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Abstract—We explore an approach to incorporating task and
motor thermal dynamics in the selection of actuators for legged
robots, using both analytical and simulation methods. We develop
a motor model with a thermal component and apply it to a
vertical climbing task; in the process, we optimally choose gear
ratio and therefore eliminate it as a design parameter. This
approach permits an analytical proof that continuous operation
yields superior thermal performance to intermittent operation.
We compare the results of motor sizing using our proposed
method with more conventional techniques such as using the
continuously permissible current specification. Our simulations
are run across a database of commercially available motors, and
we envision that our results might be of immediate use to robot
designers for motor as well as gearbox selection.

I. INTRODUCTION

Choosing the appropriate motors for an autonomous legged
robot poses challenges not typically faced by designers in
other domains of mechatronics and electromechanical automa-
tion. The highly varied and fundamentally intermittent nature
of a running, climbing, or crawling machine’s interactions
with its environment combined with the severe limitations
of contemporary actuator power density present a narrowly
constrained set of design choices, whose constraints are at the
same time very hard to characterize. Currently, many designers
rely heavily on empirical trial and error; many versions of a
robot are built with iteratively better motor/gearbox choices.1

Another method is to pick a single speed/torque operating
point and find a motor that can achieve this at continuous
steady-state operation [3]. Other, more considered approaches
to motor sizing employ dynamical simulations of the robot
in question [4], [5], [6], whereby a significant component
of the empirical “generate and test” cycle can be iterated
in software. In this work we are motivated to develop a
still-more rational approach to motor sizing, attempting to
develop mathematically generated (hence, a priori formally
guaranteed) guidelines while enforcing constraints that arise
from the interaction of motor dynamics and thermal behavior
with the task assigned to the robot.

Rational selection of robot motors and gearboxes has tra-
ditionally been driven by industrial applications, in which a

1This design procedure was required for all the usefully working machines
whose development we are familiar with–EduBot, RiSE, DynoClimber [1],
and most recently X-RHex [2]–and we strongly suspect, most of the legged
robots that have demonstrated capable locomotion in unstructured, outdoor
environments

task typically consists of a known target trajectory [7] (eg. a
robotic arm in an assembly line lifts and precisely maneuvers
a specified part) accomplished by an amply-sized actuator.
However, in the realm of mobile, legged robots, motor ca-
pabilities (and damage/failure conditions) and robot behavior
(leg trajectories) can not be so neatly divorced. Hence, we
address two coupled problems: the representation of a motor
operating regime, and a model of the thermal consequences
of that operational mode.

The motor selection methodology explored here is moti-
vated by the experience of iterative motor selection for X-
RHex [2] and operating-point-based selection for its prede-
cessors. Specifically, coupling the electromechanical to the
thermal models, we outline a design methodology that selects
the best performance from our actuator while avoiding thermal
damage (including selection of the optimal gear ratio). We
run numerical simulations over the space of commercially
available motors and demonstrate how our algorithm produces
results notably different from conventional motor sizing meth-
ods that typically either ignore thermal considerations entirely
or impose overly conservative current limits based upon the
permissible ceiling associated with continuous steady state
operation.

II. PROBLEM STATEMENT

We apply our thermal-mechanical coupled motor models
to a climbing problem by positing a scenario in which the
actuator must lift a constant mass vertically against gravity,
absent any friction.

We characterize the operating regime by substituting for the
traditional library of typical task trajectories a single dynam-
ical model that generates—at least in caricature—the entire
family of speed-torque challenges likely to be encountered
over the task domain. In this preliminary work we commit
to the very specific task domain described above, and limit
the design choices to varied control policies in the following
manner: the motor can either be running continuously, in
which mode a constant voltage is applied to the motor ter-
minals, or intermittently, wherein the motor switches between
operation at a constant voltage and being disconnected from
the system (applies no force). The continuous operation mode
can be thought of as representing a robot with wheels rolling
up a pole, while the intermittent operation mode corresponds
to a legged robot that bounds or leaps upward. Within this



very specific task domain, we formally characterize the man-
ner in which legged robots (morphologically constrained to
intermittent loading) pose a fundamentally different set of
requirements for motor selection than do wheeled robots (in
which continuous power delivery is acceptable).

