∗

}
(17)

Then Dir(S) is an acyclic poc graph. �

Proof. The symmetries of τ• and w• immediately imply ab ∈
Dir(S) iff b∗a∗ ∈ Dir(S). The strict inequality in (17) implies
the second condition of a poc graph holds as well. Since the
orientation cocycle is positive on every edge of Dir(S) by
definition, the acyclicity lemma applies.

The element of thresholding present in (17) may also be
used as a part of the updating procedure of a probabilistic
snapshot, without affecting the derived poc set:

Proposition II.9 (Snapshot Truncation). Let S be a proba-
bilistic snapshot. Define a new snapshot bSc to have the same
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state as S while for every ab ∈ KΣ satisfying (17) the weights
are updated as follows:

wab∗ 7→ 0
wab 7→ wab + wab∗

wa∗b∗ 7→ wa∗b∗ + wab∗

wa∗b 7→ wa∗b − wab∗

(18)

Then Dir(S) = Dir(bSc).

Proof. The proof amounts to a direct verification that the bSc
is probabilistic, and that ab ∈ KΣ satisfies (17) in bSc if and
only if the same condition is satisfied by ab in S.

Following lemma II.5 we may now safely define:

Definition II.10 (Derived Poc Set). Let S be a probabilis-
tic snapshot. Denote by Poc(S) the weak poc set structure
obtained by setting a ≤ b iff there exists a directed path in
Dir(S) from a to b. �

We now proceed to introduce and study two possible
snapshot constructions.

E. Empirical Snapshots

The empirical snapshot structure maintains an empirical
approximation of the relative frequencies of observations of
the form a ∧ b, a, b ∈ Σ. For any trajectory ϕ of the agent
through X we could try setting

wtab =

t∑
k=1

ckab , (19)

with S
∣∣
t

a trivial snapshot for all t ≤ 0.

Definition II.11. A snapshot S with w• = 0 is said to be
trivial and denoted Null. �

Properties (12) then imply that S
∣∣
t

satisfies the consistency
and cocycle constraints (defn. II.6) for all t > 0, and would
satisfy the normalization constraint if we replace the weights
wtab by 1

tw
t
ab throughout.

1) Construction and Properties: The formal construction is
as follows:

Definition II.12 (Empirical Snapshot). A snapshot S over Σ is
an empirical snapshot if the following conditions are satisfied:
• For all ab ∈ KΣ, wab ∈ Z≥0

;
• For all ab ∈ KΣ, the expression

wa := wab + wab∗ (20)

is independent of the choice of b, and vanishes only if
#a = 0;

• The following expression does not depend on a ∈ Σ:

Clk (S) := wa + wa∗ (21)

Denote the set of empirical snapshots over Σ by EΣ (or just
E when justified). �

The evolution of an empirical snapshot under a sequence of
observations is then defined through:

Definition II.13 (Empirical Update). Let S be an empirical
snapshot and let O ⊂ Σ be complete ∗-selection. The snapshot
O ∗ S is the empirical snapshot obtained from S by setting

wab(O ∗ S) := wab(S) + 〈1O : a〉 · 〈1O : b〉 (22)

for all ab ∈ KΣ. The state of O ∗ S is set to coh(O) (where,
recall, this is the the coherent projection (104) computed with
respect to the weak poc set structure derived from the new
weights). �

Definition II.14 (Evolution). We say that a snapshot T over
Σ is an evolution of a snapshot S, either if S = T or if there
is a sequence (Ok)

m
k=1 of complete ∗-selections in Σ such that

T = Ok ∗ · · · ∗O1 ∗ S. �

Empirical snapshots are characterized by their ancestry:

Lemma II.15. A non-trivial snapshot S over Σ is empirical
if and only if it is an evolution of the trivial snapshot.

Proof. See appendix B-B.

Having characterized empirical snapshots as evolutions of
the trivial one, we return to the observation that the weight
w•(S)/Clk (S) on KΣ — see (21) — defines a probabilistic
snapshot. We may thus define Dir(S) accordingly, by setting

ab ∈ Dir(S)⇔ wab∗ < min

{
τab · Clk (S) ,

wab, wa∗b, wa∗b∗

}
(23)

and conclude that:

Proposition II.16 (empirical implies acyclic). If S is an
empirical snapshot, then Dir(S) as defined in (23) is an
acyclic poc graph, and Poc(S) as defined in defn. II.10 is
a weak poc set structure on Σ. �

We will henceforth refer to DBAs endowed with empirical
snapshots and utilizing the empirical update as empirical
agents.

2) Performance of Empirical Agents: In this paper we
restrict attention to agents endowed with a fixed finite set of
actions. An agent starting out at time t = 0 with a trivial
snapshot S

∣∣
0

has no knowledge of its environment, and is
therefore assumed to engage in random exploration for some
time, until actionable information becomes available. This
motivates the question as to how well the memory structure
of an empirical agent performs in this initial stage.

In the case where X is finite and the agent’s actions are
deterministic it is easy to formulate this: Let Σ

act
be the set

of available actions, and consider the graph with vertex set X,
where a vertex x is joined to a vertex y labeled by an action
α ∈ Σact if applying α at x results in y. Thus, X becomes
endowed with the structure of a Markov chain, where we draw
actions uniformly at random in every state. Focus on the case
when all the actions available to the agent are reversible in
the sense that there is an edge from x to y if and only if
there is an edge from y to x (loops are allowed as well).
Then the corresponding Markov chain is a random walk and
its stationary distribution over X, denoted by π, is uniform
[60] over each connected component of the resulting transition
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system. Thus, each normalized weight wtab/t is nothing but
the empirical estimate of the joint probability, given by π, for
a, b ∈ Σ to fire synchronously.

Restricting to a reachability component, we may assume X
is connected. By abuse of notation, for ab ∈ KΣ denote

π(ab) = π(ρ(a) ∩ ρ(b)) (24)

Let Dir∞ denote the matrix7 with entries Dir∞ab = 1 whenever
ρ(a) is contained in ρ(b) up to a precision of τab, that is:

π(ρ(ab∗)) < min (τab, π(ab), π(a∗b∗), π(a∗b)) (25)

and set Dir∞ab = 0 otherwise. This matrix represents the true
poc set structure to be learned by the agent, as determined
by the fixed learning thresholds. Analogously we let Dirt be
the matrix with Dirtab = 1 iff the directed edge ab ∈ KΣ

is contained in the derived poc graph of Dir(S
∣∣
t
) (and 0

otherwise). A good measure of the agent’s performance would
be the behavior of the total error

Err(t) :=
∥∥Dirt − Dir∞

∥∥
1

(26)

over time (the matrices viewed simply as vectors in `1 of the
appropriate dimension). By Theorem 5.1 in [60], the agent’s
random walk converges to π at an exponential rate depending
only on the transition structure of X determined by the actions
Σ

act
. We conclude:

Proposition II.17. Suppose a DBA performs a random walk
on a connected X, at each moment in time performing one
of a fixed finite set of reversible deterministic actions. Then
Err(t) converges to zero at an exponential rate.

With such strong performance guarantees for a broad class
of empirical agents we are left to examine the variation in
performance as a function of the geometry/topology of the
environment (beyond the guarantees given by the preceding
discussion) we have run simulations in the following settings:
(a) The agent performs a random walk along a path with

20 edges (example A-D1), choosing between one step
forward and one step back uniformly at random for
every t ∈ T, learning the poc structure of a sensorium
consisting of 20 ‘GPS’ sensors, as described in example
A-D1;

(b) The agent performs a random walk along a cycle with
20 edges, choosing between a clockwise and a counter-
clockwise step uniformly at random for every t ∈ T, and
learning a sensorium consisting of 20 beacon sensors as
described in example A-D3;

(c) The agent performs a random walk (up/down/left/right)
on a square grid with 10 ‘GPS’ sensors along each of the
x− and y− axes;

(d) The agent performs a random walk along (forward/back)
a path with 20 edges, but the sensors are chosen to have
random activation fields (randomly chosen subsets of the
set of vertices along the path); the sensor fields have been
drawn anew prior to each separate run.

7Recall that Dir(S) introduced in Prop. II.8 is a directed graph. The new
notation is intended to connote a matrix representation of such a graph.
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Fig. 2. Logarithmic plot of the mean number of incorrect edges in
the derived poc graph of an empirical snapshot (20 sensors), for
learning thresholds varying linearly between 1

4
(cyan/light) and 1

203

(blue/dark), averaged over 50 runs of random walks each.

The number of sensors is the same for each setting, and each
agent carries out 50 runs of a length that is cubic in the
number of sensors, starting at a random position with an empty
snapshot. We have tested 10 different agents for each setting,
corresponding to 10 different values of the learning threshold,
spread linearly in the interval from 1/(20)3 to the maximal
meaningful value of 1/4 (where one should not expect much
useful learning to occur).

The results are summarized in figure 2 plotting Err(t),
where we have replaced the matrix Dir∞ as defined in (25)
by the {0, 1}-valued matrix

Dir∞ab = 1⇔ ρ(a) ⊆ ρ(b) (27)

to render the effect of choosing different values for the learning
threshold more visible in the graph of Err(t).

The resulting plots show significant, though subtle, differ-
ences in performance between the four settings, illustrating
the similarities and differences in the weak poc set structures
being approximated, most notably:

- The sharper initial decline in the mean deviation for
(b) and (c) in comparison to (a) is expected due to the
relative abundance of crossing in the former, as opposed
to complete nesting (see definition A.22) in the latter.

- Performance in the random setting (d) seems to lag
significantly behind performance in any of the structured
settings.

- Performance in the completely nested setting (a) seems
to provide exponentially fast learning no matter what; by
contrast, the other settings seem to experience a transition
between two modes, depending on how small the learning
threshold τ is:

1) For large τ , the deviation plateaus.
2) For small enough τ , the deviation decreases to zero

in finite time.
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We expect the critical value of τ in any finite setting to
be somewhere around the minimum probability of a state
(under the stationary distribution of the random walk):
in order for a relation a < b to be put on record, it is
necessary for the agent to have visited ρ(a) ∩ ρ(b∗) at
a frequency below τ ; the smaller τ is, the fewer false
relations will be recorded for posterity.

- Recalling that the poc set representing the ground truth
in (c) is the direct sum (see A-D2) of two smaller
copies of (a) having 10 sensors each, we see that the
crossing relations between the x-axis sensors and their
y-axis counterparts account for 800 of the 1600 entries
(two 20×20 null sub-matrices) in the adjacency matrix
of the derived graph. Thus, the two experiments are not
that different: loosely speaking, the 10×10 square grid
experiment projects onto a Cartesian product of two 10-
path experiments where the random walk on the 10-path
becomes a lazy walk with probability 1

2 to stay put. In
other words, the behavior of (c) may be inferred from the
behavior of (a).

- Not so when comparing (a) and (c) with (b): note how
the sub-critical values of the learning parameters in (a),(c)
and (d) force the deviation plot to ‘plunge’ into the x-
axis versus the horizontal asymptote behavior of (b). In
view of theorem A.33), our guess is that the environment
(the circle) not being contractible has something to do
with this qualitative change in behavior, but this requires
further investigation.

F. Discounted Snapshots

A notable weakness of empirical snapshots as a data
structure is their potential high cost in space, due to the
need for indefinitely maintaining integer-valued counters. In
some sense, the entire history of the agent matters, and, in
some sense, matters too much. This motivates the search for
an alternative, more quantized, updating mechanism whose
dependence on any given past observation weakens at a fixed
rate.

1) Construction and Properties:

Definition II.18. (discounted update) Let q ∈ [0, 1] and let
S be a probabilistic snapshot over Σ. For any complete ∗-
selection O on Σ we define the snapshot O ∗q S to be the
snapshot with weights determined by

wab(O ∗q S) := qwab(S) + (1− q) 〈1O : a〉 · 〈1O : b〉 (28)

The state of O ∗q S is set to coh(O), the reduction being
computed with respect to the weak poc set structure derived
from the new weights. Finally, define the q-discounted update
of S to be the snapshot bO ∗q Sc and we refer to q as the
decay parameter. �

A significant advantage of the discounted update is its
applicability to arbitrary probabilistic snapshots:

Lemma II.19. The q-discounted update of a probabilistic
snapshot by a complete ∗-selection is probabilistic. �

Proof. It is clear that the discounted update preserves proba-
bilisticity. Proposition II.9 finishes the proof.

Consider the length of time (or the amount of evidence)
it takes a discounted snapshot to acquire an implication,
compared to the amount of evidence required for giving up
an implication already on record.

Assuming a fixed value of the decay parameter q over a
considerable length of time, a lower bound on the amount
of time ∆t required for wab∗ to become small enough for a
relation a ≤ b to be put on record is given by the situation
when a long enough sequence of consecutive observations with
a ∧ b∗ not occurring is made:

q∆t < τab ⇔ ∆t >
log2 τab
log2 q

(29)

On the other hand, once the relation a ≤ b has been put on
record, the number ∆t of successive observations of a ∧ b∗
required for replacing this relation with a t b must satisfy:

∆t(1− q) > τab ⇔ ∆t >
τab

1− q
(30)

– this much is guaranteed by the truncation mechanism.
Overall, it seems that choosing a value of q with 1 − q
sufficiently small should produce meaningful learning: lower
values of τab make it both harder to learn and easier to unlearn
a false relation, while maintaining a qualitative difference
between the necessary requirements for either process.

Keeping q fixed over long periods of time places an em-
phasis on the values of the learning thresholds τab. As these
values do not have to be chosen uniformly over the snapshot,
one might want to vary the values of the learning thresholds
individually with the aim of altering the flexibility of the
learning process in the corresponding square. This opens up
a doorway to employing methods for varying the learning
thresholds and the decay parameter in ways analogous to [26]
and [22] as a means of improving the quality/dependability
of the model space. The simulation results below emphasize
the need for this kind of control, showing that a discounted
agent is much more susceptible to changes in geometry and
topology/combinatorics of the sensor fields than an empirical
one.

2) Performance Analysis: Figure 3 compares the mean
performance of time-discounted snapshot learning from a
random walk in the four settings described earlier in II-E2, for
the values of the decay parameter q given by q = 1 − 1

2k+2 ,
k = {0, . . . , 9}.

One immediately notices, in comparison with the empirical
case, that the dependence of the learning process on the
discount parameter is not monotone: it would seem that a
choice of k = 5 works best for all settings in terms of
optimizing the eventual deviation, — though it is hard to say
what ‘best’ would even mean for (d) — while a choice of
k = 4 is more reasonable given the observed waiting time until
meaningful learning occurs in the structured environments (a)-
(c).

Similar observations to those made for the empirical case
(figure 2) regarding the interplay between ‘learning modes’
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Fig. 3. Mean number of incorrect edges in the derived poc graph of a
discounted snapshot in 4 environments (20 sensors each) for varying
values of the decay parameter, q = 1− 1

2k+2 , k from 0 (red/dark) to
9 (yellow/light), averaged over 50 runs of a random walk.
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Fig. 4. A comparison of the mean number of incorrect edges in the
derived poc graph as a function of time, for an empirical snapshot
(blue) and a discounted one (red). Here τ = 1/203 and q = 1− 1

26 .

and geometry/topology can be made here as well, but are more
subtle, as the comparison in figure 4 shows.

