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ABSTRACT

This paper presents preliminary results of a semi-autonomous building exploration behavior using the hexapedal
robot RHex. Stairwells are used in virtually all multi-floor buildings, and so in order for a mobile robot to ef-
fectively explore, map, clear, monitor, or patrol such buildings it must be able to ascend and descend stairwells.
However most conventional mobile robots based on a wheeled platform are unable to traverse stairwells, moti-
vating use of the more mobile legged machine. This semi-autonomous behavior uses a human driver to provide
steering input to the robot, as would be the case in, e.g., a tele-operated building exploration mission. The gait
selection and transitions between the walking and stair climbing gaits are entirely autonomous. This implemen-
tation uses an RGBD camera for stair acquisition, which offers several advantages over a previously documented
detector based on a laser range finder, including significantly reduced acquisition time. The sensor package used
here also allows for considerable expansion of this behavior. For example, complete automation of the building
exploration task driven by a mapping algorithm and higher level planner is presently under development.
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1. INTRODUCTION

This paper documents experiments with a guarded exploration behavior dealing primarily with automated gait
selection driven by a robust vision-based stairwell detector. The behavior is been implemented on the X-RHex!
version of the RHex? platform, which offers a longer possible runtime and greater payload carrying capacity than
other RHex variants. The sensor payload used for these experiments consists of an RGBD Camera*, an IMUT,
and an additional computer? to supplement the one onboard.

Urban search and rescue (USAR) and intelligence, surveillance, reconnaissance (ISR) tasks are well established
applications of teleoperated mobile robots. Whereas full autonomy is not always needed, the benefits of ‘human-
in-the-loop’ control® rely upon a lower level of sensorimotor autonomy, which is required to eliminate the need
for operator skill and prior training with the robotic platform,* and to free attention for focus on the intrinsic
requirements of the task. In the setting of this paper, gait selection and transition control are automated so that
the operator’s experience is more similar to driving an RC car, obviating any need for familiarity with body and
leg kinematics and dynamics.

The sensor used here offers many advantages over a previous implementation which utilized a laser scanner.?

The RGBD camera returns 2D images, eliminating the need for the ‘pitch wiggle’®:” used along with the LIDAR
sensor. This greatly decreases the time it takes to find stairs, since the ‘pitch wiggle’ can only be executed while
RHex is stationary. Such ‘while-navigating’ autonomy enables more seamless interactions between robot and
operator than were possible before, and it has been implemented in a way that is platform agnostic, allowing
for simple adaptations to other robots. A conventional digital camera could also be used to enable this sort of
autonomy,® but the RGBD camera should allow for better stair detection in poorly lit environments, which can
be expected during building exploration tasks.

*ASUS XTion PRO Camera http://www.asus.com/Multimedia/Xtion_PRO/
"Microstrain 3DM-GX3-25 IMU http://www.microstrain.com/inertial/3DM-GX3-25
fApple Mac Mini https://www.apple.com/mac-mini/


http://www.asus.com/Multimedia/Xtion_PRO/
http://www.microstrain.com/inertial/3DM-GX3-25
https://www.apple.com/mac-mini/

2. DESCRIPTION OF SEMI-AUTONOMOUS BEHAVIOR

The behavior presented here consists of three distinct parts: the stair detector, the semi—autonomous gait selector,
and the stair climbing transition and gait,? %19 which have been described previously. All computing is done on
either the payload computer or robot computer itself. The equipment setup used to run this behavior is shown
in Fig. 1, and the mass breakdown is listed in Table 1. This behavior requires a human operator to guide the
robot when away from stairs and on landings (whence the “semi-autonomous” title).
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Figure 1. RHex displaying its payload (Mac Mini, RGBD camera, IMU) while climbing

Table 1. Mass of the robot and its payload

X-RHex + 1 battery 9.057 kg
Mac Mini (w/ mount) 1.897 kg
RGBD camera (w/ mount) | .325 kg
IMU .052 kg
Total mass 11.327 kg

2.1 Stair detection algorithm

The first goal of the stair detection procedure is to determine whether a staircase appears in a given RGBD
image acquired by the robot. If a staircase is detected the detector must return estimates for the position and
orientation of the start of the staircase along with the rise and run of the steps.