We use a motor thermal model [3], [2], [8] to characterize
the thermal penalties of task achievement. By seeking optimal
performance while satisfying thermal constraints, we can
evaluate motors based both on their ability to accomplish a
given task while incorporating some view of the performance
quality they afford.

III. ANALYTICAL RESULTS

A. Modeling

1) Motor Reparameterization: The salient characteristics
of a particular motor used in a robot are heavily dependent
on the gearbox placed at its output. In this work we want
to focus on the intrinsic properties of a motor which affect
its performance across operational regimes, so our approach
will be to normalize the effect by choosing the best possible
gearbox for the motor to perform the task. The author of [7]
investigated the gearbox-independent capabilities of motors for
a known output trajectory; we address a similar question for
a specific motor and a known dynamical (“task”) model.

A typical motor operating at its nominal voltage operates
along a speed-torque curve determined fully by the stall torque
τs and no-load speed ωnl [9], [5] . Whereas the corresponding
stall torque and no load speed after gearing are both affected
by the reduction ratio G, the peak mechanical power,

P =
τsωnl

4
, (1)

is not.
We now assume that the angular displacement of the output

shaft is proportional to vertical displacement of the mass.
This is equivalent to the introduction of a rack-and-pinion
transmission with selected pinion radius Rp. Our actuator,
consisting of the motor and two-stage transmission, has a no-
load speed and stall force given by

vnl =
Rpωnl

G
and Fs =

4P

vnl
(2)

These parameters define an output speed-force curve, along
which the actuator operates.

We will choose (P, vnl) as our motor operating parame-
terization. Note that the effect of varying the reduction ratio
is completely captured in the scalar parameter vnl, and we
optimize over all possible values it can take in Section III-C.

2) Actuator Dynamics: Our task involves lifting a mass m
(includes motor and payload) vertically. If v is the vertical
speed of the mass m, the relationship between vertical speed
and upward force on the mass can be written as

v

vnl
= 1− F

Fs
, (3)

since any achievable pair (F, v) lies on the output speed-force
line with intercepts at (Fs, 0) and (0, vnl).

Accounting for gravity, the system dynamics are given by
F = m(g+ v̇). Specifically, for the initial condition v(0) = 0,
we abbreviate the dependence upon the motor parameters by
defining a1(vnl) = 4P

mvnl
− g and a2(vnl) = 4P

mv2nl
. Using these

substitutions, the system’s explicit solution can be written
concisely:

v(t, vnl) =
a1
a2

(
1− e−a2t

)
, (4)

Taking the time derivative, v̇(t, vnl) = a1e
−a2t.

3) Thermal Model: For thermal behavior, we use a second
order dissipative thermal model excited by the coil current [3],
[10], [2]. We are interested in the “thermal current” (which is
the heat source as described in [2]),

ι(t, vnl) = i2mRcoil =
Rcoilv

2
nlF (t, vnl)

2

K2
Tω

2
nl

, (5)

where KT is the torque constant of the motor, im(t) is the coil
current, and F (t, vnl) is the force applied to the mass. Note
that Rp, as defined above, cancels out and does not appear in
this equation.

a) Full Thermal Model: The full thermal model can be
written in state space as

ρ̇(t) = Aρ(t) +Bι(t) +B0, (6)

where ρ = (ρcore, ρcase)
T are the core and case temperatures,

A =

[
− 1
R1C1

1
R1C1

1
R1C2

− 1
C2

(
1
R1

+ 1
R2

) ] ,
B =

[
1
C1

0

]
, and B0 =

[
0

ρambient
R2C2

]
,

where R1C1 and R2C2 are the motor’s specified thermal time
constants for core and case, respectively.