G. Further Adjustments to the Weak Poc Structure

The implication record constructed from a probabilistic
snapshot in the preceding section does not recognize possible
equivalences among sensations: if, for whatever reason, a
relation of the form

wab∗ = wa∗b = 0 (31)

takes place in a snapshot S, it becomes reasonable to interpret
it as the logical equivalence a⇔ b, yet Dir(S) will not register
any relations in the square S|ab , barring an agent equipped
with S from utilizing the currently observed equivalence.

Thus, an adjustment of Dir(S) is required if we are to allow
our agents the advantage of reasoning about equivalences. The
following extension of Dir(S) turns out to serve our purposes
for a restricted class of probabilistic snapshots:

Definition II.20. Let S be a probabilistic snapshot. The poc
graph Dir(S)0 is defined to be the poc graph obtained from
Dir(S) by adding the directed edges ab, ba, a∗b∗, b∗a∗ for
each ab ∈ KΣ satisfying (31). �

It turns out that Dir(S)0 gives rise to an adequate weak
poc set structure and model space, provided S satisfies the
additional requirement:

Definition II.21. A snapshot S is said to satisfy the triangle
inequality, if

wa∗b + wab∗ + wb∗c + wbc∗ ≥ wa∗c + wac∗ (32)

holds whenever ab, bc, ac ∈ KΣ. �

A class of examples of special significance in this work is
that of snapshots S whose edge weights are derived from a
measure µ on a space Z by pulling back along a realization
ρ : Σ→ Z as follows:

wab = µ (ρ(a) ∩ ρ(b)) (33)

The triangle inequality for S is then an immediate consequence
of the well-known (e.g. [61], chapter 3) triangle inequality for
measures:

µ(A M C) ≤ µ(A M B) + µ(B M C) , (34)

where A,B,C ⊂ Z are arbitrary measurable sets and A M B
denotes the symmetric difference (ArB) ∪ (B rA).

The coincidence indicators ctab of (11) are a special case
of this example (where µ is an atomic measure), and so are
empirical snapshots (as their weights are sums of coincidence
indicators). Discounted snapshots fall into this class, too, as
their weights are convex combinations of coincidence indica-
tors.

Due to the technical nature of the interactions between
Dir(S) and the extension Dir(S)0, we postpone the formal
discussion of these interactions to appendix B-C. The bottom
line, however, is that for any probabilistic snapshot structure
satisfying the triangle inequality our agent may safely apply
the control protocols of the next section to the extended poc
graph derived from the agent’s current snapshot to arrive
at action choices while taking advantage of the perceived
equivalences within the sensorium.

Although technically we are obliged to distinguish between
Dir(S) and Dir(S)0, as well as between the weak poc set
structures they correspond to, we will treat these objects as
identical for the sake of simplifying the rest of the exposition.

III. CONTROL WITH SNAPSHOTS

This section introduces the basic control function of a
snapshot. We begin with introducing a formalism designed
to treat discrete actions as a sub-structure of the binary
sensorium, and discuss the effect of this formalism on shaping
the model space (III-A). We next turn to a discussion of the
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snapshot S
∣∣
t

as a highly efficient computational mechanism
for coherent state-updating and for decision making based on
the geometry of the model space M

∣∣
t

(III-B).
At the technical level, this section requires an understanding

of the convexity theory of cubings: The classical results are
covered in appendix A-D, while our new technical results
underlying the use of snapshots for greedy navigation in
cubings are covered in appendix B-E.

Building on these results, section III-B2 introduces the
mechanism of signal propagation over a snapshot which real-
izes the computation both of coherent projection and of closest
point projections to prescribed convex subsets of the associated
model space. This mechanism suggests a view of snapshot
architecture as highly simplified connectionist architectures,
and some related work in the literature is discussed.

At the heart of our proposed decision-making algorithm is
an assumption that the sensorium is rich enough to detect
direct causal relations between actions and other sensations.
We provide a fairly broad formalization of this assumption in
III-B3 (with an example in III-B4), and prove the ability of
an agent to correctly ‘halucinate’ the immediate consequences
of taking an action, provided sufficient exposure.

An algorithm using this tool to attempt greedy navigation
over M

∣∣
t

to a specified target state is proposed in III-B5,
and some of its failure modes are discussed as a motivation
for future research on judicious dynamical expansions of the
sensorium which would allow the agent to overcome the
navigational obstructions formed by states in M

∣∣
t

having no
witness in the situation space X.

Finally, in III-C3, we explore the performance of some
excitation-driven DBAs: agents endowed with an excitation
level that changes depending on their distance from a target
in the environment E; the agents are capable of sensing
an increase or a decrease in excitation, and seek instant
gratification in the sense of operating on the mandate to
always pick an action guaranteeing an increase in excitation
(or else act randomly). We compare the performance of such
agents in the domains considered in II-E2 and II-F2; in these
domains it is easy to guarantee arrival to the target given a-
priori knowledge of the correct snapshot structure, but we are
interested in the agent’s performance as they learn the problem
”from scratch”.

A. Defining Actions

We will now restrict attention to DBAs with a sensorium
Σ endowed only with state (degree 0) and transition (degree
1) sensors. As before, we denote the realization of a sensor
a ∈ Σ by ρ(a), where ρ(a) ⊆ X for a state sensor and
ρ(a) ⊆ X ×X for a transition sensor. Thus, state sensors and
transition sensors may be viewed as Boolean and situational
fluents over the situation space X, which is sufficient for
setting up a discussion of actions and competencies according
to McCarthy and Hayes [47].

For our agents, we posit a set Σact ⊂ Σ of transition sensors,
each of which may be switched on and off at will, earning
them the name of actions. To be precise, our requirements
are:

• Actions are binary. We assume Σact ∩ Σ∗
act

= ∅, and
we denote the poc subset Σact ∪ Σ∗

act
∪ {0,0∗} by Act.

• Every action has outcomes. For any α ∈ Σ
act

and
x ∈ X, the sets

α(x) = {y ∈ X |x× y ∈ ρ(α)} (35)

are non-empty subsets of X.
In this we depart slightly from the accepted notion of actions
in the literature on transition systems of various flavors (e.g.
[16],[62]), where actions are attached to states and the collec-
tion of actions available at each state may differ, depending
on that state. Instead, we consider actions as nothing more
than control signals, sent by the agent’s ‘mind’ to the agent’s
‘body’ in order to invoke (or not) one or more of a fixed set of
available behaviors. It is the purpose of the ‘mind’ to identify
whether or not a control signal produces meaningful outcomes
as those outcomes are being sensed.

1) Invoking Actions Synchronously: Our sensor-centric ap-
proach to actions reflects the viewpoint that (1) an action
α ∈ Σact taken at a state x ∈ X imposes a time-independent
restriction on the set of states the system may enter in the
following moment, and (2) the agent is capable — at least in
principle — of observing its own decisions as they are being
invoked. We must now discuss the precise extent to which
these principles may or may not restrict our initial suggestion
that the sensations in Act are controllable.

For example, consider the situation where the agent is not
engaging in an action α ∈ Σact during a transition from state x
to state y. This implies α∗ is on during this transition, which
restricts the possible values of y to X r α(x). Hence, not
invoking any of the available α ∈ Σ

act
must then restrict

y to the intersection
⋂
α∈Σact

X r α(x), the set of possible
outcomes of the ”no-action”.

More generally, allowing a number of actions to be taken
at the same time (while not engaging in the rest) forces the
following interpretation by our sensing model:

1) A generalized action by the agent is a complete ∗-
selection A on Act (recall definition A.6);

2) The realization of a (generalized) action A ∈ S(Act)0

is defined to be

ρ(A) =
⋂
α∈A

ρ(α) , (36)

or, equivalently, for every x ∈ X, the set of possible
outcomes of an action A equals

A(x) =
⋂
α∈A

α(x) (37)

For this extended collection of actions one notices that the
second requirement of an action — A(x) 6= ∅ for all x ∈ X —
does not necessarily hold: for example, moving forward along
a rail contradicts any motion in the opposite direction. We
will say that a generalized action A ∈ S(Act)0 is admissible
at x ∈ X if A(x) 6= ∅, and that A is admissible, if it is
admissible at x for all x ∈ X.

Aside from setting natural bounds on the meaning of the
initial statement that actions are available to the agent at will,
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the notion of admissibility of a generalized action explains
how to interpret the poc set structure induced on Act from
the realization ρ: if

α < β ⇔ ρ(α) ⊂ ρ(β) (38)

happens to hold for P
∣∣
t
, then every generalized action admis-

sible at a point x ∈ X defines a vertex of Cube(Act) no
matter the choice of x ∈ X. Similarly, generalized actions not
showing up as vertices Cube(Act

∣∣
t
), where Act

∣∣
t

denotes the
restriction of the poc set structure P

∣∣
t

to Act, represent the
agent’s belief at time t regarding combinations of elementary
actions it cannot achieve at that moment.

In the simple examples considered in this paper all agents
will be endowed with a collection of mutually exclusive atomic
actions. By this we mean that α < β∗ holds for all α, β ∈ Σ

act

(α 6= β). Equivalently, only the ”no-action”, {α∗ |α ∈ Σ
act
},

and the ”pure” actions {α}∪{β∗ |β ∈ Σact r {α}} are admis-
sible, and the resulting cubing Cube(Act) takes the form of
a starfish: a tree with only one vertex of degree≥ 2 given
by the ”no-action” and with a set of leaves in one-to-one
correspondence with the set of ”pure” actions (see example
A-D1 and figure 11b).

2) Observations: The following set is the set of observa-
tions in P (note that it is closed under the ∗-operator):

Obs := (Σ r Act) ∪ {0,0∗} , (39)

and stands for the set of ”passive” sensations, as opposed to
actions. Sections II-C-II-G explain how a trajectory ϕ

∣∣
t
, t ≥ 0

may be used to form an evolving sequence of weak poc-set
structures (P

∣∣
t
)t≥0 over Σ, with each P

∣∣
t

representing the
agent’s belief at time t regarding which implications among
the sensors in Σ hold true throughout time. Two poc subsets
of P

∣∣
t

are formed by restricting its poc structure:

• Act
∣∣
t

is the induced poc structure on Act;
• Obs

∣∣
t

is the induced poc structure on Obs.
We are interested in the interaction between these smaller
poc sets and the full model space, Cube(P

∣∣
t
). One has two

surjections

projact : Cube(P
∣∣
t
)→ Cube(Act

∣∣
t
)

projobs : Cube(P
∣∣
t
)→ Cube(Obs

∣∣
t
)

(40)

defined, at the level of 0-skeleta, as follows: projact sends a
coherent ∗-selection A on P

∣∣
t

to the ∗-selection A∩Act, and
similarly for projobs. Hence, at the level of 0-skeleta, there is
a map:

Cube(P
∣∣
t
)→ Cube(Act

∣∣
t
)× Cube(Obs

∣∣
t
) (41)

In fact, Sageev-Roller duality [31] implies a much more
precise statement:

Proposition III.1. The map above (41) is a median-
preserving embedding of Cube(P

∣∣
t
) in the Cartesian product

Cube(Act
∣∣
t
)× Cube(Obs

∣∣
t
).

Proof. See proof in appendix B-D.

3) Example: discrete path with motion: To illustrate the
description of the model space provided by proposition III.1,
consider an agent moving in steps of unit length along a path
of integer length L > 1. Formally, the environment is given
by E = {0, . . . , L} and the agent has the actions defined by:

y ∈ wait(x) ⇔ pos(y) = pos(x)
y ∈ fwd(x) ⇔ pos(y) = min {L, pos(x) + 1}
y ∈ bck(x) ⇔ pos(y) = max {0, pos(x)− 1}

(42)

enabling motion from any vertex k ∈ E to the adjacent k+ 1
and k − 1, when they exist. We also endow the agent with
sensors a1, . . . , aL ∈ Σ realized as:

〈ak : x〉 = 1⇔ pos(x) < k (43)

Up to symmetry, the only relations holding in the existing
scheme are

a1 < a2 < . . . < aL , (44)

the ‘starfish’ relations for Act:

fwd < bck∗ , bck < wait∗ , wait < fwd∗ , (45)

for the actions {fwd, bck, wait}, and the two relations

fwd < a∗1 , bck < aL , (46)

indicating pos(x) = 0 may not be reached by applying fwd,
while pos(x) = L may not be reached by applying bck.
No other relations hold universally. Let P denote the poc set
structure over Σ recording these relations.

Fig. 5. Model space for a DBA placed in a discrete path, depicted
together with its projections to Cube(Act) (right) and to Cube(Obs)

(below). This is the case L = 5 of example III-A3.

Cube(P) is the result of forming the Cartesian product of
a 3-pronged starfish Cube(Act) with the path of length L
obtained8 as Cube(Obs), and then removing two squares as
shown in figure 5, due to the relation in (46).

B. Reactive Planning

1) Statement of the planning problem: In this section we
consider a DBA at time t > 0, equipped with a snapshot S

∣∣
t

with a derived poc graph Γ
∣∣
t

= Dir(S
∣∣
t
) and associated weak

poc set P
∣∣
t

(but keep in mind the notational simplifications at
the end of II-G). The agent’s tasks at hand are:

8Compare with example A-D1 and figure 11.
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(T1) Predict the immediate outcome of any α ∈ Act
∣∣
t

(or, more generally, of any A ∈ Cube(Act
∣∣
t
));

(T2) Given a set T ⊂ Σ of target sensations to be achieved
jointly, decide on a (generalized) action A

∣∣
t

for the
agent to invoke in the next transition.

Both tasks need to be achieved based on the agent’s record
of the current state, S

∣∣
t

= #S
∣∣
t
, which is a coherent

(though not necessarily complete) ∗-selection on P
∣∣
t

obtained
from the complete ∗-selection O

∣∣
t

representing the agent’s
raw observation of the current state at time t, by coherent
projection (104). We will keep all the above notation fixed
through the rest of this section.

It is crucial that we interpret these tasks in terms of the
model space M

∣∣
t

= Cube(P
∣∣
t
). For any subset B ⊂ Σ, define

the set:

h(B) :=
{
V ⊂ Σ

∣∣V is a vertex of M
∣∣
t

containing B
}
(47)

These are known to be precisely the convex subsets of the
1-skeleton of M

∣∣
t

(see appendix A-D). Thus, the agent is
assigned the problem of reaching the convex set h(T ) from a
(possibly unknown) position in the convex set h

(
S
∣∣
t

)
.

