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Abstract

We have built a 12DOF, passive-compliant legged, tailed biped actuated by four brushless DC motors. We

anticipate that this machine will achieve varied modes of quasistatic and dynamic balance, enabling a broad

range of locomotion tasks including sitting, standing, walking, hopping, running, turning, leaping, and more.

Achieving this diversity of behavior with a single under-actuated body, requires a correspondingly diverse array

of controllers, motivating our interest in compositional techniques that promote mixing and reuse of a relatively

few base constituents to achieve a combinatorially growing array of available choices. Here we report on the

development of one important example of such a behavioral programming method, the construction of a novel

monopedal sagittal plane hopping gait through parallel composition of four decoupled 1DOF base controllers.

For this example behavior, the legs are locked in phase and the body is fastened to a boom to restrict motion to

the sagittal plane. The platform’s locomotion is powered by the hip motor that adjusts leg touchdown angle in flight

and balance in stance, along with a tail motor that adjusts body shape in flight and drives energy into the passive

leg shank spring during stance. The motor control signals arise from the application in parallel of four simple,

completely decoupled 1DOF feedback laws that provably stabilize in isolation four corresponding 1DOF abstract

reference plants. Each of these abstract 1DOF closed loop dynamics represents some simple but crucial specific

component of the locomotion task at hand. We present a partial proof of correctness for this parallel composition

of template reference systems along with data from the physical platform suggesting these templates are anchored

as evidenced by the correspondence of their characteristic motions with a suitably transformed image of traces

from the physical platform.

I. INTRODUCTION

The control of power-autonomous, dynamic legged robots that have a high number of degrees of freedom

(DOF) is made difficult by a number of factors including (a) under-actuation necessitated by power-

density constraints, (b) the existence of significant inertial coupling and Coriolis forces that are hard or

impossible to cancel, (c) variable ground affordance, (d) often hard-to-measure and necessarily rapid hybrid

transitions. In the face of these challenges, some popular methods of controller design, such as hybrid

zero dynamics [2]—which are “exact” in their domain of applicability but require extremely accurate

qualitative and quantitative models—may be challenging to implement in unstructured environments or on

imperfectly characterized machines. Similarly, methods depending on local linearizations of the typically

(highly) nonlinear dynamics found in dynamically dexterous locomotion and manipulation systems [3], [4]

typically suffer from small basins of attraction [5] and (to our knowledge) high sensitivity to parameters.1

Observation (a) suggests that modularity of operation (i.e., wherein different combinations of actuators

are used to effect distinctly different dynamical goals at different stages within the task cycle) will be a

hallmark of practical locomotion platforms. Observations (b) and (c) imply that simpler, less exact but

potentially more robust representations of the principal dynamical effects likely to prevail across a wide

range of substrates may offer a tractable means of working with rather than fighting against, or learning
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1In some robotics settings these disadvantages of the exact or local linearized control paradigm can be effectively remedied by recourse to

parameter adaptation [6], but in our experience, such methods are too “laggy” to work in this hybrid dynamics domain with its intrinsically

abrupt and rapidly switching characteristics.
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Figure 1. Control of a hopping behavior expressed as a hierarchical composition of closed-loop templates. Notionally, the grey arrows

represent directed templateÑanchor relations. Center: A model of the tailed monoped physical platform on which we implement tail-

energized planar hopping, labeled with configuration variables (black), actuators (red), and model parameters (blue).

Figure 2. Snapshots from apex to apex of tail-energized planar hopping (§V) implemented on a new robot platform—the Penn Jerboa (§VI).

exactly the highly varied dynamical details. Observation (d) implies that higher authority sensorimotor

control activity ought to target continuous phases of the locomotion cycle, leaving the transition event

interventions to more passive and mechanical sources of regulation [7]. In sum, these observations motivate

the search for modular, reduced order representations of locomotion task constituents that are specialized

to couple selected actuation affordances to particular DOFs at particular phases of the locomotion cycle.