Considered as linear time invariant control system with
input ι and output ρ, system (6) admits exact closed form
solutions involving a convolution integral that depends upon
the specific thermal input profile, ι(t). We next provide a
simplification which allows a qualitative understanding of
system behavior without explicit evaluation of this convolution
integral for each specific thermal profile ι(t).

b) RMS Method: For typical motors, (6) acts as a low
pass filter, attenuating frequencies greater than that specified
by the lower system time constant (in this case, the smaller of
the two real eigenvalues of A that evaluates to approximately
10−2 rad/s for the typical range of motors found in the
Maxon catalog [9]). For an intermittent input which is periodic
in nature the thermal excitation can be re-expressed as a
Fourier series, respecting which an aggressive simplification
(motivated by this characterization of the thermal plant as a
low-pass filter) suggests an approximation based solely upon
the DC term,

ῑ =
Rcoil

∫ T
0

(im(t))
2
dt

T
, (7)

where T is the time period. Note that this is the square of the
RMS current, scaled by a constant.



Under these assumptions the equation (6) has a constant
input, and we can calculate steady state values by setting ρ̇ = 0
to obtain the steady-state temperature

∆ρ̄core(vnl) = (R1 +R2) ῑ, (8)

where the bar denotes that it is the RMS solution, and the ∆
denotes that it is the difference between the core and ambient
temperatures.

B. Intermittent Operation Incurs a Thermal Penalty

We consider, analytically, the simple, constrained scenario
arising from expending a fixed amount of mechanical energy
in the shortest possible amount of time. We will prove that a
motor operating at a constant velocity introduces less (waste-
ful) thermal energy than does a motor operating intermittently
(with such operations’ requisite variation in velocity). Further-
more, this result is true irrespective of the gearbox used with
the intermittent motor, as long as the reduction ratio is chosen
optimally in the continuous case.

Smoothing actuator power output is intuitively beneficial:
thermal energy emitted by the motor coil is proportional to the
square of motor torque, while at a given speed, motor power
output is linearly dependent on output torque. Intermittent
operation requires a motor to operate at slower speeds and
higher torques for part of each stride; these higher torques
incur a large thermal cost which, as we demonstrate, can not
be outweighed by a refractory period.

On the other hand, we approach intermittent operation here
with no assumption other than that the motor is disconnected
from the mass at some point during task execution. It is not
immediately obvious that every possible intermittent control
strategy of engagement/disengagement will be thermally in-
ferior to continuous steady-state operation, but we show that
this is indeed the case.

We assume that, as is the case for a legged robot, inter-
mittent operation is constrained morphologically (eg. ground
contact occurs only periodically), yet, as would be the typical
case for a well designed control policy,2 within any given “on”
period, we wish to maximize output power and therefore apply
constant (maximal) voltage to the motor terminals.

1) Comparing Cost of Mechanical Work: Whereas in Sec-
tion III-C we compare the performance (vertical climbing
speed) of different motors, in this section (for analytical sim-
plicity) we are comparing the thermal cost of equal mechanical
work in continuous and intermittent modes of operation for the
same motor. We will formally show that intermittent operation
must result in a higher thermal cost in this setting. As a
corollary, if we lift the “equal work” restriction and instead
restrict both continuous and intermittent systems to the same
peak temperature, the intermittent system must, necessarily,
do less work.

2 We are not presuming that all actuation effort is aimed at producing
the maximal positive work. For example, animal locomotion typically does
not support this presumption since muscles are as often used as “brakes” or
“struts” as they are as “motors” [11]. We merely presuppose that effort to
either oppose or advance the direction of mass motion, once recruited, will
typically be as great as possible for its entire duration.

We denote the force exerted on the mass as Fc(t) and its
velocity as vc(t) for the continuous case, and (Fi(t), vi(t))
denote the analogous quantities in intermittent operation.

We assume that Fc(t) > 0 for t ∈ T , and the range of
T is the maximum time interval of the experiment. We also
assume that Fi(t) > 0 for t ∈ A (“active” time interval),
where A ⊂ T strictly. This means that for the time in T\A
the motor is switched off (hence intermittent).