2) Signal Propagation over a Snapshot: The purpose of
Γ
∣∣
t

is to serve as an inference tool for the agent. Recall that
Γ
∣∣
t

is formed from the weight structure of the snapshot S
∣∣
t
,

which, in turn, is a result of updating the weights on S
∣∣
t−1

with the raw observation O
∣∣
t
. The last step of the update is

the ‘loading’ of Γ
∣∣
t

with the current state S
∣∣
t

= coh(O
∣∣
t
) of

the agent.

Definition III.2. Let B ⊂ Σ. Denote by [Γ
∣∣
t
, B] the weighted

graph obtained from Γ
∣∣
t

by attaching the Boolean weight
〈1B : v〉 to each vertex v ∈ Σ, and refer to it as Γ

∣∣
t

being
loaded with B. �

Definition III.3. A propagation algorithm along Γ
∣∣
t

is any
algorithm which, for any coherent load B ⊂ Σ and any T ⊆ Σ
accepts [Γ

∣∣
t
, B] and T as input and produces as its output the

loaded graph [Γ
∣∣
t
, R] where a ∈ R if and only if:

1) there is a directed path in Γ
∣∣
t

from B ∪ T to a, or –
2) there is no directed path in Γ

∣∣
t

from a into T ∗.
The set R ⊂ Σ is said to be the result of propagating the
signal T along [Γ

∣∣
t
, B]. �

Applying the convexity theory of the model space M
∣∣
t

—
specifically corollary B.16 and proposition B.4 — we find the
following applications for propagation:

Lemma III.4 (Implementing the State Update). For any prop-
agation algorithm, propagating the signal O

∣∣
t

along [Γ
∣∣
t
,∅]

produces S
∣∣
t

= coh(O
∣∣
t
). �

Lemma III.5 (Reasoning in Snapshots). Let T ⊂ Σ be any
set. For any propagation algorithm, propagating the signal T
along [Γ

∣∣
t
, S
∣∣
t
] produces the projection in M

∣∣
t

of the current
state h

(
S
∣∣
t

)
onto the reduced target h(coh(T )) ⊂M

∣∣
t
.

The first lemma explains how to implement the snapshot
update, given a propagation algorithm:

Algorithm 1 A simple implementation of propagation of a
signal T over a poc graph Γ loaded with B, based on depth-
first search.

function MAIN(Γ, B, T ) . Propagating T over [Γ, B]
visited← ∅ . A global variable
U ←CLOSURE(Γ, T )
return (B ∪ U) r U∗

end function
function CLOSURE(Γ, T ) . Forward closure of T in Γ

for all a ∈ T do
EXPLORE(Γ, a)

end for
return visited

end function
procedure EXPLORE(Γ, v) . Recursive step

visited← visited ∪ {v}
for all w ∈CHILDREN(Γ, v)rvisited do

EXPLORE(Γ, w)
end for

end procedure
function CHILDREN(Γ, v) . Children of v in Γ

return {w ∈ Σ |vw ∈ Γ}
end function

1) use the raw observation O
∣∣
t

and S
∣∣
t−1

to recalculate the
edge weights for S

∣∣
t
;

2) compute the derived graph Γ
∣∣
t
;

3) propagate the signal O
∣∣
t

over [Γ
∣∣
t
,∅] to compute S

∣∣
t

=

coh(O
∣∣
t
).

The second lemma is the key tool for turning a propagation
algorithm into the planning algorithms we discuss in the rest
of this section.

In practice, one can implement propagation using a variant
of depth-first search (DFS) on Γ

∣∣
t

[63], while maintaining an
expanding record of vertices visited — see algorithm 1. This
algorithm clearly has time complexity that is at most quadratic
in the number of sensors, and we conclude:

Corollary III.6 (Quadratic Snapshot Maintenance). Both the
time and space complexity of updating the snapshot S

∣∣
t−1

with
an observation O

∣∣
t

to form S
∣∣
t

are at most quadratic in |Σ|.
�

A far more efficient implementation is possible provided
sufficient parallel processing power, by realizing propagation
directly on Γ

∣∣
t

in a distributed fashion, using corollary B.16:
given [Γ

∣∣
t
, S
∣∣
t
] and a target T one first follows all directed

paths in Γ
∣∣
t

emanating from (S
∣∣
t
∪ T ) loading the traversed

vertices with 1, and then follows all reverse paths emanating
from T ∗ and loads their vertices with zeros. Implementing this
algorithm in practice is problematic for large |Σ| in view of the
high plasticity of the graph Γ

∣∣
t

and the potentially prohibitive
requirement for the DBA to maintain up to O(|Σ|) processes,
all active at the same time. Despite its current impracticality,
such an implementation seems evocative of the notion of
neuronal networks. We discuss this tentative connection in
section IV-B.
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3) Algorithm: Computing the consequences of an action:
Planning of any kind requires an ability to sense the context
of an action. This ability may be imparted to the agent by
introducing sensors of the form

〈α ∧ s : ϕ〉
∣∣
t

= 〈α : ϕ〉
∣∣
t
·#sS

∣∣
t−1

(48)

where α is an action and s ∈ Σ is any sensor. The idea behind
constructing α ∧ s in this way is for snapshots to be able to
detect implications of the form ”invoking α when s is on leads
to s′” simply as directed paths from α∧ s to s′ in the derived
graph. From a formal point of view, allowing this kind of
sensor requires the observability of the snapshot in X, that
is: in order for the values of sensors in Σ to be allowed as
input to (possibly other) sensors in Σ, it is necessary by our
formalism for X to carry information regarding these values
in its state.

The problem of constructing a judicious process of enrich-
ing the sensorium with an effective collection of introspective
sensors is set aside for future research. Instead, in the present
model and simulations used to illustrate these ideas for the
purposes of this paper we have committed to a sensorium
containing an over-abundance of such sensors:
• Position Sensors. We assume the environment E is

given as the union of a collection U of its subsets, the
agent being given a state sensor loc[U ] for each U ∈ U
satisfying 〈loc[U ] : x〉 = 〈1U : pos(x)〉.

• Actions. A collection of actions (in the form of 1-
sensors) is provided.

• Contextualized actions. For each U ∈ U and α ∈ Act
the agent is given the sensors α∧loc[U ] and α∧loc[U ]∗.

Under these assumptions, the following result yields a mech-
anism allowing the agent to ‘hallucinate’ the broadest conse-
quences of an action within the context of its current model
space M

∣∣
t
:

Corollary III.7 (Computing the Consequences of an Action).
For any generalized action A ⊂ Act, the result of applying A
in the transition from time t > 0 to time t+ 1 is the result of
propagating the collection {α ∧ loc[U ]}

loc[U ]∈S
∣∣
t
,α∈A

along

[Γ
∣∣
t
, S
∣∣
t
]. �

Thus, propagation provides a provably correct and compu-
tationally efficient mechanism for predicting the immediate
outcomes of an action, provided a sensorium of the above
form and a snapshot faithfully recording the nesting relations
among the sensors.

Combined with the results of section II demonstrating that
learning the correct relations within a fixed sensorium with a
high degree of fidelity is possible even for an agent performing
a random walk, the last corollary suggests that effective
(and efficient) planning and closed loop control — bundled
together with life-long learning features — are entirely feasible
for DBAs carrying a snapshot architecture. We discuss both
problems in the following paragraphs.

4) Example: discrete path with motion, revisited: To il-
lustrate the above, we continue example III-A3. Recalling
E = {0, . . . , L} we see that the sensors ak defined in (43)

Fig. 6. Model space for an agent on a discrete path, with two added
contextual action sensors.

may be rewritten as:

ak = loc[Uk] , Uk = {i ∈ E |0 ≤ i < k } (49)

Thus, for example, adjoining the two sensors fwd ∧ a∗2 and
bck ∧ a4 to Σ implies the relations

fwd ∧ a∗2 < a∗3 , bck ∧ a4 < a3 , (50)

whose effect on Cube(P), once they are learned by the agent,
is shown in figure 6.

Further expanding Σ to include all the sensors

fwd ∧ a∗k , k = 1, . . . , L− 1
bck ∧ ak , k = 2, . . . , L

(51)

turns Cube(P) into the complex illustrated in figure 7. As
shown in the figure, the order structure on P encodes both
large-scale geometry (the agent may use propagation to con-
clude ”in order to reach h(a∗5), I need to to reach h(a∗2)”), and
the actions required to negotiate this geometry (”I know that
fwd ∧ a∗1 implies a∗2, and I am currently in h(a∗1)”).

Fig. 7. Model space for an agent on a discrete path, enriched with a
full complement of contextualized action sensors (51), and illustrating
the geometry underlying planning by propagation III-B5.



15

5) Algorithm: Greedy Reactive Planning (GRP) of Motion
Towards a Specified Target: The ability to compute the imme-
diate consequences of any available action and the convexity
theory of M

∣∣
t

underlie the following greedy algorithm used
to decide on an action to be taken for the purpose of achieving
a long-term goal:

1) Given a set T of target sensations, propagating T over
[Γ
∣∣
t
, S
∣∣
t
] yields a list R of sensations characterizing the

projection of the region h
(
S
∣∣
t

)
representing current state

in M
∣∣
t

to the desired region h(T ).
2) Each of the elements of R may be considered as a sub-

goal, and a generalized action guaranteed to achieve as
many of these subgoals as possible may be selected
based on the corollary III.7; any ties are broken arbi-
trarily.

3) Once an action is invoked, the same target T is presented
to the agent for an additional iteration of this procedure,
until completion.

By lemma III.5, this algorithm is directly analogous to motion
planning in the Euclidean plane in the absence of obstacles:
the agent selects an action which, to the best of its knowledge,
best approximates the greedy path towards the closest point of
the indicated target. The next section will consider the kinds
of problems arising in the presence of obstacles in the model
space and some early numerical study undertaken to explore
overcoming some of these problems.

C. Obstructions to Greedy Reactive Planning.

Where do obstructions to GRP in M
∣∣
t

come from? Recall
that every transition x × y ∈ X ×X capable of occurring in
the given experiment determines a complete ∗-selection A on
Σ, by our observation model, via:

a ∈ A ⇐⇒
{

y ∈ ρ(a) if a is a state sensor
x× y ∈ ρ(a) if a is a transition sensor

(52)
Thus, although M

∣∣
t

does provide a universal model space for
any realization of the weak poc set structure P

∣∣
t
, the agent

is only capable of witnessing ∗-selections of the above form,
no matter the choice of action. This observation motivates the
following definition:

Definition III.8 (Punctured Model Space). By the punctured
model space at time t we mean the sub-complex M×

∣∣
t

of
M
∣∣
t

induced9 by the set of vertices of M
∣∣
t

of the form (52)
(compare with the discussion in appendix A-E3).

Thus, in addition to the possibility that an agent will have a
false implication on record (causing some sensory equivalence
classes to be deemed incoherent until they are sufficiently
sampled), it is also possible that M

∣∣
t

contains obstacles to
GRP in the form of vertices in M

∣∣
t
rM×

∣∣
t
6= ∅. In fact, the

presence of obstacles of this kind is guaranteed by the main
result of [30] — also reviewed in appendix A-E4, Theorem
A.33 — at least in cases when E does not have the homotopy

9Recall that a sub-complex L of a cell complex K is induced by a set of
vertices V ⊂ K0, if L contains every cell of K all of whose vertices belong
to V .

type of a point and the covering U of E by location place
fields satisfies the richness requirements placed on it by that
theorem. We consider two of examples of this kind.

1) Example: A Punctured Grid: Consider the example of
an agent navigating an N × N square grid (realized as a
subset GN of the integer grid) and equipped with a collection
of position sensors identical to that of II-E2(d) and II-F2(d).
Denoting pos(x) := ξ × η ∈ Z×Z we have the sensors

〈xi : x〉 = 1⇔ ξ < i , 〈yi : x〉 = 1⇔ η < i , (53)

for i ∈ {1, . . . , N − 1}. This time, however, suppose that
one interior vertex v0 of the grid has been removed, so that
E = GN r {v0}. As in the above simulations, we assume
the agent is equipped with actions labelled up, down, left and
right whose effect at each vertex is to move to the appropriate
adjacent vertex of the integer grid if that vertex belongs to E,
and to remain in place otherwise. Suppose, for simplicity, that
the snapshot structure for this agent is empirical.

For N sufficiently large, the statistical nature of the learning
algorithm will cause the agent to learn the same weak poc set
structure as in the case of v0 being present: implications of
the form

up ∧ y∗i < y∗i+1 , up ∧ xi < xi , xi < xi+1 (54)

and their respective variations will be learned upon sufficient
exposure, giving rise to the same poc set structure as the one
representing the complete grid GN . One could view this as
a manifestation of the fact that our model spaces are always
contractible (corollary A.31).

As a consequence, the agent is bound to attempt moving
to the unavailable vertex v0 at any time t when its position,
pt, is adjacent to v0 and v0 belongs to a shortest path in GN
joining pt with the prescribed target. In such a situation, the
agent is guaranteed to attempt motion in the direction of v0

and fail (remain in place). Moreover, after sufficiently many
such attempts the agent is bound to unlearn the implication
responsible for this particular choice of action; this will have
an overall negative impact on planning.

2) Example: Agent on a Circular Rail: A subtly different
example is that of II-E2(b) and II-F2(b). Here, motion along
a circular rail is modeled by setting E to be the set of
integers modulo N , with two available actions fwd and bck

corresponding to the operations of adding and subtracting a
unit, respectively (all arithmetic relating to the environment in
this example is done modulo N ). Position sensors have the
form loc[Ui] where Ui = {i− 1, i, i+ 1}.

For simplicity consider a situation with N big and even,
and assume the agent has complete knowledge of the correct
poc set structure, which is the one generated by the relations
(appendix A-A2):

loc[Ui] < loc[Uj ]
∗ ⇔ dist(i, j) > 2 , (55)

where dist(i, j) denotes the distance (modulo N ) between
the positions i and j, as well as:

fwd ∧ loc[Ui] < loc[Ui+1] ,
bck ∧ loc[Ui] < loc[Ui−1]

(56)
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for all i ∈ {0, . . . , N − 1}. Without loss of generality, the
current state x of the system satisfies pos(x) = 0.

Let the specified target be T = {Up}, where p ∈
{0, . . . , N − 1} is sufficiently far from the origin (the current
position of the agent) to accommodate a pair Ui, Uj such that:

1) Ui ∪ Uj does not intersect Up ∪ U0;
2) Ui ∪ Uj separates p from 0 (on the circle).

Thus both the current state and the target region sat-
isfy the constraints loc[Ui]

∗ and loc[Uj ]
∗, which implies

that any geodesic in the model space joining the cur-
rent model state with the model target set passes through
h(loc[Ui]

∗, loc[Uj ]
∗), yet it is clearly impossible to guarantee

these constraints by any of the available actions.
It is, never the less, possible to extend this sensorium in

a way that enables the effective learning of a target, as the
numerical studies below demonstrate, by introducing into the
environment a graded signal whose strength encodes a measure
of distance to the target, while endowing the agent with sensors
responding to the gradient of this signal.