Fig. 2 shows an RGBD image acquired an ASUS Xtion sensor mounted on the robot; in this case the frame
contains a staircase which the system must detect and localize. In the experimental setup the optical axis of the
depth camera was approximately parallel to the ground plane. This allows ready extraction of feature points in
the depth frame that correspond to vertical surfaces like walls and stair risers by considering the surface normals
in the depth image.

Once the vertical surface elements have been identified the second phase of the analysis procedure seeks to
estimate the dominant rectilinear structure of the scene. This can be done by employing the entropy compass
idea described in [11, Section II]. Consider the 2D point set obtained by projecting all of the vertical surface



Figure 2. Example RGBD frame containing a staircase.

elements onto the ground plane, then rotate this set of points around the vertical axis in 1 degree increments,
and for each such yaw angle compute the entropy of the X and Y coordinates. When plotting the sum of
these entropies as a function of angle, the global minimum reliably corresponds to the dominant orientation of
the structure. The detection algorithm extracts this angle and uses it to automatically produce axis aligned
coordinates as shown in Fig. 3. Note that the lines inscribed on this figure correspond to salient axis-aligned
surfaces that are automatically discovered by the system. In this case these surfaces correspond to the stair
risers, the supporting wall and the staircase banister. Note that in this figure the stair risers and the walls are
aligned with the X and Y axes which simplifies subsequent analysis.
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Figure 3. This figure shows an overhead view of the scene after the axis alignment procedure. Note that the salient vertical
surfaces, the walls and the stair risers are now aligned with the x and y axes which simplifies subsequent analysis.

To detect stair patterns, the algorithm considers each column of the image in turn. Fig. 4 shows a plot of
the depth values as a function of row index for one such column in the middle of the image. Notice that this
particular column exhibits a canonical pattern corresponding to a staircase where the depth values change in
a predictable pattern as the row index increases. The analysis procedure considers the derivative of this signal
and seeks to identify a set of regularly spaced spikes corresponding to the stair edges. If it finds a sequence of
3 or more such stair edges it decides that the image contains a staircase. The magnitude and spacing of the
discontinuities in the depth profile are used to calculate the rise and run of the steps. These measurements are
currently only used to reject structures which have stair-like features but are outside of typical stair sizes.

Once a staircase has been detected in the image the system tries to find significant wall surfaces that are
perpendicular to the detected stair risers and constrain the width of the staircase. In Fig. 3 the red lines indicate
the two surfaces that the system discovered for this example staircase image.

Note that since the entropy compass procedure produces an angle, the robot is able to gauge its position and
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Figure 4. This figure shows how the depth varies as a function of row index for one of the columns in the middle of the
image. Note the characteristic stair case pattern which the code seeks to detect.

orientation relative to the staircase, and these estimates are used in the control procedure to guide the robot to
a suitable starting point to begin its climb.

Table 2 shows the current performance of the detector based on measurements of the rise and run of a set of
stairs. All of the measurements are slightly lower than the ground truth, and there is some variation based on
the sensor’s position.

Table 2. Stair measurements, robot measurements calculated from depth camera

Measurement method Rise (cm) | Run (cm)
Ground truth 18.0 28.0
Robot sitting, 1.15m from 1st step 16.2 26.2
Robot standing, 1.15m from 1st step | 15.5 26.0
Robot sitting, .5m from 1st step 15.5 26.8
Robot standing, .5m from 1st step 16.0 27.0

2.2 Semi—autonomous gait selection

The gait selection behavior runs directly on the robot computer, as an operator provides speed and steering
inputs using a joystick over a wireless connection. While RHex is driven around, the gait selector polls the stair
detector at a frequency of about 1 Hz. The actual detection algorithm completes much more quickly than this,
but this rate was found to be generally sufficient at walking speeds through cluttered environments. When a
set of stairs is in view, the gait selection behavior checks the robot’s distance from the first stair and angle with
respect to the axis of the flight of steps. If the distance and angle are within a predetermined range of acceptable
values, the gait selector activates the stair gait transition [10, Section IV.A], and user control is disabled. This
range of values was determined by manually activating the stair climbing gait with RHex at various distances
and angles from a set of stairs and observing which initial conditions allowed for reliably successful transitions
onto the first step. While climbing, the camera is not used, but it would be suitable for obstacle detection and
mapping. When the robot determines that it has reached a landing based on readings from its IMU [5, Section
IT1.B.1], navigational control returns to the operator and the selector re-enables the stair detection algorithm.