The value of such component task representatives remains hostage to the availability of methods for

composing them in a stable manner.

This report introduces a novel locomotion platform, the Penn Jerboa, Fig. 7, to put a slowly maturing

formalism for the composition of such modules to a practical test. We adopt the template-anchor2 frame-

work [10] to represent this machine’s 4DOF steady sagittal plane running as the hierarchical composition

of the low DOF constituents depicted in Fig. 1. At the leaves of this hierarchy tree, we introduce four

different 1DOF templates that emerge from the decades old bioinspired running literature [4], [11], joined

by a new arrival from recent work on bioinspired tails [12], [13]. We apply the four decoupled 1DOF

control laws associated with these isolated “leaf” templates directly to the (highly dynamically coupled)

physical platform and demonstrate empirically steady sagittal plane running (on a circular boom) whose

body motions reveal, when viewed in the appropriate coordinates, Fig. 15, striking similarity to the

2 The template-anchor relation as exemplied in various physical [5], [8] and numerical [9] studies associates a pair of smooth vector fields,

fT, fA on a pair of smooth spaces, T Ă A via the condition that T is an attracting invariant submanifold of the anchor field, fA, whose

restriction dynamics is conjugate to that of the template field, fT „ fA|T (where „ denotes equivalence up to smooth change of coordinates).

In this paper, we are dealing with hybrid fields and flows for which the extended definition and its verification is a bit more intricate. Thus

exceeding the scope and length constraints of the present paper, we will treat the hybrid template-anchor relation as an intuitive notion here.



corresponding isolated 1DOF constituents. We show (up to a still unproven technical conjecture) that the

appropriate two pairs of these four 1DOF leaf templates are formally anchored by the two “interior” 2DOF

templates depicted in Fig. 1, in the sense that the 1DOF systems define attracting invariant submanifolds

of the 2DOF systems that exhibit conjugate restriction dynamics. We conjecture, as well, that the two

interior nodes (the 2DOF templates) of the figure are in turn formally anchored by a physically realistic

dynamical model of the closed loop Penn Jerboa in the sagittal plane. The data of Fig. 15 support this

hypothesis, but we have not yet succeeded in completing the proof beyond the embedding and invariance

properties.

Notwithstanding the specifics of our compositional approach to its control, we believe that the new

physical platform is itself of independent interest by virtue of its added appendage (the “tail”), opening

up a multiplicity of diverse uses for both of its two revolute actuators. Note again, however, this diversity of

uses cannot be achieved without some recourse to behavioral modularity. In that light, we are particularly

attracted by these simple low-DOF template controllers. In our experience, such constructions have the

hope of succeeding in unstructured outdoor settings, since they build on the relatively robust template

dynamics.

A. Relation to Prior Literature

This “compositional” method of controller synthesis was pioneered empirically by Raibert [14] for

planar and 3D hopping machines, and we develop our planar hopping behavior by building up from those

ideas. Our physical platform (Fig. 1 center) forgoes Raibert’s prismatic shank actuator, and instead places

that actuator in an inertial appendage. This motivates us to explore how tails can be “recycled” from their

transitional agility duties [12], [13], now repurposed to substitute for Raibert’s shank actuator and play the

role of steady-state running energizer in the sagittal plane. Apart from their use in transitional maneuvers

(inertial control in free-falling lizards [15] and robots [12], [13] or in turning lizards [16] and robots [17])

it has recently been discovered that kanagaroos do positive work with their tails in a quasistatic pentapedal

gait [18]. In our implementation, the tail contributes the reorientation function in flight, and the energetic

“pump” function in stance (albeit in a dynamic fashion). We are not aware of prior robotic locomotion

work wherein a tail is used to help power the stance phase.

B. Contributions of the Paper

This paper contributes both to the theory and practice of dynamical legged locomotion.