3) Closing the Loop: Excitation-Driven Navigation: From
the preceding examples it is clear that additional sensing —
most probably involving information regarding transitions —
is absolutely necessary for overcoming the geometric and
topological obstructions to the GRP algorithm: while the
GRP algorithm may be considered as providing a reasonable
reference dynamics for reactive planning, one must consider
possible means for replanning in the face of failure. We
conjecture that the notion of a snapshot is sufficiently simple
and agile for such purposes:

- Control of learning thresholds. At this stage of our
research, no attempt is being made to control the learning
thresholds τab; it seems plausible, however, that having a
high level of ”frustration” cause the lowering of a relevant
threshold may be used as a tool for locating exceptions
to poc relations.

- Introduction of new sensors. A principled mechanism is
required for the introduction of combinations of existing
sensors, such as Boolean functions thereof, or delayed
conjunctions such as (48), to become additional members
of the sensorium. In particular, such a mechanism must be
capable of responding to exceptions, or failures of GRP,
as we had already discussed above.

The need for self-adjustment in the sensorium opens the
door to the introduction of auxiliary internal mechanisms of
evaluating the position of the agent in the environment, or,
more generally, the state of the system consisting of the pairing
of the agent with the environment. For example, the settings
described in the preceding paragraph suggests the introduction
of an internal variable evaluating success (and failure) of
invoking a planned action, while the need for closed-loop
control suggests simple local control mechanisms based on an
internally-defined ‘navigation function’ [15]. Many other ideas
of internal behavior modulation ranging from varying notions
of novelty, surprise and dependability [58], [64], [22], [4] all
the way to a multivariate model of human neuro-modulation
mechanisms [59] become relevant in this context.
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Fig. 8. Mean deviation from target for empirical (blue) and a dis-
counted (red) agents (20 sensors each), as a function of time in four
different settings, averaging over 50 runs.

Excitation-Driven Agents. In the absence of tools for reactive
replanning (our current situation), we have chosen to study a
simplified notion of target, allowing us to close the control
loop with a ”motion” command generated with the aim to
guarantee an immediate decrease in the value of an internal
excitation signal.

The simplest instance of such a controller, applied to the
navigation setting, seems to be the following. In addition to
a sensorium of the form described above in III-B3 and the
examples that followed, assume that the agent possesses a pair
of sensors better and worse, responding to the decrease and
increase, respectively, in a fixed measure of distance to a target
point in the environment E, over a single transition (think of
this as a radically simplified sense of smell).

Starting out as a lazy random-walking agent10, the agent
uses the algorithm of III-B5 at each step to obtain an action
resulting with better (target specification T = {better})
as its first priority. In the case of failure to produce such an
action, the agent attempts to guarantee worse∗, periodically
attempting a random action so as not to get stuck in place
(upon having figured out that wait < worse∗). Figure 8
presents a comparison between the mean behaviors of four
different such agents simulated in the same settings as those
analyzed in section II.

It is important to stress that, following the discussion in
III-A3 and the formal results of the preceding paragraphs,
the guarantee of the agents in figure 8(a)-(c) finding their
targets given sufficient knowledge of the correct poc structure
on Σ is absolute. To see this, it suffices to verify for the true
poc set structure on Σ that any position other than the target
has associated with it a location sensor a = loc[U ] and an
action α such that every state x with 〈a : x〉 = 1 satisfies the
requirement that α(x) is closer to the target than x is.

10An action wait is available now, to let the agent stay put when it has
found the target.
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The only remaining question is whether or not the control
strategy we propose guarantees sufficient exposure for the
agent to recover the poc relations necessary for it to capture the
target. Figure 8 offers some evidence in favor of an affirmative
answer, based on simulations.

IV. DISCUSSION

A. Topological Mapping and Planning

Mapping methods vary from probabilistic representations
[10], [12], [65] to hybrid representations in which precisely
mapped contractible local metric patches are integrated into
a global map through ‘gluing instructions’ recorded in an
annotated graph that is learned by the agent in the course
of its travels ([35], [36], [37], [38]). The latter are known
as topological SLAM (simultaneous localization and mapping)
methods.

In the presence of significant obstacles in large scale en-
vironments, the lightweight ‘topological skelteon’ of the en-
vironment recorded by a topological SLAM method provides
valuable information on loop closure, which would otherwise
be costly to obtain using global metric mapping techniques.
This observation led to an extensive effort [66], [34] to produce
a general notion of a topological map, based on the notion
of spacial semantic hierarchy (SSH), that would allow for
motion planning at varying scales. Other ways of leveraging
planar topological descriptors to obtain simple and efficient
data structures supporting localization and motion planning in
simply connected planar domains have been explored as well,
e.g. [67], [28] and [68].

In view of our stated need for guaranteed universality prop-
erties, the strong dependence of SLAM methods on Euclidean
geometry made it necessary for us to adopt a significantly more
abstract approach to localization arising from the point of view
of sensor fields. A precursor of our approach is a family of
SLAM algorithms, known as RatSLAM, employing a neural
network to simulate the function of place/pose cells in rats,
e.g. [13], [24], [48]. In a broad generalization of the neural
computational engine underlying RatSLAM, [39] tests the
hypothesis that place cells with sensor fields in any sufficiently
dense configuration should make it possible [for a rat] not only
to localize well, but also to accurately represent the topology
of the environment by estimating the nerve11 of the system
of place fields from observations of near-synchrony in place-
cell firing. It is shown through simulations that recovering
the topological invariants of a connected planar arena, as
well as some approximation of its geometry, is possible with
a sufficiently dense network of convex place fields. Further
evidence in support of this idea is the recently introduced [40]
method for localization in an urban canyon, as well as the
ELM architecture [23], using nerve-like information (nesting
among convex polygons in the plane) as a means of encoding
spatio-temporal context in an ‘episodic memory’ for a planar
agent.

A significant drawback of nerve estimation is that, by
definition, computing nerve of a covering requires expo-

11See nerve of a covering in [33], section 3.3.

nential space in the cardinality of the covering12. At the
same time, restricting attention to pairwise intersections only,
and focusing on those of them that are empty turns out to
guarantee a universal model space for each combinatorial
type of this ”reduced nerve”, by Sageev-Roller duality [56],
[31]. By construction, snapshots are estimators of this reduced
nerve, turned into a computational tool for navigating the
corresponding model space after converting all relations of
the form ”A∩B negligible/unimportant” into relations of the
form ”A implies B”.

The idea of leveraging nesting relations among geometric
descriptors of events for the purpose of properly representing
context is a well-recognized and widely used tool in the
literature, for example: nesting of planar domains is used in
[34], as well as the more recent [23], and a notion of nesting
for actions is used in [4]. What is new about the snapshot
architecture is its application of this principle to the entire
sensorium, including the set of available actions.

Our numerical experiments with closed loop control suggest
that a snapshot-driven agent with sufficient actuation and
sufficiently rich sensorium is capable of learning a good
approximation of the gradient field of a (discrete) Morse
function despite been given no prior semantic information and
starting out with random ‘motor babble’ for its navigation
strategy.

In fact, the snapshot architecture is flexible enough to
trivialize the task of introducing discrete variants of complex
motivational systems [59] based on introspective sensing of
signals quantifying (a) internally available resources (e.g.
battery charge), (b) repulsion or fear of punishment, (c)
attraction or anticipation of a reward signal (e.g., in the
sense of navigation functions [15] or in the broad sense of
Reinforcement Learning [51]), and even (d) frustration over
the failure of a plan [69] and (e) measures of innovation [58],
[64].

We expect systems such as (a)-(c) to contribute to an agent’s
planning capabilities from the point of view of the variety of
tasks they would enable. Even more significantly, we expect
(d) and (e) to contribute to the agent’s ability to improve
the quality of the topological representation encoded in its
snaphot. Namely, (d) could be used to facilitate chunking by
serving as a signal driving the creation of new conditional
sensors detecting inconsistent states of the model space, while
(e) could drive the learning of useful complex actions, as
has already been proposed for many other architectures [25],
[4], [22], [26], resulting in improving the connectivity of the
model space. Endowing the snapshot architecture with these
capabilities is the most immediate goal for follow-up research.

B. Connectionist Architectures

From the earliest days of the field, even extremely simple
neural networks with a very small number of neurons have
demonstrated the ability to perform complex learning and
control tasks [70], [71], including complex symbolic struc-
tures such as context-sensitive grammars [72], [73], [74], and

12As one must keep track of the intersections of all possible sub-collections
of the covering
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complex hierarchical schemata whose structural features vastly
outnumber the physical components the actual network [75].
Even simple feed-forward networks have been shown to be
capable of exercising ‘intelligent’ control through stigmergy
[76], the depositing of tokens in the environment. Furthermore,
the merging of reinforcement learning methods with the com-
putational power of ‘deep learning’ networks [77], [78] has
yielded architectures capable of matching and outperforming
humans in complex tasks such as learning and playing video
games [79] based only on the raw RGB output provided by
the game console.

At the same time, the power of connectionist architectures
comes with very limited formal understanding of how the
internal representations they maintain encode symbolic rep-
resentations in terms of problem spaces.

Though the connection demonstrated in this work falls short
solving this problem (due to the over-simplification of the
connectionist structure and due to realization of plasticity in
the network by a non-neural controller), direct analogies with
current studies of plasticity and neural coding give hope that
a suitable generalization of the snapshot architecture could
yield both strength of performance and provable guarantees
of symbolic reasoning processes.

Of the classes of neural networks that are well understood,
most relevant for our purposes is that of competitive attractor
networks, whose strong stability properties [80] were applied
to modeling the navigation mechanisms in rats, also inspiring
the RatSLAM mapper [13].

Expanding on these results, [81], [49] sparked the discussion
of the structure of the set of binary codewords corresponding
to stable activity patterns of threshold-linear neural networks.
This line of inquiry was picked up in [82], producing a
combinatorial characterization of the possible codes in terms
of the network’s organization; and in [50], initiating a rigorous
study of the way codes vary as the synaptic weights are
perturbed while subject to structural constraints, exposing
interesting connections with topological invariants associated
with these constraints.

The analogy with our work is straightforward. The process
of obtaining the coherent projection of a binary observation
by propagating it through the derived graph of a snapshot is
completely analogous to the process of propagating a signal
through a threshold-linear neural network and waiting for the
network state to stabilize at a code word — especially when
taking into account the excitatory nature of relations of the
form a ≤ b and inhibitory role of relations of the form a ≤ b∗
under propagation.

Chasing this analogy, it could be worthwhile investigating
the degree to which the collection of codewords of a threshold-
linear network conforms to the strict demands of median ge-
ometry (represented by coherent snapshot states), to establish
a rigorous formal connection (if it exists) between the two
architectures. A more general study of which neural learning
methods [83] could be transferred into a snapshot architecture
may, on one hand, expand the range of applications for
snapshots, while, on the other hand, provide some existing
architectures with a rigorous symbolic interpretation.

V. CONCLUSION

We introduce a new computationally efficient architecture
intended to endow a generic discrete binary agent with the
capacity to build over time an actionable model of its opera-
tions within a completely unknown dynamic environment, E.
The proposed architecture has a dual nature. On one hand, the
agent maintains an evolving data structure, — the snapshot
S
∣∣
t

— of size quadratic in the number of sensors, encoding a
planning mechanism based on propagation of excitation and
inhibition signals through the highly plastic directed network
Dir(S

∣∣
t
), and is, thus, in a very crude sense, a connectionist

learning and control architecture. On the other hand, the rather
specific ordering properties of networks arising in this way
(the derived ‘weak poc set structure’ P

∣∣
t
) also characterize

any such network as encoding a system of ‘half-spaces’ in a
geometric internal representation M

∣∣
t

that is just rich enough
to account for all sensory equivalence classes provided to
the agent by its sensorium Σ. This duality affords the re-
interpretation of snapshots as encoding a high-level symbolic
representation of the problem space (i.e., the state space X
and the transition system induced on it by the agents interac-
tion with its dynamic environment), through a mathematical
formalism that rigorously supports symbolic planning with the
efficiency and economy of a connectionist architecture.

Clearly, our current snapshot architectures (section II) lack
certain key features found in existing AGI architectures. First
and foremost among these is a mechanism for enriching the
agent’s sensorium with sensors representing general Boolean
predicates (or, even better, some limited LTL predicates), com-
posed of the original atomic sensations. Of course, the problem
lies not in proposing intuitively attractive approaches (there are
many) but rather doing so in a principled, economical way that
maintains the present combination of analytical and compu-
tational tractability. These ‘compound’ sensors are required
for facilitating chunking and the learning of useful motor
primitives. Another required feature is a capacity for symbolic
abstraction (relating problem spaces via substitutions). While
the duality theory of weak poc sets and their model spaces
(appendix A-E) affords a rigorous formulation of enriched
predicates and consequent symbolic abstraction, it is not yet
clear how to engineer an enlarged snapshot-like architecture
realizing such meta-extensions.
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vol. 1, no. 2, pp. 177–193, 2009.

[26] G. Martius, R. Der, and N. Ay, “Information driven self-organization of
complex robotic behaviors,” PloS one, vol. 8, no. 5, p. e63400, 2013.

[27] B. Donald and J. Jennings, “Sensor interpretation and task-directed plan-
ning using perceptual equivalence classes,” in Robotics and Automation,
1991. Proceedings., 1991 IEEE International Conference on. IEEE,
1991, pp. 190–197.

[28] B. Tovar, A. Yershova, J. O’Kane, and S. M. LaValle, “Information
spaces for mobile robots,” in Robot Motion and Control, 2005. Ro-

MoCo’05. Proceedings of the Fifth International Workshop on. IEEE,
2005, pp. 11–20.

[29] R. L. Rivest and R. E. Schapire, “Diversity-based inference of finite
automata,” Journal of the ACM (JACM), vol. 41, no. 3, pp. 555–589,
1994.

[30] D. Guralnik and D. Koditschek, “Toward a memory model for au-
tonomous topological mapping and navigation: The case of binary sen-
sors and discrete actions,” in Communication, Control, and Computing
(Allerton), 2012 50th Annual Allerton Conference on, 2012, pp. 936–
945.

[31] M. Roller, “Poc sets, median algebras and group actions,” University of
Southampton, Faculty of Math. stud., preprint series, 1998.

[32] D. T. Wise, From riches to raags: 3-manifolds, right-angled Artin
groups, and cubical geometry, ser. CBMS Regional Conference Series in
Mathematics. Published for the Conference Board of the Mathematical
Sciences, Washington, DC, 2012, vol. 117.

[33] A. Hatcher, Algebraic topology. Cambridge University Press, Cam-
bridge, 2002.

[34] E. Remolina and B. Kuipers, “Towards a general theory of topological
maps,” Artificial Intelligence, vol. 152, no. 1, pp. 47–104, 2004.

[35] N. Tomatis, I. Nourbakhsh, and R. Siegwart, “Hybrid simultaneous
localization and map building: a natural integration of topological and
metric,” Robotics and Autonomous systems, vol. 44, no. 1, pp. 3–14,
2003.