2) Average Thermal Power Output: The average thermal
power output for continuous operation (for example) is, from
(7) and (3),

Rcoil
∫
T
i2cdt

|T |
∝
∫
T

τ2c dt ∝
∫
T

(
1− vc

vnl,c

)2

dt

where the constants of proportionality are the same in both
intermittent and continuous modes, so it suffices to compare
them with respect to the rightmost quantity. We are interested
in the difference in the average thermal power output between
continuous and intermittent operation,

D =

∫
A

(
1− vi

vnl,i

)2

dt−
∫
T

(
1− vc

vnl,c

)2

dt (9)

To compare the thermal effects, we will enforce the con-
dition that the mechanical power output is the same in both
modes of operation,∫

A

Fividt =

∫
T

Fcvcdt. (10)

We can write the mass’s dynamics in the intermittent case as∫
T

mv̇i dt =

∫
A

Fi dt−
∫
T

mg dt. (11)

Using (11) and (10) in (9), we show in Appendix A that

D = mg|T |
(

1

Fs,i
− 1

Fs,c

)
. (12)

3) Comparing Fs,i and Fs,c: The solution of (4) is in-
creasing in a first-order manner without overshoot, and is
asymptotic to the constant vmax(vnl) = a1/a2.

We argue (cf. Appendix B) that it must be the case that

dvmax

dvnl
> 0. (13)

Now, one of the following must be true:
1) If vnl,i = vnl,c, ∀ finite t ∈ T , vi(t) < vmax(vnl,i) =

vmax(vnl,c) = vc(t).
2) If vnl,i < vnl,c, using (13) we get vmax(vnl,i) <

vmax(vnl,c). So ∀ finite t ∈ T , vi(t) < vmax(vnl,i) <
vmax(vnl,c) = vc(t).

3) If vnl,i > vnl,c, vmax(vnl,i) > vmax(vnl,c), and it is possible
that ∃ t ∈ T s.t. vi(t) > vc(t).

In situations 1 and 2, it is not possible that
∫
T
vidt =

∫
T
vcdt,

and intermittent performance is worse than continuous per-
formance. Situation 3 is the only feasible one, i.e., the gear
ratio must be lower in intermittent operation for the same
mechanical power output in both cases.



Intuitively, for both systems to have the same average speed,
the intermittent system must travel sometimes faster, and
sometimes slower than the continuous system. Its vmax, and
thus vnl, must be larger than that of the continuous system.

This means that
Fs,i
Fs,c

=
vnl,c

vnl,i
< 1.

We can put this in (12) and see that D > 0. Intermittent
operation necessarily produces more thermal energy. �

This result represents a fundamental property of motors
that cannot be affected by changing the reduction ratio or
control scheme.3 A number of designers have implemented
passive energy storage mechanisms [12], [4] to allow for
higher average motor power output and this analytical result
further corroborates that such mechanisms are well motivated
from a motor-thermal perspective.

C. Exposing Innate Motor Properties

Instead of tackling the coupled problems of motor and
gearbox selection, the parameterization in III-A allows us to
assess and select a motor independent of choice of gear ratio
by determining the optimal reduction for each given motor.

1) Optimization Without Thermal Constraints: The motion
equations (4) are parameterized by vnl. In order to compare
the motors independent of this reduction, we perform a one-
dimensional optimization over this parameter.

We will ignore the thermal constraints for this subsection
only, and focus on relating our performance metric to funda-
mental motor parameters.

a) Continuous Operation: In continuous operation and
in steady state (F = mg), (4) has the simple solution

vc(vnl) = vnl

(
1− mgvnl

4P

)
, (14)

which is quadratic in vnl and is maximized when vnl = 2P
mg .

b) Intermittent Operation: For intermittent operation we
assume periodic operation (motivated by animals), and fix a
“stride length” appropriate in dimension to the pinion gear
and mass being lifted by the robot, xr. The task is to achieve
the maximum average vertical climbing speed in intermittent
operation (see Section III-B for definition). Note that the scalar
parameter vnl can be arbitrarily chosen for any motor by
varying the reduction G, and we will refer interchangeably
to “varying vnl” and “varying G”.