The principal theoretical contributions are: (i) a new (slightly simplified) further abstraction (§III-C)

of the longstanding SLIP running model [4] as a formal cross-product of previously proposed vertical

[19] and fore-aft [20] templates; (ii) a stability proof (modulo a restrictive assumption 3) of the parallel

composition3 of Raibert’s [14] stepping controller (10) with our new energy pump (3) in Proposition 6;

and (iii) a proof of local stability in the inertial reorientation model (20) of the parallel composition (21)

of Raibert’s [14] pitch stabilizer and the tail reorientation controller [13] in Proposition 7.

The empirical contributions of the paper are: (i) design and implementation of a working tailed biped

platform, the Penn Jerboa (Fig. 7); (ii) physical demonstration of the (provably correct–Proposition 1)

oscillatory spring-energization scheme for vertical hopping; and (iii) experimental evidence supporting

the hypothesis that our final parallel composition of the four isolated controllers does indeed anchor the

corresponding templates in the Jerboa body (Fig. 15).

While the idea of parallel composition is appealing, the difficulty of such a composition arises from

the natural transfer of energy between different compartments [21]4 in a mechanical system operating

in a dynamical regime. In our setting, some degree of coupling across compartments is crucial to the

3By this term we mean the application to the (coupled) plant pspx, uq (§III-C) of a decoupled control law, u “ gvpx1q ˆ gfapx2q, taken

directly from (3), (10), respectively.
4We use this term here to stand for subsystems (here, disjoint subsets of the physical degrees of freedom) that exchange a resource (here,

energy).



Table I

LIST OF SYMBOLS

i P Z2 Hybrid mode, where 1 is stance, 2 is flight

D
‹
i Domain for template ‹ in mode i

f‹
i : D

‹
i Ñ TD‹

i Vector field in mode i

r‹
i : BD‹

i Ñ D
‹
i`1 Reset map from mode i to i ` 1

F ‹
i : D

‹
i Ñ BD‹

i Mode i flow evaluated at the next transition

F ‹ “ F ‹
2 ˝ F ‹

1 Return map at touchdown (TD) event

p‹
i px, uq Plant to which we apply u “ gipxq to get f‹

i

Id P R
dˆd Identity matrix of size d

J “
“
0 ´1
1 0

‰
Planar skew-symmetric matrix

ei P R
d ith standard basis vector

R : S1 Ñ SOp2q Map from angle to rotation matrix

Tx “ px, 9xq Tangent vector associated with x

Dxy Jacobian matrix Byi{Bxj

κ P R` SLIP radial velocity gain (§III-B2)

hκ P R Ñ R` Map from radial TD velocity to κ (§III-A1)

γ : R Ñ S1 Fore-aft model stance sweep angle (§III-B2)

β : R Ñ S1 Raibert touchdown angle function (10)

hw : R
2 Ñ R

2 Cartesian to Polar TD velocity (§III-C2)

Table II

TEMPLATE CONTROLLERS

Tail energy pump gv1pxq “ kt cosp=xq (3)

Raibert stepping [14] gfa2 p 9xq “ β˚p 9xq ` kpp 9x ´ 9x˚q (10)

Raibert pitch correction [14] g
p
1pa1, 9a1q “ ´kgka1 ´ kg 9a1 (21)

Shape reorientation [13] gsh2 pa2, 9a2q “ ´kgka2 ´ kg 9a2 (21)

underlying design concept of driving the leg spring through torques generated “far away” in the tail.

Thus, a naive approach of looking for exactly decoupled body dynamics is not fruitful5. Instead, we

analyze stability properties of (hybrid) closed-loop templates–which are not specifically associated to any

body–without paying attention to the input structure. In agreement with intuition, we find (§V-D) that

minimization of cross-template transfer of energy–through either the flows or the reset maps–results in a

successful composition.