[36] B. Kuipers, J. Modayil, P. Beeson, M. MacMahon, and F. Savelli, “Local
metrical and global topological maps in the hybrid spatial semantic
hierarchy,” in Robotics and Automation, 2004. Proceedings. ICRA04.
2004 IEEE International Conference on, vol. 5. IEEE, 2004, pp. 4845–
4851.

[37] A. Ranganathan and F. Dellaert, “Online probabilistic topologi-
cal mapping,” The International Journal of Robotics Research, p.
0278364910393287, 2011.

[38] S. Tully, G. Kantor, and H. Choset, “A unified bayesian framework for
global localization and slam in hybrid metric/topological maps,” The
International Journal of Robotics Research, 2012.

[39] C. Curto and V. Itskov, “Cell groups reveal structure of stimulus space,”
PLoS Computational Biology, vol. 4, no. 10, 2008.

[40] J. Derenick, A. Speranzon, and R. Ghrist, “Homological sensing for
mobile robot localization,” in Robotics and Automation (ICRA), 2013
IEEE International Conference on. IEEE, 2013, pp. 572–579.

[41] M. Farber, “Topological complexity of motion planning,” Discrete
Comput. Geom., vol. 29, no. 2, pp. 211–221, 2003. [Online]. Available:
http://dx.doi.org/10.1007/s00454-002-0760-9

[42] A. C.-C. Yao, “Decision tree complexity and Betti numbers,” J. Comput.
System Sci., vol. 55, no. 1, part 1, pp. 36–43, 1997, 26th Annual ACM
Symposium on the Theory of Computing (STOC ’94) (Montreal, PQ,
1994). [Online]. Available: http://dx.doi.org/10.1006/jcss.1997.1495

[43] V. Chepoi, “Graphs of some CAT(0) complexes,” Adv. in Appl.
Math., vol. 24, no. 2, pp. 125–179, 2000. [Online]. Available:
http://dx.doi.org/10.1006/aama.1999.0677

[44] V. Pratt, “Modeling concurrency with geometry,” in Proceedings of the
18th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages. ACM, 1991, pp. 311–322.

[45] R. Ghrist and V. Peterson, “The geometry and topology of reconfigu-
ration,” Advances in applied mathematics, vol. 38, no. 3, pp. 302–323,
2007.

[46] E. Klavins, R. Ghrist, and D. Lipsky, “A grammatical approach to
self-organizing robotic systems,” IEEE Trans. Automat. Control,
vol. 51, no. 6, pp. 949–962, 2006. [Online]. Available:
http://dx.doi.org/10.1109/TAC.2006.876950

[47] J. McCarthy and P. Hayes, Some philosophical problems from the
standpoint of artificial intelligence. Stanford University USA, 1968.

[48] M. J. Milford and A. Jacobson, “Brain-inspired sensor fusion for
navigating robots,” in Robotics and Automation (ICRA), 2013 IEEE
International Conference on. IEEE, 2013, pp. 2906–2913.

[49] R. H. Hahnloser, H. S. Seung, and J.-J. Slotine, “Permitted and forbid-
den sets in symmetric threshold-linear networks,” Neural Computation,
vol. 15, no. 3, pp. 621–638, 2003.

[50] C. Curto, A. Degeratu, and V. Itskov, “Flexible memory networks,”
Bulletin of mathematical biology, vol. 74, no. 3, pp. 590–614, 2012.

[51] A. G. Barto, Reinforcement learning: An introduction. MIT press, 1998.
[52] A. G. Barto and S. Mahadevan, “Recent advances in hierarchical

reinforcement learning,” Discrete Event Dynamic Systems, vol. 13, no. 4,
pp. 341–379, 2003.

[53] H. P. Helgason, “General attention mechanism for artificial intelligence
systems,” Ph.D. dissertation, Reykjavik University, 2013. [Online].
Available: http://skemman.is/en/item/view/1946/16163



20

[54] B. R. Steunebrink, J. Koutnı́k, K. R. Thórisson, E. Nivel, and J. Schmid-
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[92] I. Chatterji, C. Druţu, and F. Haglund, “Kazhdan and
Haagerup properties from the median viewpoint,” Adv. Math.,
vol. 225, no. 2, pp. 882–921, 2010. [Online]. Available:
http://dx.doi.org/10.1016/j.aim.2010.03.012

[93] D. Kozlov, Combinatorial algebraic topology, ser. Algorithms and
Computation in Mathematics. Springer, Berlin, 2008, vol. 21. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-71962-5

APPENDIX A
A PRIMER ON SAGEEV-ROLLER DUALITY

The duality between poc sets and median algebras, going
back to [84], was thoroughly studied by Martin Roller in [31],
in a very successful attempt of pushing the envelope on a
theory of actions of discrete groups on simply connected non-
positively curved cubical complexes – henceforth reffered to as
cubings – pioneered by Michah Sageev in [56] and by Victor
Chepoi [43], who characterized such complexes in terms of
the convexity theory of their 1-dimensional skeleta.

This appendix provides a detailed review of the elements
of this theory supporting the memory architecture proposed in
this paper. This overview of the preliminary meterial is meant
to extend the initial discussion provided in [30] as well as to
illustrate it with examples, intended as bridges to our current
application. In the end, the duality theory of poc sets will be
called upon to provide the necessary formal guarantees that the
proposed memory and control architectures actually do their
job. We will mainly rely on [31] as a source of theoretical
results, though sometimes it will be easier to use results from
the elegant exposition in [85].
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A. Basic Notions

We introduced the extension of the duality theory of poc
sets to so-called weak poc sets in [30] out of the necessity to
maintain poc sets as dynamical data structures.

Definition A.1 (Weak Poc Set). A partially-ordered set (P,≤)
endowed with an order-reversing fixpoint-free involution a 7→
a∗ and having a minimum element 0 ∈ P is called a weak poc
set. Note that 0∗ is a maximum for P . Thus, for all a, b ∈ P
one has:
• 0 ≤ a = a∗∗ and a∗ 6= a;
• a ≤ b⇒ b∗ ≤ a∗.

An element a ∈ P is said to be negligible if a ≤ a∗, and
ubiquitous if a∗ is negligible. A poc set is a weak poc set
in which 0 is the only negligible element. An element that is
neither negligible nor ubiquitous is said to be proper. �

Weak poc sets form a category:

Definition A.2 (Poc Morphism). A function f : P → Q
between two weak poc sets is a poc morphism, if f is order-
preserving, ∗-equivariant and f(0) = 0. The set of all poc
morphisms as above will be denoted Hom(P, Q). �

1) The Minimal Poc Set: The set {0, 1} with the relations
0 < 1 and 1 = 0∗ is a poc set, and it is denoted by 2. Clearly,
there is only one poc morphism of 2 into any weak poc set
P , but then there may be many poc morphisms of a weak poc
set P onto 2.

2) Generators and Relations: A weak poc set P = 〈S |R 〉
may be specified using a set S of generators and a set of
relations R of the form a < b or a∗ < b or a < b∗ for
a, b ∈ S13.

Formally, P is constructed as follows. Assume that the sym-
bol 0 is not contained in S. First, set S± := ({0}tS)×{+,−}
and define (s,+)∗ = (s,−) and (s,−)∗ = (s,+). Thus, S±
has a fix-point free involution ∗ defined on it. For simplicity,
for each s ∈ {0} ∪ S we identify (s,+) with s.

The relation set R is required to be a subset of S± × S±.
We then define an extension R

poc
of R to be the intersection

of all relations W ⊆ S±×S± that are reflexive, transitive and,
in addition, satisfy the following:
• (0, a) ∈W holds for all a ∈ S±;
• For all a, b ∈ S±, if (a, b) ∈W then (b∗, a∗) ∈W .
We set P to be the quotient of S± by the equivalence

x ∼ y ⇔ (x, y) ∈ R
poc
∧ (y, x) ∈ R

poc

with the induced partial ordering

[x] ≤ [y]⇔ (x, y) ∈ Rpoc .

For example, the notation

〈a, b, c |a < c, b < c 〉

stands for the poc set

P = {0,0∗, a, b, c, a∗, b∗, c∗}

13One may also use weak inequalities (≤) to specify relations in R.

having the order relations

0 < a < c < 0∗, 0 < b < c < 0∗

0 < c∗ < a∗ < 0∗, 0 < c∗ < b∗ < 0∗

as well as the ones derived from these by transitivity. Thus,
generators and relations provide a compact way of representing
a (weak) poc set explicitly.

As another example, consider the poc sets

P = 〈a, b |a < b 〉 , Q = 〈a, b |a∗ < b 〉

The partial assignment f : P → Q satisfying

f(a) = a∗ , f(b) = b

has one and only one extension to a poc morphism of P into
Q.

3) σ-Algebras as poc sets: Let B be a σ-algebra on a non-
empty (possibly infinite) set X. Then (B,⊆, F 7→ X r F )
is a poc set. In particular, the power set of X, denoted 2X,
obtains the structure of a poc set in this way. It is standard
to identify 2X with the space of functions f : X → 2:
any such f will be identified with the subset f−1(1) ∈ 2X.
Note that the intersection and symmetric difference operators
translate under this identification into pointwise multiplication
and addition modulo 2, respectively. Recalling our notation (5)
for the evaluation of functions, it will be convenient to extend
it as follows:

〈f : x〉 = f(x) , 〈f∗ : x〉 = 1 + 〈f : x〉 (57)

The poc set structure on 2X may then be written in functional
form via

f ≤ g in 2X ⇔ ∀x∈X 〈f : x〉 ≤ 〈g : x〉 in 2 ⇔ fg = f ,
(58)

where f, g ∈ 2X are arbitrary elements.

Definition A.3 (realization). Let P be a weak poc set and
let X be a non-empty set. A realization of P in X is a poc
morphism f : P → 2X. �

A realization f : P → 2X provides a consistent way of
regarding each a ∈ P as a binary question over X, so that the
set of all x ∈ X with 〈f(a) : x〉 = 1 is the set of all points
where the question is answered affirmatively.

4) Canonical Quotient: Every weak poc set has a canonical
poc set quotient P̂ obtained as the quotient of P by the
equivalence relation

a ∼ b⇔

 a = b or
a, b are both negligible, or
a, b are both ubiquitous

(59)

and endowed with the obvious ordering and involution.

Definition A.4. Let P be a weak poc set and let P̂ denote
its canonical poc quotient. For every a ∈ P , we denote the
equivalence class of a in P̂ with â. The poc morphism a 7→ â
will be denoted by πP . �

The main characteristic of P̂ is the following elementary
lemma:
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Lemma A.5. Let P be a weak poc set. Then any poc morphism
f : P → Q of P into a poc set Q factors through πP , that
is: there exists one and only one poc morphism f̂ : P̂ → Q
satifying f = f̂ ◦ πP .

For example, seeking a realization of a weak poc set
structure in any space X is only possible after identifying all
negligible elements with 0, because the only subset F of X
satisfying F ⊆ X r F is F = ∅.

B. The Dual Graph of a Poc Set

The duality theory for poc sets is an extension of Stone
Duality [86]. At the base of the construction are binary
selections:

Definition A.6 (∗-selections). Let P be a weak poc set. A
subset A ⊂ P is a ∗-selection on P if no a ∈ A has a∗ ∈ A.
A ∗-selection A on P is complete if for any a ∈ P either
a ∈ A or a∗ ∈ A. The set of all complete ∗-selections on P
is denoted by S(P )0. �

The following is a metric on S(P )0:

∆(A,B) = |ArB| = |B rA| = 1
2 |A M B| (60)

Indeed, fixing A0 ∈ S(P )0, an explicit isometry of(
S(P )0,∆

)
onto 2A0 endowed with the Hamming distance is

constructed by sending A ∈ S(P )0 to the [indicator function
of the] set A0 rA. Thus, S(P )0 may be thought of as simply
being the vertex set, or 0-skeleton, of the |P |

2 -dimensional
standard unit cube, viewed as a combinatorial cubical complex,
– we denote this complex by S(P ) – where a cubical face Q
of S(P ) of dimension d corresponds to a maximal subset of
S(P )0 with diameter d as calculated in the metric ∆(·, ·).

1) Construction of the Dual Graph: Some vertices of S(P )
cannot be witnessed in any realization of P :

Definition A.7 (Coherence). A pair of elements a, b ∈ P is
said to be incoherent if a ≤ b∗. A subset A of a poc set P is
said to be coherent if it contains no incoherent pair. �

Definition A.8 (Dual graph, dual Cubing). Given a (finite)
poc set P , one defines:
(a) The dual cubing of P , denoted Cube(P ), is the sub-

complex of S(P ) induced by the set of coherent vertices;
(b) The dual median algebra of P , denoted P ◦, is the 0-

skeleton of Cube(P );
(c) The dual graph of P , denoted Dual(P ), is the 1-skeleton

of Cube(P ). �

2) A Simple Example: To illustrate the definition, consider
the poc set P whose Hasse diagram is given in figure 9(a).
Given by generations and relations, P takes the form:

P = 〈a, b, c |a < c∗, b < c∗ 〉 (61)

A good way of thinking about a poc set is to pretend that
it is realized in a space X, so that our P is a collection of
three binary questions (a, b and c) about X, augmented with
the complementary questions (a∗, b∗ and c∗), together with
an additional record of known implication relations between

c

Fig. 9. A simple poc set P on three generators (a) and the resulting cube
complex (b), obtained by deleting all incoherent vertices from the cube S(P )
(c) – see example A-B2.

them (a < c∗ and b < c∗). In the absence of any implications
on record, an observer endowed with P will model the space
X as the full 3-cube S(P ), where the proper elements of P
correspond to the co-dimension one faces of the cube – fig.
9(c). On the other hand, knowledge of the above relations
renders some of the vertices of S(P ) redundant, resulting
in a reduction in the number of binary states necessary for
modeling X using the same three questions – fig. 9(b).

Remark A.9. We have chosen the term coherent subset
over Roller’s filter-base to better fit the context of our plan-
ning/sensing problem.

Remark A.10. The standard identification of 2P with the
space of {0, 1}-valued functions on P also puts the set P ◦ of
coherent vertices of S(P ) in one-to-one correspondence with
the set Hom(P, 2) of poc morphisms of P onto the trivial
poc set 2.

C. Poc Set Duals are Median Graphs

Graphs of the form Dual(P ) (for a weak poc set P ) are
completely characterized. We recall:

Definition A.11 (hop-distance, intervals). Let G = (V,E) be
a connected simple graph and let u, v ∈ V . The hop distance
dG(u, v) is defined to be the minimum length of an edge-
path in G joining u with v. The interval I(u, v) is defined
to be the set of all vertices w ∈ V satisfying the equality
dG(u, v) = dG(u,w) + dG(w, v). �

A fundamental fact about the dual Dual(P ) of a poc set P
is a quick corollary of the results in [85], section 4:

Lemma A.12. Let G = Dual(P ) for a finite poc set P . Then
the metric ∆ coincides with the hop metric on G.