Let us denote the vertical position of the robot, i.e. time
integral of the velocity v in (4), as x = s(t, vnl), where s :
R+ × R+ → R is obtained by direct integration as

s(t, vnl) =
a1
a2

(
t+

1

a2

(
e−a2t − 1

))
.

Note that the release time at which the motor temporar-
ily ceases operation, tr = σ(vnl) is defined implicitly by
xr = s(σ(vnl), vnl). It is easy to show via the implicit function

3“Control scheme” here refers to the policy or rule that controls the on/off
switching schedule in intermittent operation.
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Figure 1. Average climbing speed under periodic intermittent operation as
a function of G for Maxon EC45 Flatmotor 251601 [9], showing the (lower)
bounds on gear ratio imposed by our proposed method, and following the
continuously permissible current specification. The black curve here is that
obtained from the mass dynamics in III-C1, and as such over-estimates the
climbing performance obtained when restricting current to icp.

theorem that σ(vnl) is indeed a function. We numerically find
an explicit form of tr by solving s(t, vnl) = xr. Let us also
define vr(vnl) := v(tr, vnl).

We seek to maximize the average intermittent velocity,

vi(vnl) =
xr +

v2r
2g

tr + vr
g

, (15)

but unlike in Section III-C1b, there is no easy calculus
solution. This function is not explicit, but we can numerically
find an optimal solution (using eg. interior point methods).

2) With Thermal Consequences: In III-C1 we found equa-
tions which generate our motor speed-torque trajectories,
parameterized by gear ratio G. By using a thermal model
for our motor and leveraging our freedom in G, we can
dynamically generate trajectories of operation—ensuring ther-
mal constraints are satisfied—based on a more abstract task
specification, using our thermal model in the analysis itself.

We use the thermal model formulation of III-A3, where
F (t, vnl) = mv̇(t, vnl) in (5) is given by the equations of
motion in III-A2.

For continuous operation in steady state, (5) and (7) give

ῑc(t, vnl) =
Rcoilv

2
nl(mg)2

K2
Tω

2
nl

, (16)

while for intermittent operation with stride length xr as defined
in Section III-C1b, we get

ῑi =
Rcoilv

2
nlm

2

K2
Tω

2
nl(tr + vr/g)

∫ tr

0

(
g + a1e

−a2t
)2
dt. (17)

Using (16) or (17) in (8) we can compute the temperature
rise and limit our optimization in Section III-C to gear ratios
that keep the core temperature under acceptable limits.4

4Note that, intuitively, an arbitrarily large gear ratio will allow any force
to be generated with very small motor currents. Thus, there always exists a
“feasible” gear ratio.



IV. SIMULATION RESULTS

In order to test our motor sizing method for use in practice,
we performed numerical trials on all of the motors in [9].
We envision that these simulations will not only enable robot
designers to pick out exactly which commercially available
motor to use for their robot, but also give feedback about the
type of gearbox needed as well as the performance to expect.

A. Comparing Motor-Sizing Methods

A central contribution of this paper is the use of a dynamical
systems task model that yields a closed form family of trajec-
tories over all possible intitial conditions, and, hence, enables
motor and gearbox selection over the entire family. Absent this
analytically determined design insight, the recourse would be
to approximate the “typical” robot speed-torque requirements
across a range of “reasonable” example trajectories and iterate
through motor/gearbox combinations. Here we assume that
the ideas of III-C1 are being used, and compare the effect of
including the thermal model of III-C2 in the design process.

We use our simulation to find the best possible vertical
climbing (average) speed that can be obtained by picking the
gear ratio (a) without thermal considerations, (b) using the
continuously permissible current motor specification, and (c)
with a dynamic thermal model (cf. III-C2).