3. METHODS AND RESULTS

The semi—autonomous behavior was tested on a variety of stairwells around the University of Pennsylvania and
Fort Indiantown Gap, Range 30%. A trial consists of a simulated building exploration task, wherein the operator
steers RHex around open areas, rooms, and landings as well as stairwells. On each floor, the operator again
explores the surrounding areas before returning to the stairwell. For this reason, the trial times listed in Table 3
are much longer than they would be if the goal of these tests was to reach the top floor as quickly as possible.
As a comparison, note that while the stair A and D trials cover the same number of steps, the stair D trials were
completed much faster because there were no open areas to traverse between flights.

We attempted to find stairwells with varied features to test the behavior. Stairwells A and B (which had
identical steps, but different landings and steps per flight) were made of extremely smooth concrete and each step
had a rounded nose. These were also steepest steps used in these tests. For these reasons, RHex slipped while
executing the stair climbing gait (that is, the robot slid back about half a step before recovering and continuing
to climb) rather frequently. The total number of slips has been listed for each of the 6 trials. All of the other
stairwells had sharp noses, and the construction materials (stone, unpolished cement, rough tread) offer a higher
coefficient of friction. Fig. 5 shows the collection of stairs used during the trials.

Figure 5. Stairs used to test the semi—autonomous behavior

Overall, the robot climbed 76 flights totaling 713 steps with only 6 climbing failures (of which 2 were recovered
from without operator intervention). Out of the 76 flights, there were separate 3 instances where the behavior
failed to activate the stair climbing transition in time, and all of these instances occurred after making a very
tight turn. This issue could likely be fixed by slightly increasing the sampling rate of the detection algorithm.
Between climbing and behavior failures, RHex faulted on 11.8% (9/76) of all flights climbed. Apart from those
two failure areas, RHex slipped on 3.7% (26/713) of all steps or 10.4% (26/249) of steps in stairwells A and B.
Slipping is not considered a failure for these experiments because it did halt the robot’s progress. It is also worth
noting that all of the stairwell C and D trials were conducted during one 55 minute period when the robot and
payload were continuously powered by a single battery. The X-RHex variation of the RHex platform is capable
of carrying two batteries at a time, so this robot and behavior should be suitable for the execution of lengthy
tasks.

Throughout several hours of testing in environments with typical building clutter (e.g. desks, chairs, pillars),
the only false positive stair detection occurred outside of normal use when the camera was turned on its side and
held at a shallow angle with respect to a set of parallel bars. This implies that horizontal bars on the ground
(e.g. a sewer grate) could potentially cause a false positive, however this source of error has since been mitigated

Shttp://ftig.ng.mil/training/Pages/default.aspx
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Table 3. Results from 15 trials of the semi—autonomous behavior. The number of steps per flight varied within a trial, and
so those numbers are not shown here. Instead the number of flights is given to provide a measure of the stair detector’s
success (with 76 total flights climbed), and the number of stairs per trial is shown to emphasize the robot’s endurance
(total of 713 stairs climbed over 98:24 minutes). This behavior is relatively capable of ignoring the specific structure of a
stairwell; stair E has the minimum slope of 0.53, and stairs A&B have the maximum slope of 0.64.

Trial Rise - Run Flights  Stairs Time Notes
(cm)  (cm) (mm:ss)

Transition onto first step failed once, behavior

Stair A-1 | 18.0  28.0 9 63 12:17 automatically reacquired stairs and was
successful on second attempt, 8 slips
Robot scraped along wall for one flight of

Stair A-2 | 18.0 28.0 9 63 12:09 stairs due to poor steering (operator error),
behavior successful regardless, 8 slips

Stair A3 | 180 280 9 63 13:45 Tragsition out of §tair climbing stalled. once,
walking phase activated manually, 4 slips
One stair detection failure due to sensor

. timing after making a sharp turn, one

Stair B-1 180 28.0 2 20 5:20 transigtion failure Wghere RI‘%)QX nearly walked
off open edge of stairwell, 2 slips

Stair B-2 | 18.0  28.0 2 20 3:50 Route avoided sharp turn, no faults, 0 slips

Stair B-3 | 18.0  28.0 2 20 3:30 Same route as in B-1, no faults, 4 slips

Stair C-1 | 173 316 9 97 3:39 Flipped on transition to 3rd~ flight, smashed
camera mount and ended trial