An important and well-studied class of graphs is:

Definition A.13 (median graphs [43], [87]). A connected
simple graph G = (V,E) is said to be a median graph, if
the set I(u, v)∩ I(v, w)∩ I(u,w) contains exactly one vertex
for each u, v, w ∈ V . This vertex is the median of the triple
(u, v, w) and denoted by med(u, v, w) – see figure 10. �

Median graphs are a special subfamily of a family of ternary
algebras, called median algebras, [88], [89], [90], [91]. Some
modern generalizations and applications may be found in [92].
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Fig. 10. Computing a median in the integer grid (see example A-D2 for a
poc-set presentation).

Another way of stating the preceding lemma (again, see
[85], section 4, where these results are derived in a much
more general setting):

Theorem A.14. The dual G = Dual(P ) of a finite poc set P
is a finite median graph, with the median calculated according
to the formula

med(u, v, w) = (u ∩ v) ∪ (u ∩ w) ∪ (v ∩ w) (62)

for all u, v, w ∈ P ◦.

In other words, the median of three coherent ∗-selections
is determined by a majority vote on the values of their
observations.

D. Convexity

Median graphs have a very strong convexity theory. We
recall:

Definition A.15 (Convexity). Let G = (V,E) be a graph. A
subset K ⊆ V is said to be convex if I(u, v) ⊆ K holds
whenever u, v ∈ K. �

Definition A.16 (Half-Spaces). Let G = (V,E) be a graph.
A subset H ⊆ V is said to be a half-space of G, if both H
and V rH are convex subsets of G. �

For example, lemma A.12 can be used to quickly deduce

Lemma A.17. Let P be a poc set. Then the half-spaces of
Dual(P ) are precisely the subsets of P ◦ of the form

h(a) := {u ∈ P ◦ |a ∈ u} (63)

where a ranges over P . In particular, subsets of P ◦ of the
form

h(K) := {u ∈ P ◦ |K ⊆ u} =
⋂
a∈K

h(a) (64)

are convex in Dual(P ).

Remark A.18. Note also that h(a∗) = P ◦ r h(a) for all
a ∈ P .

Much more can be said in general:

Theorem A.19 (Properties of Median Graphs, [31], section
2). Let G = (V,E) be a finite median graph. Then:

1) Every convex set is an intersection of halfspaces;
2) Any family of pairwise-intersecting convex sets has a

common vertex (1-dimensional Helly property);
3) For any convex subset K ⊂ V , the subgraph of G

induced by K is a median graph;
4) For any convex subset K ⊂ V and any vertex v /∈ K

there exists a unique vertex projKv ∈ K at minimum
hop distance from v.

5) For any convex subset K ⊂ V , the closest-point pro-
jection projK• is a median-preserving, distance non-
increasing map of G onto the subgraph of G induced
by K.

Any graph G = (V,E) generates a poc set Poc(G): we let
the underlying set of Poc(G) be the set of all half-spaces of
G, then we order it by inclusion and set H∗ = V rH for the
complementation operator. Of course, some graphs (e.g. any
odd cycle) will generate the trivial poc set in this way, but not
so for median graphs:

Theorem A.20 ([31], proposition 5.9). Let G be a fi-
nite median graph. Then G is canonically isomorphic to
Dual(Poc(G)) via the median-preserving map which sends
each vertex v to the collection of halfspaces of G which
contain v.

An important conclusion (special case of proposition 6.11
in [31]) is:

Corollary A.21. For any finite poc set P , the map a 7→ h(a) is
a poc-isomorphism of P onto Poc(Dual(P )). In other words,
the poc-set P may be reconstructed from its dual.

From a practical standpoint, these two results offer an
approach to understanding the geometry of Cube(P ) in terms
of the order structure of P , which is the purpose of this and the
following sections. As an aside, let us mention also that these
results are best viewed together in categorical terms, as part of
a restatement of the duality between the category of finite poc
sets (with poc morphisms) and the category of finite median
algebras (with median-preserving maps) — see appendix A-E
below.

We must consider the possible relations (if any) among
elements a, b ∈ P . Those are:

a ≤ b , a∗ ≤ b , a∗ ≤ b∗ , a ≤ b∗ (65)

It is easy to see that a pair of distinct proper elements will
never satisfy two of the above conditions at the same time,
as Cube(P ) provides us with a realization of P inside 2P

◦
–

after all, the last theorem tells us that:

a ≤ b⇔ h(a) ⊆ h(b) (66)

Definition A.22 (Nesting and Transversality). Suppose a, b
are proper elements of a weak poc set P . We say that they
cross (a t b), if none of (65) hold. Otherwise, we say they
are nested (a‖b). A subset A of P is said to be nested if all
its elements are pairwise nested, and transverse if its elements
cross pairwise. �
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Fig. 11. Dual graphs for two arrangements of sensors along the real line (see
A-D1): threshold sensors encoding a path (a), and beacon sensors encoding
a ‘starfish’ (b).

Thus, the half-spaces of Dual(P ) are nothing more than the
restriction to Dual(P ) of the half-spaces of the cube S(P )1,
with two of them nesting if and only if the corresponding
elements of P are nested, that is, if and only if exactly one of
the following holds:

h(a) ∩ h(b) = ∅ , h(a∗) ∩ h(b) = ∅ ,
h(a∗) ∩ h(b∗) = ∅ , h(a) ∩ h(b∗) = ∅ (67)

We conclude that the more relations are on record in the order
structure of P the fewer transverse sets there are to be found
there. In other words, nesting relations are an obstruction to
high-dimesional cubes in Cube(P ): each additional relation in
P implies fewer faces of the original cube S(P ) survive the
culling of incoherent vertices used for obtaining Cube(P ). At
one extreme one finds Cube(P ) = S(P ) when P itself (up
to removing improper elements) is transverse. At the other
extreme (exercise for the reader) Cube(P ) forms a tree if and
only if P is nested.

1) Example: the path of length N : Consider an idealized
point-robot situated on the interval E = [0, 1] and capable
of moving about in this environment. Suppose the robot is
endowed with binary sensors a1, . . . , aN , each responding to
the robot’s position – denoted for now by x – according to
the rule, say, that ak turns on whenver x < xk := k/N . It
would be reasonable for us to wish for the robot to eventually
be able to realize that ak turning on implies ak+1 turning on,
for all k < n. Forming the poc set

P = 〈a1, . . . , aN |ak < ak+1, k = 1, . . . , N − 1 〉 (68)

it is easy to verify that Dual(P ) is the N -path – the path with
N + 1 vertices and N edges – whose vertices are all of the
form

vk = {0∗} ∪
{
a∗j
}
j>k
∪ {ai}i≥k , 0 ≤ k ≤ N (69)

Please note that the choice of the points xk ∈ E is immaterial
– only their ordering should matter for the correctness of
Cube(P ) as a discretized model of the ‘environment’ E of
our robot.

At the same time, imagine that the sensors ak corresponded
to ‘beacons’, with ak turning on if and only if

∣∣x− k
N

∣∣ < 1
3N .

Then a poc set description of the form

P =
〈
a1, . . . , aN

∣∣ak < a∗j , 1 ≤ k < j < N
〉

(70)

Fig. 12. Cubical models for example A-D3 with relations (a) ai <
a∗i+x where x ∈ {2, 3, 4} and addition is modulo 6, and (b) only the
relations ai < a∗i+3 are present. Black vertices are those coherent
in for both poc set structures. Vertices painted white are coherent
vertices for agent #2 that are incoherent for agent #1. The vertex
v corresponds to the shared coherent ∗-selection {a∗0, . . . , a∗5}.

would be more appropriate, indicating that the sensations ak
are mutually exclusive. The resulting dual would still have
N + 1 vertices and N edges, the vertices being:

v′k = {0∗, ak} ∪ {a∗j}j 6=k for 1 ≤ k ≤ N
v′0 = {0∗} ∪ {a∗1, . . . , a∗N}

(71)

In both cases the dual graph is a tree (a path and a starfish),
and it is hard to ignore the difference in the quality of its
representation of the underlying space – see figure 11

2) Example: direct sums of poc sets: The easiest way to
join two poc sets together is to form their direct sum:

Definition A.23. Let P and Q be poc sets. Their direct sum
P ∨ Q is defined to be the quotient of their external disjoint
union P tQ by the identification 0P = 0Q and 0∗P = 0∗Q,
endowed with the following:
• a < b in P ∨ Q iff a, b ∈ P and a < b or a, b ∈ Q and
a < b;

• b = a∗ iff both a, b ∈ P and b = a∗ or a, b ∈ Q and
b = a∗.

(We abuse notation by identifying each element of P ∪Q with
the equivalence class in P ∨Q of its natural representative in
P tQ) �

It is easy to verify, then, that

Cube(P ∨Q) ≡ Cube(P )× Cube(Q) (72)

where the isomorphism is that of cubical complexes. Intu-
itively, any proper elements a ∈ P and b ∈ Q satisfy a t b,
resulting in every cube in Cube(P ) and every cube in Cube(Q)
to form a product cube in Cube(P ∨Q). For example, the grid
in figure 10 may be thought of as the product of an N -path
with an M -path (for the appropriate values of M and N ) –
hence the dual of the direct sum of two poc sets of the type
discussed in the preceding example A-D1.
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3) Example: a cycle of length 6: Imagine an agent – call it
#1 – living on the unit circle E = S1. We mark six vertices,
spread uniformly along the circle, with the digits {0, . . . , 5}.
Suppose that agent #1 is capable, for each position it occupies
on E, of asking any of the binary questions
• Aj : Am I positioned at arc length< π

3 from position j
along E?

Agent #2 asks a slightly different set of questions:
• Bj : Am I positioned at arc length< π

2 from position j
along E?

The questions available to either agent have sufficient reso-
lution to pinpoint the agent’s position wherever it is, but we
claim that the collection {Aj}5j=0 is, in a sense, more efficient
than {Bj}5j=0. Let P = {0,0∗}∪{ai, a∗i }5i=0, where the ai are
symbols to represent the sensations corresponding to Ai for
agent #1 and to Bi for agent #2. We compare the resulting
embeddings ρi : P ↪→ 2V defined by

ρ1(aj) = Aj , ρ1(a∗j ) = V rAj ,

ρ2(aj) = Bj , ρ2(a∗j ) = V rBj ,

and with ρi(0) = ∅ and ρi(0∗) = V , of course. We observe
that both representations of P in 2V form injective poc
morphisms of P into 2V if P is given all relations of the
form ai < a∗i+3 (addition modulo 6), yet only agent #1 can
afford to also add the relations ai < a∗i+2 and ai < a∗i+4 to the
record without losing the property of ρ1 being a poc morphism.
The difference between the duals is significant – see figure 12
– clearly showing the advantage of the compact and simple
world map that agent #1 could deduce over the cumbersome
monstrosity agent #2 must deal with. Note how the complex
(a) in the figure may be obtained from (b) through deleting
the vertices painted white – those are precisely the vertices
of (b) forming incoherent families for the poc set structure
represented in (a).

Two aspects of this example are noteworthy:
1) The less nested poc set of the two example poc set

structures is capable of accommodating both agents, thus
giving us the means for comparing them.

2) With none of the agents having direct access to the
realization maps, they should be looking for efficient
means of evolving their maps in an adaptive fashion so
as to produce a good enough symbolic approximation
of the ground truth.

E. Cubings and the Duality Theory of Weak Poc Sets
1) Sageev-Roller Duality from the Categorical Viewpoint:

In the finite case, the duality theory of poc sets has a very
clean formulation in category-theoretical terms. For a quick
review of the basic notions of Category Theory we refer the
reader to [93] chapter 4, while here we will stick to the specific
categories of interest:
• Pocf , the category of finite poc sets14, where each
P,Q ∈ Pocf have assigned to them the set Hom(P, Q)
of poc morphisms from P to Q;

14One could work with the full category Poc of all poc sets (rather than just
the finite ones) but this introduces major complications that seem unnecessary
given the current application. Similarly for the case of median graphs/algebras.

• Medf , the category of finite median graphs, where
each G,H ∈ Medf are assigned the set Hom(G, H)
of median-preserving maps from the vertex set of G
to the vertex set of H (such maps are called median
morphisms).

What connects the two categories is the assignment of the
graph Dual(P ) to every poc set P . The important bit here
is that this assignment is not confined to the level of objects,
but, rather, extends over the level of maps as well in a natural
way:

Definition A.24. Let f : P → Q be a morphism of weak
poc sets. The dual map f◦ : Q◦ → P ◦ is defined to be the
pullback map f◦(A) = f−1(A). �

It is easy to verify that f◦ : Q◦ → P ◦ is a median-
preserving map, that is:

f◦ (med(u, v, w)) = med(f◦(u), f◦(v), f◦(w)) (73)

where the medians are computed in the appropriate du-
als. Thus, a map f ∈ Hom(P, Q) yields a map f◦ ∈
Hom(Dual(Q) , Dual(P )). Moreover, one easily checks that
this is done in a way that respects composition, that is:

(g ◦ f)◦ = f◦ ◦ g◦ (74)

whenever the composition of the poc morphisms f, g is well-
defined. This notion of map between categories is called a
functor. The above constructions (of the dual graph and the
dual map), together, are known as the Sageev-Roller duality.

Applying the results A.20 andA.21, we conclude that the
above assignments form a complete duality, or co-equivalence
of categories, between Pocf and Medf . That is, there are:

• A correspondence between Pocf and Medf at the
level of objects: P 7→ Dual(P ) is a one-to-one
correspondence between the collection of finite poc sets
and the collection of median graphs;

• A correspondence between Pocf and Medf at the
level of maps: f 7→ f◦ is a composition-reversing
one-to-one correspondence between poc morphisms and
median morphisms.

Thus, Sageev-Roller duality is a dictionary, translating order-
theoretic statements about finite poc sets into graph-theoretic
statements about finite median graphs and vice-versa. Loosely
speaking, the aspects of Boolean Algebra covered by poc
sets may be conveniently interpreted in terms of the con-
vex geometry of median graphs, reasoned about within this
framework, and the conclusions may then be translated back
into the Boolean Algebra setting for the purpose of dealing
with applications. We will now proceed to survey some of the
contributions of this category-theoretic point of view to our
application.

2) Extending Sageev-Roller Duality to Weak Poc Sets:
Recalling the fact that the category Pocf of proper finite poc
sets is too restrictive for the purposes of our current application
[30], the first order of business is to verify that Sageev-Roller
duality extends to weak poc sets.
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The first observation regarding dual maps is a consequence
of the fact that no coherent subset of a weak poc set may
contain a negligible element:

Lemma A.25. Let P be a weak poc set and let π : P → P̂
denote the canonical projection. Then p◦ : P̂ ◦ → P ◦

is a median isomorphism, making Cube(P ) and Cube(P̂ )
isomorphic cubical complexes.

Thus, weak poc sets are indistinguishable from poc sets,
as far as dual graphs are concerned: applying Sageev-Roller
duality one simply obtains

Corollary A.26. For any weak poc set P , P̂ is naturally
isomorphic to Poc(Dual(P )). �

At the same time, weak poc sets form a more flexible class
of objects. In particular, weak poc set structures are easier to
represent and evolve dynamically using snapshots II.