For a specific motor, Fig. 1 demonstrates the nature of the
objective function (15) as a function of G, as well as the
lower bounds imposed by our thermal constraint (cf. III-C2),
as well as that required to keep motor current under icp.
Note that the latter is more restrictive, while disregarding
the constraint entirely gives the best performance (albeit,
unacceptably damaging to the motor).

See Fig. 2 for a scatter plot of performance exhibited by
the motors in these cases. Note that we have limited the
motors displayed to those that can perform the task with a
reduction G ≤ 100. This restricts our results to those motors
for which the task parameters (mass and stride length) are
roughly appropriate5 to the size of the motor.

For our simulations of intermittent operation, we chose the
periodic leaping motion defined by fixing a “stride length” as
described in Section III-C1b.

We compare our results with those obtained by limiting
motor coil current to be under the “continuously permissible
current” motor specification, icp. In continuous operation,
motor force F = mg, and we need to ensure

im =
vnlmg

KTωnl
≤ icp =⇒ vnl ≤

icpKTωnl

mg

From the result in Fig. 2-A we see that in continuous
operation, not considering the thermal effects in the design
process [13] allows us to pick a gear ratio which promises very
good performance, but would result in thermal damage to the

5Situations like (for eg.) a nominal 1W motor attempting to cause a 50kg
mass to leap result in extreme gear ratios and/or performance figures that are
difficult to represent (owing to plot axis scaling) and phyically impractical.
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Figure 2. A comparison of the best vertical climbing performance possible
picking the gear reduction with the method proposed in this paper, and con-
ventional methods (no thermal constraint, and using continuously permissible
current), in continuous (A) and intermittent (B) operation.

motor.6 More interestingly, our method allows us to achieve
higher performance than is reachable by restricting motor coil
current to values below the continuously permissible current
specification of the motor [12], [7].

For intermittent operation with a fixed voltage, note that
the motor must start from its stall torque (irrespective of the
reduction ratio). This means that it is impossible to ensure that
the coil current is under the continuously permissible current
spec. We chose a slightly less naı̈ve control strategy that uses
varying voltage to keep the motor current under icp. Once
the trajectory reaches the highest speed-torque curve (voltage
is equal to the maximum supply voltage), we use the same
equations as in Section III-C1b.

From the performance results displayed in Fig. 2, we note
that gearbox selection using a dynamic thermal model (cf.
III-C2) results in average vertical speed improvement (mean
± std. dev.) of 21.6%±19.0% (continuous) and 27.7%±12.3%
(intermittent) when compared to restricting coil current to
icp. The maximum improvement seen in intermittent oper-
ation was 57.6%. Thus, by explicitly considering thermal
behavior instead of simply restricting current to continuously
permissible levels, we achieved notably better performance
and correspondingly, higher average motor power outputs.

The additional performance improvements from our opti-
mization in the intermittent case are attributable to taking

6From the analysis of Section III-C2, the blue (*) points correspond to the
fastest average speed that can be obtained without overheating the motor core,
so all the green (×) points that lie above blue (*) points indicate a gearbox
selection that will result in thermal damage.
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Figure 3. Optimal gear ratios for a subset of the motors, showing how adding
the thermal constraints requires a higher reduction. Note that there are fewer
motors shown in B as several motors from [9] required a much higher gear
ratio due to the intermittence penalty described in Section III-B.

advantage of the short “refractory periods.” While the torque-
restricted climber is limited to its continuously permissible
current at all times, our thermal model permits us to select
a gearbox with the expectation of exceeding the continu-
ously acceptable current and then “resting.” These benefits
would undoubtedly be amplified were we to consider thermal
constraints over a task with a finite completion time (eg. a
specified number of strides), as the thermally optimal behavior
would expend a “thermal budget” over the duration of the task,
an effect not seen here due to the infinite task timeline.

B. Thermal Considerations and Gearbox Selection

In Fig. 3, we see the effect our thermal constraint has on
the selection of vnl, and thus G. Adding thermal considerations
necessitates choosing a higher G in order to keep motor torque
(and current) lower for the same output torque. Thus, all data
points are to the right of the 45◦-line in both parts of Fig.
3. Intermittent operation carries an inherent thermal “penalty”
(see Section III-B), resulting in a further rightward shift of the
data points from Fig. 3-A to Fig. 3-B.