II. PRELIMINARIES: ORGANIZATION AND NOTATION

Table I contains a list of important symbols in this paper, including a set of symbols for describing

hybrid dynamical systems. We adopt the modeling paradigm from Definition 1 in [22], representing a

hybrid dynamical system by the tuple pD, f, rq as defined in Table I. We only consider two hybrid modes

in this paper: ballistic flight, and a stance phase arising from a sticking contact at the “toe”.

Superscripts on each of these symbols denote the hybrid template that it is a part of, e.g. ‹v for controlled

vertical hopping (§III-A). The layout of the paper roughly reflects the template-anchor hierarchy depicted

in Fig. 1. Namely, there are two intermediate 2DOF templates—the SLIP, s, and the inertial reorientation,

a—-that comprise the tailed monoped, tm “ ts, au. They, in turn, are comprised of the vertical, v, and

5For instance, for hopping with the tailed monoped, the tail actuator and hip actuator seemingly work on differently “binned” tail and leg

DOFs, but we energize the robot body with the tail through the leg spring.



Table III

PHYSICAL PARAMETERS (ALL SCALARS UNLESS NOTED)

kt Tail gain (3)

kp Raibert speed controller gain (10)

k Inertial reorientation generalized damper gains (21)

kg Inertial reorientation graph error gain (21)

σ, ω Dissipation, frequency of spring-damper (§III-A)

ε Saturation parameter for tail controller (3))

εr Stability margin for vertical hopping (Proposition 6)

εa Arbitrarily small orientation error (Proposition 7)

mb, ib Mass, inertia of robot body (§V)

ρl, ρt Leg, tail link lengths (§III,V)

ks Hooke’s law leg spring constant (§III,V)

fore-aft, fa, 1DOF templates, s “ tv, fau, and respectively, the shape, sh, and pitch, p, 1DOF templates,

a “ tsh, pu. We endow the 1DOF templates at the lowest level with an exemplar plant, with respect to

which we will develop controllers for the four template plants, in isolation.

Sections III-IV present the 2DOF s, a templates that are directly anchored in the robot body (§V), and

within them contain descriptions of the subtemplates (e.g. §III-A, III-B)—as simple exemplar 1DOF

anchoring bodies and corresponding control laws—that comprise in isolation the constituent desired

limiting behaviors that we seek to embody simultaneously in our physical system. Each of the template

controllers in this suite is necessarily simple by dint of its origin as a feedback law for a highly

abstract 1DOF task exemplar. We hypothesize that this combination of algorithmic simplicity and task

specialization may lend robustness in the empirical setting since control policies are not sensitive to, and

certainly avoid cancellation of, forces arising from dynamical coupling in the anchoring body.

We emphasize that these coupling-naı̈ve feedback laws (summarized in Table II) are simply “played

back” (modulo scaling) in the 6DOF body (§V) with all its complicated true dynamical coupling. We

show formally through various propositions in this paper that nevertheless the stability of the templates

and subtemplates persists through composition for the distal segments of the tree (Fig. 1)—SLIP as a

composition of vertical hopping and fore-aft speed control, and attitude stabilization as a composition

of inertial reorientation and Raibert’s pitch control. We provide some preliminary suggestions about the

composition of SLIP (s) with attitude (a) compartments (center of Fig. 1), but a full analysis is left to

future work. However, we offer empirical data in §VI showing how this idea has resulted in promising

qualitative behavior on the Jerboa robot (Fig. 15, video attachment).

III. THE (2DOF) SLIP TEMPLATE

A. Controlled Vertical Hopping (1DOF)

For a successful hopping behavior, energy must be periodically injected into the robot body to com-

pensate for losses. We simplify the analysis here to a 1DOF vertically-constrained point-mass which

can alternate between stance phase (during which the actuator has affordance) and a ballistic (passive)

flight phase. It has been shown in the past empirically [14] and analytically [23] that an impulse at the

bottom of stance can produce a stable limit cycle, in the presence of a spring for energy storage. In this

paper, we consider a different strategy of an actuator forcing the damped spring by applying forces in a

phase-locked manner. This choice of input representative is made with an eye toward using a tail actuator

exerting inertial reaction forces on the spring (this model is formally instantiated §V). Intuitively, this can

be thought of as negative damping [19] (effectively cancelling losses by physical damping).