3) Example: Realizations: Suppose X is the state space
(possibly infinite) of some system, and Σ is a collection of
binary sensors sensitive to the state of the system, such as
in examples A-D1 and A-D3. Since the sensors are binary
we may assume that each sensor a ∈ Σ comes paired with a
sensor a∗ ∈ Σ corresponding to the negation of a. In other
words, the sensorium Σ comes equipped with a fixpoint-free
involution ∗ and with a realization map ρ : Σ → B ⊆ 2X

satisfying ρ(a∗) = X r ρ(a) for all a ∈ Σ, where B is a
prescribed σ-algebra of measurable events in X. It also costs
us nothing to assume there is a special sensor 0 ∈ Σ that is
never on, that is: ρ(0) = ∅.

Suppose now that, having spent some time observing state
transitions in X, we are able to write down some implication
relations among the elements of Σ. These will be recorded
in the form of a partial ordering (≤). We would like to use
our a-priori knowledge that ρ(a∗) = Xr ρ(a) and, naturally,
we would like to believe that a ≤ b implies ρ(a) ⊆ ρ(b),
in which case ρ becomes a morphism of the weak poc set
P = (Σ,≤, ∗) into the poc set B. Assuming this is correct,
what can we say?

For any observed state x ∈ X the poc set B supplies us
with a coherent ∗-selection Bx = {A ∈ B |x ∈ A}. The dual
ρ◦ : B◦ → P◦ then produces a vertex vρ(x) := ρ◦(Bx) in
Cube(P).

Definition A.27 (Consistent Vertices). Let ρ be a realization
of a poc set P . Then the vertices of the form vρ(x) as above
are called ρ-consistent vertices.

For example, the vertex v in figures 12 (a) and (b) is
inconsistent for either realization.

It is possible that vρ : X→ P◦ is not surjective, motivating
the definition:

Definition A.28 (Punctured Dual). Let ρ be a realization
of a poc set P . The punctured dual (with respect to ρ),
denoted Cube×(P), or Cube(P, ρ), is the cubical sub-complex
of Cube(P) induced by the set of ρ-consistent vertices of P◦

which are contained in Cube(P).

As a corollary of this discussion we obtain:

Corollary A.29. Cube(P) is the smallest cubical sub-complex
of S(P ) with the property that, for any realization ρ of P, if
ρ is a poc morphism, then Cube(P) contains all ρ-consistent
vertices of S(P ).

In other words, any realization that is also a poc morphism
gives rise to a discrete representation of X in Cube(P) via the
mapping vρ : X→ P◦. The benefit of maintaining a record of
the order in Σ is our ability to discard the incoherent vertices
of S(P ) (viewed as possible states of the observed system)
without the risk of losing any information about X, while
possibly gaining some insight into the organization of X, as
stated in the introduction, contribution (i).

4) Realizations, Cubings and Topology: We recall a defi-
nition from [56]:

Definition A.30. A cubing is a simply connected, non-
positively curved cubical complex. �

We point the reader to [57] for a detailed account of non-
positively curved metric spaces. For the purpose of this paper
it will suffice to quote a corollary of the well-known Cartan-
Hadamard theorem ([57], II.4.1):

Corollary A.31. Cubings are contractible.

We owe the following theorem in its full generality (finite
and infinite cases) to the collective efforts of Michah Sageev
[56], Martin Roller [31] and Victor Chepoi [43].

Theorem A.32. The following are equivalent for a finite
simple graph G:

1) G is the 1-dimensional skeleton of a cubing;
2) G is a median graph;
3) G is isomorphic to Dual(P ) for some poc set P ;
4) G is the 1-dimensional skeleton of Cube(P ) for some

poc set P .

Further developing the discussion in the preceding para-
graph, we recall one of the main theorem of [30], applied to
that setting:

Theorem A.33. Let X be a topological space and let P
be a poc set structure on a finite set Σ with realization
ρ : P → 2X. Let C denote the collection of cubes in the
cubical complex Cube×(P) = Cube(P, ρ). For each C ∈ C
let XC = (r◦)

−1

(C) be the set of all points in X witnessing
C. If ρ is a poc morphism, and every XC , C ∈ C has an
open neighbourhood NC ⊂ X such that:

1) each NC is contractible;
2) {XC}C∈C and {NC}C∈C have isomorphic nerves,

then Cube×(P) is homotopy-equivalent to X.

To illustrate the theorem, consider figure 12 again: note how
deleting the vertex v from either discrete model of the circle
results in a space with the correct homotopy type (that of the
circle). On the other hand, going back to example A-D1 and
figure 11, the last theorem explains the qualitative difference
in representations of the interval between the two provided
models: while the ‘thresholds’ model satisfies the requirements
of the theorem, the ‘beacons’ model possesses a vertex – the
one marked V ′0 – whose set of witnesses is not connected.
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This result could be interpreted as stating a condition on
the richness of the sensorium (Σ, ρ): the complex Cube(P)
provides an observer with a discretized contractible model of
the state space X of the observed system, while Cube×(P)
is a more realistic model of X taking the standard form of a
contractible space minus a set of obstacles.

5) Example: A ‘bad’ Poc Morphism: It is not true in general
that the dual of a poc morphism f : P → Q extends to a
morphism of graphs. For example, consider the situation

P = 〈a, b, c |a < b, b < c 〉 , Q = 〈x, y |x < y 〉 (75)

and f : P → Q is defined by f(a) = f(b) = x and f(c) = y.
The duals and dual map are illustrated in figure 13.

Fig. 13. The dual of a poc morphism is not necessarily a graph morphism
(details in A-E5).

The absence of a canonical choice of extension for f◦ to a
graph morphism of Dual(Q) into Dual(P ) hints at a solution
directly involving cubings: if one were to extend the range of
f◦ to include the 2-dimensional cube shown in the figure, it
would have been possible to extend f◦ to a cellular map taking
the edge of Dual(Q) crossed by x to an appropriately chosen
diagonal of that cube. More generally, it is possible to extend
f◦ to a continuous embedding of Cube(Q) into Cube(P )
for any poc morphism f : P → Q by applying convexity
properties of the canonical piecewise-Euclidean metrics on
Cube(P ) and Cube(Q) ([57], II.2.7). Thus, although median
graphs are sufficient for describing the dual graphs of poc sets,
describing the dual morphisms requires the higher dimensional
geometry of cubings.

6) Example: Degeneration: Recall our promise to maintain
weak poc set structures on a sensorium Σ dynamically, updat-
ing the ordering on Σ in real time. The duality theory of poc
sets provides us with a hint as to how such maintenance should
be done. The learning methods of section II are motivated by
the an analogy between the following observations and the
ideas underlying Hebbian learning:

The kind of update we expect to see in an instance of
learning is captured in the following simple example.

P1 = 〈a, b, c |a < c, b < c 〉 ,
P2 = 〈a, b, c |a < b < c 〉

The two poc set structures have the same underlying set
(denote it by P ) and the identity map f = idP : P1 →
P2 is a morphism, while the inverse map g = idP : P2 →
P1 is not. Thinking of P1 as representing an observer yet
undecided regarding the nature of nesting (if any) of the pair
{a, b} and therefore maintaining a t b in P1, we see poc set

Fig. 14. The dual of a degeneration is an embedding of median graphs (details
in A-E6).

P2 as representing an observer with an identical set of beliefs
except for the additional relation a < b. Figure 14 visualizes
the dual map f◦.

In general, if P1 and P2 are poc sets with the same
underlying set P and f = idP : P1 → P2 is a poc morphism,
then the dual f◦ has the following properties (see e.g. [31]):

Proposition A.34. Suppose f : P1 → P2 is a bijective poc
morphism. Then:

1) f◦ is injective ([31], proposition 7.8);
2) f◦ extends to an injective cellular embedding of

Cube(P2) in Cube(P1);
3) The image of Cube(P2) under this embedding is a strong

deformation retract of Cube(P1).

A more complicated instance of this setting is very nicely
visualized in figure 12.

APPENDIX B
PROOFS OF TECHNICAL RESULTS

A. Proof of proposition II.7

We first extend the weight function ab 7→ wab to a
symmetric function of Σ× Σ by setting

waa = wab + wab∗ , waa∗ = 0 (76)

for any a ∈ Σ and for any b ∈ Σ with ab ∈ KΣ. The
consistency constraint (13) implies that this extension is well-
defined. This allows us to extend the definition of ω(•) in (16)
to the whole of Σ×Σ while satisfying the following identities

ω(ab) + ω(ba) = 0 , ω(aa) = 0 (77)

for all a, b ∈ Σ. Note that ω(•), by definition, takes directed
edges and loops for its input.

Further, the consistency identity allows us to write, for any
ab ∈ KΣ:

ω(aa∗) = wa∗a∗ − waa (78)
= wa∗b + wa∗b∗ − wab − wab∗ (79)
= ω(ab) + ω(ab∗) (80)

We next observe that the cocycle constraint (15) may be
rewritten in the form

ω(ab) + ω(bc) = ω(ac) (81)

Let us verify that this identity is, in fact, an identity over all
a, b, c ∈ Σ. Due to the symmetries of ω(•) in (77) it suffices
to verify (81) only in the following cases:
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1) The pair ab ∈ KΣ and c = a: this case is taken care of
by the anti-symmetry identity of ω(•).

2) The pair ab ∈ KΣ and c = a∗: this is precisely the
statement of (80).

3) The pair ac ∈ KΣ and b, c ∈ {a, a∗}: without loss of
generality, either b = c = a and (81) ends up claiming
that 0 + 0 = 0, or b = a and c = a∗ – in which case
the statement turns into the trivial identity ω(aa∗) =
ω(aa∗).

(cases 1-2 correspond to exactly two of the pairs being proper;
case 3 accounts for all situations when none of the pairs is
proper; having exactly one of the pairs proper is impossible).

Now suppose that p = (a0, . . . , am) is any directed vertex
path in the given poc graph Γ. Then, applying the identity
(81) repeatedly we obtain:

ω(a0am) = ω(a0a1) + . . .+ ω(am−1am) (82)

By the assumption on Γ, all the summands on the right hand
side are positive. In particular, if p were a cycle with am = a0

we would have obtained

0 = ω(a0a0) = ω(a0am) > 0 (83)

– a contradiction. We must therefore conclude that directed
cycles in Γ are impossible, as desired.

B. Proof of lemma II.15

An evolution of the trivial snapshot is an empirical snapshot,
for if S = S

∣∣
t

can be written in the form S = Ok ∗ · · · ∗O1 ∗
Null then defining indicators

ckab = 〈1Ok
: a〉 · 〈1Ok

: b〉 (84)

– compare with (11) – one would have the following identity
holding for S:

wab =

t∑
k=1

ckab ∈ Z≥0
(85)

Since the functions ck· satisfy the consistency constraint, so
does their sum w·. The clock requirement is satisfied, too,
since for any proper pair {a, b} one has:

wa + wa∗ =

t∑
k=1

(cab + cab∗ + ca∗b∗ + ca∗b)︸ ︷︷ ︸
=1

= t (86)

– compare with equation (12).

Conversely, due to the presence of an integer clock, it
suffices to show that any empirical snapshot S can be written
in the form S = O ∗T where O = #·S and T is either trivial
or empirical. Let T be the weighted graph obtained from S
by performing the following operations:

1) Subtract one unit from wab for every proper pair a, b ∈ Σ
satisfying {a, b} ⊆ O.

2) For any a ∈ Σ, set #a for T to 1 iff wa > wa∗ in T.
The set #T is a complete ∗-selection by construction, so it
remains to verify the consistency and synchrony conditions
for the new snapshot. For every proper pair a, b ∈ Σ, the fact
that O is a ∗-selection implies that all but one of the edge

counters in T|ab coincide with their S counterparts, while the
exceptional one – let it be wab without loss of generality – is
smaller than its counterpart in S by one unit. Since the sum of
edge counters in S|ab is independent of the choice of square,
we conclude the same is true for T|ab . To prove consistency
we observe that wab +wab∗ suffering a decrease (of one unit)
in the passage to T implies a ∈ O and hence wac + wac∗

must suffer a decrease as well for any c /∈ {a, a∗}, since O
is a complete ∗-selection. Finally, with wa being well-defined
in T for all a ∈ P, the choice of #T guarantees that #a = 1
is only possible in T if wa > 0 in T.

C. Equivalences in probabilistic Snapshots

Throughout this section, S is a probabilistic snapshot satis-
fying the triangle inequality (32). The reason for the name is
that the symmetric dissimilarity measure on Σ×Σ defined by

µ(ab) := wa∗b + wab∗ ≥ 0 (87)

allows rewriting (32) in the form

µ(ac) ≤ µ(ab) + µ(ac) (88)

for all a, b, c ∈ Σ.
Now let us turn to the purpose of this discussion, the

analysis of equivalences in Σ that are observed in S. Let
Eq(S) denote the undirected graph by vertex set Σ having
edges ab and a∗b∗ for every ab ∈ KΣ satisfying (31). Let Σ̄
denote the partition of Σ induced by the connected components
of Eq(S), and let eq : Σ→ Σ̄ denote the map sending a ∈ Σ
to its block in Σ̄. In other words, eq(a) is nothing more than
the list of all sensations b ∈ Σ deemed equivalent to a, either
directly or through a finite chain of equivalences.

Returning to the notation of appendix B-A and keeping in
mind (76) we observe that:

a ≡ b⇒ ω(ab) = wa∗b − wab∗ = 0 (89)

and since ω(•) is additive (81) we conclude:

b ∈ eq(a)⇒ ω(ab) = 0 (90)

In particular, since ω(ab) > 0 whenever ab ∈ Dir(S), we
conclude:

Lemma B.1. If a, b ∈ Σ are connected by a directed path in
Dir(S) then eq(a) ∩ eq(b) = ∅.

Similarly, for the metric µ(•) on Σ, we have that µ(ab) = 0
if a ≡ b by definition. The triangle inequality allows us to
conclude:

Lemma B.2. If b ∈ eq(a) then µ(ab) = 0.

Proof. We have b ∈ eq(a) iff there is a finite sequence of
elements in Σ of the form

a = a0 ≡ a1 ≡ . . . ≡ an = b , n ≥ 0 (91)

Applying the triangle inequality n− 1 times we obtain

µ(ab) ≤
n∑
i=1

µ(ai−1ai) = 0 , (92)

as desired.
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In order to see that Dir(S) actually defines a weak poc set
structure on Σ̄ we need the following:

Lemma B.3. Given S as above, for all a ∈ Σ we have:

1) eq(a∗) = eq(a)∗;
2) eq(a∗) 6= eq(a).