We envision that information similar to what is presented
above will be useful to the designer for (a) the identification
of motors which can fulfil a given task without needing
to recourse to a physically unreasonable gear ratio, and (b)
gearbox selection for a specific motor.

V. CONCLUSION

We have outlined a principled approach (if not an algorithm)
to tackle the coupled problems of motor and gearbox selection
from both mechanical and thermal dynamic perspectives. In
so doing, we introduce a novel concept of task specification
and proceed by leveraging optimization, dynamic simulation,
and analysis tools. We achieve an analytical result, relevant to
any task reasonably well characterized by our simple vertical
leaping dynamics, demonstrating the cost of intermittent motor
operation. Our result further justifies roboticists’ previous
work on the introduction of passive-elastic energy storage
to enable more continuous actuator power delivery [4], [14],
and gives strong motivation to promote—through mechanical
design—an approximately constant motor speed.

To develop and demonstrate our method, we used as an ex-
ample a 1-DOF vertical climbing robot (with trivial dynamics).
Even though this task appears restrictive, it generates motor
trajectories across a broad range of regimes in the (fixed-
voltage) speed-torque operational plane. Even for applications
with strikingly different requirements, a computation akin to
III-C can be used to determine the set of motor characteristics
that play a similarly crucial role in affecting the execution
quality of that task, as well as enable the development of
motor-gearbox selection aids akin to Figs. 2-3.
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APPENDIX A
PROOF OF INTERMITTENCE PENALTY

Equal average mechanical power output implies (from 10)∫
A

Fividt =

∫
T

Fcvcdt. (18)

For steady state rolling, Fc = mg. Suppose the height
gained in continual operation is h. Then the right hand side
of (10) is equal to mgh.

Combining these with the motor kinematics (3), we get

Fs,i

∫
A

vi

(
1− vi

vnl,i

)
dt = mgh,

or ∫
A

(
− vi
vnl,i

+
v2i
v2nl,i

)
dt = −mgh

4P
, (19)

remembering from (1) that Fs,ivnl,i = 4P where P is the
constant peak motor power (irrespective of gearbox).

The discrepancy in average thermal power output is,

D =

∫
A

(
1− vi

vnl,i

)2

dt−
∫
T

(
1− vc

vnl,c

)2

dt

=

∫
A

(
1− 2vi

vnl,i
+

v2i
v2nl,i

)
dt− mg

Fs,c

(
1− vc

vnl,c

)∫
T

dt.

(20)

In the mass dynamics from (11),∫
T

mv̇i dt =

∫
A

Fi dt−
∫
T

mg dt

=⇒
∫
A

Fi dt = mg|T |. (21)

We assumed here that the net change in momentum of the
mass over the interval is zero. This will obviously happen if
the intermittent motion is periodic and the time interval covers
a whole number of periods.

Using this in (9),

D =

∫
A

(
1− vi

vnl,i

)
dt− mgh

4P
−
(
mg|T |
Fs,c

− mg(|T |vc)
Fs,cvnl,c

)
=

∫
A

Fi
Fs,i

dt− mg|T |
Fs,c

, (22)

where we used the notation |T | =
∫
T
dt, noted that |T |vc = h,

Fs,cvnl,c = 4P , and used (19) above. Now using (21), we get
(12).

APPENDIX B
ARGUMENT THAT vMAX INCREASES WITH vNL

The reasoning is that, for continual operation, it must be
true that we were thermally limited.7 Recall from (5) that the
RMS thermal constraint gives an upper bound on vnl If (13)

7If continual operation were not thermally limited, we could set our
reduction ratio so as to harvest the peak motor power for the whole interval
T . In this case, it would be impossible for intermittent operation to match it.

were not true, in the continual operation case we could get
better performance by reducing vnl, which is a contradiction
because we assume we are already operating at the optimal
vnl.
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