Throughout this paper, we make the following assumption inspired by [14]:
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Figure 3. Left: The vector field and an execution of (4), showing a stable limit cycle. Right: The vertical “energy” is easy to tune with kt.

Assumption 1 (Stance duration). The duration of stance, Ts, is approximately constant.

This essentially asserts that the damping losses or actuator forces are relatively small compared to the

spring-mass dynamics (in their effect on the liftoff condition).

We build upon the “linear spring” analysis in [23] for our vertical hopping exemplar body and closed-

loop template. For a spring-mass-damper system with spring deflection χ, damping coefficient β̄ and

natural frequency ω

:χ ` 2ωβ̄ 9χ ` ω2χ “ τ. (1)

With the change of coordinates x1 :“ χ, x2 :“ 9χ{ω,

9x “ pv1px, τq :“ ´ωJx ` eT2 p´2β̄ωx2 ` τ{ωq, (2)

and the hybrid reset events occur at x1 “ 0 (corresponding physically to the touchdown and liftoff events

at χ “ 0).

1) Oscillatory Spring Energization: We choose the physically motivated control strategy

τ :“ ktx2
}x}`ε

« kt cos=x, (3)

where ε ą 0 is a small saturation constant. It is clear in this form that the input is a fed-back version of

the “phase” only. We obtain the closed-loop stance dynamics

9x “ f v
1 pxq :“ ´ωJx `

´
´2β̄ω ` kt

ωp}x}`εq

¯
x2e2. (4)

Proposition 1 (Oscillatory energization stability). The vertical hopping template (4) has a unique attract-

ing periodic orbit.

Proof. First, note that x “ 0 is the only equilibrium of (4). Secondly, note that

xT 9x “ x22

´
´2β̄ω ` kt

ωp}x}`εq

¯
, (5)

which is zero on the set }x}˚ “ kt
2β̄ω2 ´ ε. Additionally, since xT 9x|}x}ă}x}˚ ą 0 and xT 9x|}x}ą}x}˚ ă 0, this

limit cycle is attracting.

Writing xpt, x0q to denote the flow generated by (1), and letting Spx0q :“ mintt ą 0 | eT1 xpt, x0q “ 0u
denote the stance time (since x1, vanishes exactly at the liftoff), we define the vertical stance map,

F v
1 p 9χq :“ eT2 xpSp 9χ, 0q, p 9χ, 0qq. (6)

As a corollary to Proposition 1, we know F v
1 has an asymptotically stable fixed point, 9χ˚, and ´1 ă

DF v
1 | 9χ˚ ă 1.



Ballistic flight simply reverses the velocity,

F v
2 p 9χq :“ ´ 9χ. (7)

Note that by symmetry (f v
1 , and consequently F v

1 are odd), F v
1 ˝F v

1 “ F v
2 ˝F v

1 ˝F v
2 ˝F v

1 , i.e. the stability

properties of the hybrid system are the same as that of the stance map as analyzed in Proposition 1. Define

κ “ hκp 9χq :“
´F v

1 p 9χq

9χ
, (8)

the effective coefficient of restitution through stance, or the so-called “velocity gain” during SLIP stance

[20]. Note that there is a unique fixed point, κ˚ “ 1, in these coordinates, which is necessary and sufficient

for the smooth invertibility of hκ, as can be seen by direct computation of its derivative.

Conjugating the touchdown velocity return map via this diffeomorphism, we can define a return map

for κ, F v,

F vpκq :“ hκ ˝ F v
2 ˝ F v

1 ˝ h´1
κ pκq “ hκpκh´1

κ pκqq. (9)

Proposition 2 (Vertical stability). The velocity gain return map, F v, has an asymptotically stable fixed

point, κ˚ :“ 1, and DF v|κ“1 “ ´DF v
1 | 9χ˚ .