(Recall the convention A∗ = {x∗ |x ∈ A} for A ⊆ Σ)

Proof. For (1) it suffices to observe that a ≡ b implies a∗ ≡ b∗
by construction. Assertion (2) follows from observing that

eq(a∗) = eq(a)⇔ eq(a∗) ∩ eq(a) 6= ∅⇔ a∗ ∈ eq(a) (93)

However, by the preceding lemma, a∗ ∈ eq(a) would imply
µ(aa∗) = 0 which, in turn, would contradict the obvious
equality

µ(aa∗) = wa∗a∗ + waa = 1 (94)

finishing the proof.

The following proposition summarizes our progress thus far:

Proposition B.4. Let S be a probabilistic snapshot satisfying
the triangle inequality. Then:

1) The operation eq(a) 7→ eq(a∗) defines a fixpoint-free
involution on Σ̄.

2) The directed graph Γ with vertex set Σ̄ and with an edge
pointing from eq(a) to eq(b) iff there exist a′ ∈ eq(a)
and b′ ∈ eq(b) such that a′b′ is an edge of Dir(S) is
an acyclic poc graph.

3) Let P = Poc(Dir(S)) and P = Poc(Γ). Then the
quotient map eq : Σ→ Σ̄ is a poc morphism of P onto
P with the property that every fiber of eq is a transverse
subset of P.

4) For any subset A ⊂ Σ one has

A↑= eq−1 (eq(A)↑) (95)

In particular, propagation over P is equivalent to prop-
agation over Dir(S)0 (see defn. II.20). �

D. Proof of proposition III.1

This proof requires the results of section A-E. The inclu-
sions:

incact : Act
∣∣
t
↪→ P

∣∣
t
, incobs : Obs

∣∣
t
↪→ P

∣∣
t

(96)

satisfy projact = inc◦act and projobs = inc◦obs, ans since Σ =
Act∪Obs and Act∩Obs = {0,0∗}, we conclude that the
identity map idP of P is, in fact, a surjective poc morphism

idP : Act
∣∣
t
∨Obs

∣∣
t
→ P

∣∣
t

(97)

(see A-D2 for a definition of Act
∣∣
t
∨Obs

∣∣
t
). By proposition

A.34, the dual of this map is a median-preserving embedding
of cubical complexes:

id◦P : Cube(P
∣∣
t
) ↪→ Cube(Act

∣∣
t
)× Cube(Obs

∣∣
t
) , (98)

as required.

E. Local Structure of Duals and Greedy Navigation

In [30] we suggested exploring the link between the con-
vexity theory of duals of weak poc sets and planning in DBAs,
yet the formal results contained therein proved insufficient
for supporting the planning algorithms proposed in this paper.
This section fills in this gap.

Throughout this section we fix a finite weak poc set P
and the median graph Γ = Dual(P ) (which is to say, Γ is
an arbitrary finite median graph). We study the problem of
computing the image of a non-empty convex subset V (S) of
Γ under the closest point projection of Γ to the convex subset
V (T ).

1) Gates: We recall the following definitions and results
from [31]:

Definition B.5 (Separator). Let K,L ⊆ P ◦ be sets. The set

sep(K,L) = {a ∈ P |K ⊆ V (a) , L ⊆ V (a∗)} (99)

is called the separator of K and L. �

The inequality ∆(u, v) ≥ |sep(K,L)| follows immediately
for all u ∈ K and v ∈ L. This motivates:

Definition B.6 (Gate). Let K,L ⊆ P ◦. A gate for K,L is a
pair of points u ∈ K, v ∈ L such that ∆(u, v) = |sep(K,L)|.
�

The following result is well known in our setting:

Proposition B.7. Let K,L be non-empty convex subsets of Γ
and let u ∈ K and v ∈ L. Then u, v form a gate for K,L
if and only if projKv = u and projLu = v. Moreover, any
pair of non-empty convex subsets of Γ has a gate.

We will apply this proposition without proof. An important
consequence for us is the following:

Lemma B.8. Suppose K = h(S) and S ⊂ P is coherent.
Then, for any a ∈ P , if K ⊆ h(a) then there exists s ∈ S
such that s ≤ a.

Proof. Let u ∈ K and v ∈ L := h(a∗) form a gate. Since
v /∈ A, there exists s ∈ S such that v ∈ h(s∗).

Suppose there were a w ∈ B with w ∈ h(s), and consider
m = med(u, v, w). Then a ∈ v, w implies a ∈ m, but the
inequality

∆(u, v) = ∆(u,m) + ∆(m, v) ≥∆(u,m) (100)

implies m = v, since v = projLu. On the other hand, s ∈
u,w implies s ∈ m – a contradiction.

Thus, we have shown that L = h(a∗) is contained in h(s∗).
Equivalently, a∗ ≤ s∗, which is the same as s ≤ a.

The same kind of reasoning yields:

Lemma B.9. Suppose K,L are non-empty convex subsets of
Dual(P ). If K ∩L 6= ∅, then projKL = projLK = K ∩L.

Proof. Clearly, if v ∈ K ∩L then projL(v) = v, so K ∩L ⊂
projLK. For the reverse inclusion, suppose v ∈ projLK and
write v = projLu, u ∈ K. Pick any point w ∈ K∩L. Setting
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m = med(w, v, u) we note that m ∈ L (because w, v ∈ L)
and

∆(u, v) = ∆(u,m) + ∆(m, v) ≥∆(u,m) .

The uniqueness of projection forces v = projLu to coincide
with m. However, since w, u ∈ K we also have m ∈ K,
showing v ∈ K ∩ L.

2) The Coherent Projection: We need to study a technical
notion motivated by the necessity in correcting the observation
of the current state as explained in section II-B. We recall the
following standard notation for partially ordered sets:

a↑= {p ∈ P |a ≤ p} , a↓= {q ∈ P |q ≤ a} , (101)

and

A↑=
⋃
a∈A

a↑ , A↓=
⋃
a∈A

a↓ . (102)

Note that in a poc set P , one has the identities

A∗ ↑= A↓∗ , A∗ ↓= A↑∗ . (103)

For an arbitrary subset A of P we can define the following
‘correction’ of A:

Proposition B.10 (Coherent Projection). Let P be a finite poc
set and A ⊆ P be any subset. Then the set

coh(A) := A↑ rA∗ ↓= A↑ rA↑∗ (104)

Is coherent, and satisfies the following properties:

1) if A is coherent then coh(A) = A↑;
2) coh(A)↑= coh(A);
3) coh(coh(A)) = coh(A);
4) if A ∈ P ◦ then A = coh(A) = A↑.

Proof. To show the coherence of coh(A), let b, c ∈ coh(A)
with b ≤ c∗; if b ∈ A ↑ then c∗ ∈ A ↑ and c ∈ A ↑∗,
contradicting c ∈ coh(A).

For (1), A is coherent iff A ↑ and A∗ ↓ are disjoint.
Therefore, if A is coherent then coh(A) = A↑ rA∗ ↓= A↑.

For (2), let a ∈ coh(A) and a ≤ b. Then a ∈ A ↑ implies
b ∈ A ↑, and it suffices to verify b /∈ A ↑∗. Indeed, were
there c ∈ A with b∗ ≥ c then a ≤ b ≤ c∗ would have given
a ∈ A∗ ↓ in contradiction of a ∈ coh(A). Thus, b ∈ coh(A),
as required.

For (3) since coh(A) is coherent we have coh(coh(A)) =
coh(A)↑ by substituting coh(A) instead of A in (1), and then
we apply (2).

Finally, for (4), A ∈ P ◦ means A is a coherent complete
∗-selection, so coh(A) = A ↑ by (1) and it remains to show
A↑= A. Were there b ∈ A↑ with b /∈ A we would have had
b∗ ∈ A, since A is a complete ∗-selection. But then we would
also have had b, b∗ ∈ coh(A), contradicting the coherence of
coh(A).

3) Computing the Projection Maps: For a vertex u ∈ P ◦
and any subset A ⊂ u, one defines:

[u]
A

:= (urA) ∪A∗ (105)

Clearly, [u]
A

is a ∗-selection. It is easily verified that [u]
A

is coherent if and only if there exists no pair a ∈ A and
b ∈ u r A satisfying b < a. This observation was first made
in [56], leading to the following results in our setting:

Lemma B.11. Let P be a finite weak poc set and let u ∈ P ◦
be any vertex. Then the set N(u) of vertices adjacent to u
in Γ = Dual(P ) coincides with the set of all [u]

a
, a ranging

over the minset of u:

min(u) := {a ∈ u |b < a⇒ b /∈ u} (106)

More generally, the cubes in Cube(P ) are characterized as
follows:

Lemma B.12. Let P be a finite weak poc set and u ∈ P ◦

be a vertex. Then the cubes of Cube(P ) incident to u are
in one-to-one correspondence with the transverse subsets of
min(u).

A particular application of these observations is an explicit
construction of a geodesic path in Γ emanating from a given
vertex u and terminating at its unique closest point projection
projh(T )u:

Proposition B.13. Let P be a finite weak poc set and suppose
u ∈ P ◦ is a vertex. Let T be a coherent subset of P . Then
the following algorithm constructs a shortest path in Γ from
u to K = h(T ):

1) Find an element b ∈ T ru; if no such element, stop and
output u.

2) Find an element c ≤ b∗ with c ∈ min(u);
3) Replace u by [u]

c
and go to the first step.

Proof. We have u ∈ K iff T ⊂ u, which provides the stopping
condition for the algorithm. Now, if u /∈ K and b ∈ T r u
then for all v ∈ K one has v ∈ h(b) and u ∈ h(b∗). Since
c ≤ b∗, we have u ∈ h(c) ⊆ h(b∗), implying v ∈ h(c∗) and
c ∈ ur v. As a result:

∆
(
v, [u]

c

)
= ∆(v, u)− 1 (107)

Having reduced ∆(u, v) by a unit for all v ∈ K, we have
reduced ∆(u,K) by a unit as well.

Corollary B.14 (Projection of a Point). Let P and T be as
above. Then the closest point projection to K = h(T ) is given
by the formula:

projKu = (ur T ∗ ↓) ∪ T ↑= (u ∪ T ↑) r T ∗ ↓ (108)

Proof. The second equality follows from the DeMorgan rules
and the fact that T ↑ ∩T ∗ ↓= ∅ (since T is coherent).

Set K = h(T ) and proceed by induction on ∆(u,K). If
∆(u,K) = 0, then u ∈ K and therefore T ⊂ u. In addition,
u is coherent and we conclude T ∗ ↓ ∩u = ∅, leaving us with

ur T ∗ ↓ ∪T = u ∪ T = u ,
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as desired. Now suppose n := ∆(u,K) > 0. By the preceding
proposition, there is a ∈ T ∗ ↓ ∩u such that v := [u]

a
∈ P ◦,

∆(v,K) = n− 1, and projKu = projKv. We thus have:

projKu = projKv = (v r T ∗ ↓) ∪ T ↑= (ur T ∗ ↓) ∪ T ↑ ,

the last equality being due to a ∈ T ∗ and a∗ ∈ T . Thus, the
first identity has been proved.

4) Projecting a Convex Set to a Convex Set:

Proposition B.15. Let K,L be non-empty convex subsets with
L = h(S) and K = h(T ). Then

projKL = h((S ↑ ∪T ↑) r T ∗ ↓)
= h(T ) ∩ h(S ↑ rT ↑∗) (109)

Proof. Since T is coherent, T ↑ and T ∗ ↓= T ↑∗ are disjoint.
This allows us to write:

h((S ↑ ∪T ↑) r T ↑∗) = h(T ↑ ∪(S ↑ rT ↑∗))
= h(T ↑) ∩ h(S ↑ rT ↑∗)

and the second equality in (109) follows from the identity
h(T ) = h(T ↑). Denote R = S ↑ rT ↑∗ and N = h(R).

For every u ∈ L = h(S) we have S ↑⊂ u, implying projKu
contains T ↑ ∪R, by corollary B.14. Thus, projKL ⊂ K∩N ,
as required.

For the converse, observe that the case K ∩ L 6= ∅ was
already dealt with in lemma B.9: if K ∩ L 6= ∅, then

projKL = K ∩ L = h(S ↑) ∩ h(T ↑) = h(S ↑ ∪T ↑)

In particular, S ↑ ∪T ↑ is coherent, and hence does not intersect
T ∗ ↑, and the formula (109) holds.

Thus we may henceforth assume K ∩L = ∅. Equivalently,
S ↑ ∩T ∗ ↓6= ∅. In fact, by lemma B.8 we have S ↑ ∩T ∗ ↓=
sep(A,B).

Starting with v ∈ K ∩ N we must show v ∈ projKL.
Set u = projLv, w = projKu, and m = med(u, v, w).
Then m ∈ K since v, w ∈ K. Since K ∩ L = ∅, we have
∆(u, v) > 0 and ∆(u,w) > 0. Consider the point m: we have
m ∈ I(u,w) and m ∈ K; by the choice of w, m must equal
w and therefore w ∈ I(u, v). Thus, w = projKu ∈ I(u, v)
and u = projLw. By proposition B.7, the pair u,w is a gate
for K,L and we have

ur w = sep(L,K) = S ↑ ∩T ∗ ↓ .

Consider an element a ∈ vru. If h(a)∩L 6= ∅, pick u′ ∈
h(a) ∩ L. Then m = med(u, v, u′) will satisfy m ∈ h(a) ∩ L
as well as

∆(v, L) = ∆(v, u) = ∆(v,m) + ∆(m,u) .

Now, ∆(u,m) > 0 since u ∈ h(a∗) and a contradiction to
uprojLv is obtained. Thus, h(a) ∩ L must be empty, which
means L ⊆ h(a∗). Applying lemma B.8 we obtain a∗ ∈ S ↑.

Overall, we have shown that v r u ⊆ S ↑∗. We will now
verify that v r w = ∅, finishing the proof. Indeed, were it
not so, there would have been h ∈ v r w. On one hand,
w ∈ I(u, v) implies v r w ⊂ v r u, and hence h∗ ∈ S ↑.
On the other hand, h /∈ w means h∗ ∈ w and therefore h∗ /∈
sep(L,K) = S ↑ ∩T ↑∗, which forces h∗ ∈ R. Since R ⊂ v

(by choice of v), we have h∗ ∈ v, contradicting our choice of
h.

We will need the following technical corollary for the
purposes of propagation:

Corollary B.16. Let S, T ⊂ P be subsets and suppose S is
coherent. Let L = V (S) and K = V (coh(T )). Then:

projKL = (S ↑ ∪T ↑)rT ↑∗= (S ↑ rT ↑∗)∪coh(T ) (110)

Proof. Recall that coh(T ) = T ↑ rT ↑∗, and set J = T ↑
∩T ↑∗, so that T ↑= coh(T ) + J and T ↑∗= coh(T )∗ + J .
Then,

(S ↑ ∪T ↑) r T ↑∗ = ((S ↑ ∪coh(T ) ∪ J) r coh(T )∗) r J

= (S ↑ ∪coh(T )) r coh(T )∗

Since coh(T )↑= coh(T ), the last expression equals projKL,
by the preceding proposition. The proof of the second equality
is similar.