Stair C-2 | 173 31.6 4 55 548 Broke rear left leg climbing final step, trial
succeeded regardless

Stair C-3 | 173 316 4 55 5:39 Nearly pijcched back during one transition,
operator intervened to prevent damage
Detector twice missed stairs after rounding a

Stair D-1 | 174  30.9 6 63 5:19 sharp corner, operator reset on landing and
behavior continued successfully

Stair D-2 | 17.4  30.9 6 63 4:54 No faults
Transition onto first step failed once, behavior

Stair D-3 | 174  30.9 6 63 5:16 automatically reacquired stairs and was
successful on second attempt

Stair E-1 | 16.8  31.8 5 46 5:44 No faults

Stair E-2 16.8 318 5 46 5:51 No faults

Stair E-3 | 16.8  31.8 5 46 5:30 No faults

by ignoring ‘stairs’ where the step sizes as returned by the detection algorithm are outside of an expected range.
Other than this single forced instance, there were no false positive detections during any of the trials.

An additional set of trials was conducted to examine the sensitivity of the semi—autonomous behavior to the
mass distribution of the robot and payload. For these trials, RHex transitions to the stair climbing gait and
climbs three steps of a stair C flight. Only three steps are used because any transition failures happened during
the transition itself or on the first step after the transition. X-RHex’s payload position and battery configuration
(single battery in front, single battery in back, both batteries) were varied, with each setup being tested 20
times. A summary of these trials is presented in Table 4. With the COM positioned behind the center of the
robot, RHex failed to transition onto the stairs 64% (90/140) of the time. Otherwise, the robot only failed
on 3% (5/160) of all attempts. However, the front battery/-12 cm and both battery/-6 cm configurations had
very similar COM positions, but significantly different failure rates (65% vs 15%). Thus the success of the gait
transition is highly dependent on not just the location of the robot’s center of mass (COM) but also on the
actual weight distribution of the robot and payload. All of the exploration trials (Table 3) were performed in
the front battery/+12 cm configuration.



Table 4. Summary of COM effect on transition failure rate. Positions are measured in cm from the center of the robot
frame, which coincides with its COM when no payload is installed and both battery bays are full (or empty). Specifically,
the payload position is the forward displacement of the payload mount’s midpoint with respect to the robot’s center.
The vertical displacement of the COM is +1.47 cm with both batteries installed or +1.61 cm with a single battery. Each
configuration was tested 20 times (300 total trials).

Payload Front battery Both batteries Rear battery
position -12 -6 0 +6 +12 | -12 -6 0 +6 +12 | -12 -6 0 +6  +12
COM pos | -1.0 +0.2 +14 +26 +38|-22 -1.1 0 +1.1 +22|-38 -26 -14 -02 +1.0
Failures 13 0 0 1 1 17 3 1 0 1 20 18 17 2 1

4. CONCLUSION AND FUTURE WORK

We have demonstrated success of a limited semi—autonomous exploration behavior using a camera sensor which
allows for significant future expansion. In the current setup, stair acquisition can be performed without needing
to stop and process the robot’s surroundings. With the previous sensor, this type of ‘mobile’ autonomy would not
be possible. The camera also allows for the creation of more detailed maps than are possible with the LIDAR.
Thus the new sensor morphology has enabled investigation of an enhanced level of autonomy, and this behavior
is the first step towards further abstraction of the robot’s dynamics from a teleoperator or even possibly full
autonomy.

The practical utility of this behavior in the targeted application scenarios awaits the addition of a stair descent
controller,? as well as more sophisticated navigational capabilities (such as mapping, localization and obstacle
avoidance), all of which are achievable with the current payload. As shown, the stair gait transition is prone to
failure based on the location of the payload. To increase the reliability of the transition, and hence the usability
of the behavior, the stair climbing gait will be reworked to account for pitch control (informed by the sensor’s
stair dimension estimates) while climbing rather than relying on the present fixed gait. The stair detector’s
performance deteriorates as the camera gets washed out by sunlight, so it typically only works indoors or in
shadow — and any surfaces that reflect IR light are likely to degrade its performance. The detection algorithm
also does not currently work on stairs with open risers. The light and reflectance sensitivity will always be
problematic with this choice of sensor, but the restrictive geometric assumptions can likely be improved upon
with future updates to the detector.
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