Proof. This directly follows from the observation that κ and touchdown velocity are related by a diffeo,

Proposition 1, and the simple form of F v
2 in (7).

B. Controlled Fore-Aft Speed (1DOF)

Running and walking systems of a large variety from the sagittal or frontal plane resemble inverted

pendula during stance [4], usually controlled by stepping strategies. It has been shown that a fixed

touchdown angle can admit a reasonable basin of stability around an emergent attracting steady-state

velocity in SLIP [24]. The capture point [25] and zero moment point [26] methods use a quasistatic

heuristic which is related to these ideas, but are not explicitly designed to servo to desired nonzero

speeds. We attempt here to place the empirical success of [14] in the context of a model where its

stability properties can be analyzed.

1) The Raibert Stepping Controller: In his classical empirical study, Raibert [14] inspired decades of

subsequent experimentation and analysis by offering the following observations6 about the pendular stance

phase in his running machine travelling at forward speed, 9x, and stepping with a touchdown angle βp 9xq
(as in Fig. 4):

Assumption 2 (Raibert observations). (i) For each speed, 9x, there is a neutral7 touchdown angle, β˚p 9xq
(ii) this neutral angle is monotonic with speed, D 9xβ

˚ ą 0, and (iii) deviations from touchdown angle

cause negative acceleration, i.e. Dβp 9x` ´ 9xq|β“β˚ ă 0.

Proposition 3 (Raibert stepping controller). Under assumptions 2(i-iii), the Raibert stepping controller,

β : 9x ÞÑ β˚p 9xq ` kpp 9x ´ 9x˚q (10)

stabilizes the forward speed to 9x˚.

Proof. Note that

D 9xp 9x` ´ 9xq “ Dβp 9x` ´ 9xq ¨ D 9xβp 9xq

“ Dβp 9x` ´ 9xq ¨ pD 9xβ
˚ ` kpq

ùñ D 9x 9x`| 9x“ 9x˚ “ 1 ` Dβp 9x` ´ 9xq ¨ pD 9xβ
˚ ` kpq.

From the sign properties of various terms, we note that for small kp, ´1 ă D 9x 9x` ă 1.

6These conditions are not a direct result of SLIP’s nonlinear dynamics, but are applicable to regime of interest.
7In this context, “neutral” means 9x` “ 9x, where 9x` refers to the fore-aft speed at the subsequent touchdown event.
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Figure 4. A simple model for the 1DOF fore-aft dynamics in SLIP, closely related to BHop [20].

2) Modified BHop as a Fore-Aft Model: Building on existing SLIP literature [27], we make the

following assumptions about pendular stance:

Assumption 3 (Pendular stance). During stance, (i) the effects of gravity are negligible8 compared to

spring potential / damping forces, (ii) radial deflections are negligible, (iii) time of stance is constant,

and (iv) the angle swept by the leg admits a small-angle approximation.

Schwind [27] approximated that angular momentum about the toe is constant during stance, but we

simplify further with the second assumption, and conclude that the angular velocity is roughly constant

during stance. We adopt the third approximation from Raibert [14], and the last approximation is made

for the ensuing analytical simplifications in §V-D, but we find empirically (§VI) that it is not critical in

practice.

These assumptions lead directly to the construction of the following return map acting on touchdown

velocity in Cartesian coordinates (cf. Fig. 4). Then,

F spv, κq “ r 1
´1 sRp´γ ` βq r 1

´κ sRp´βqv

“ Rpγ ´ βq r 1
κ sRp´βqv, (11)

where κ (explicitly, the interaction from the radial component of SLIP) is taken to be a fixed parameter

at this stage, γpv1q « v1Ts
ρl

is the angle swept by the leg over the course of stance and βpv1q is the leg

touchdown angle (§III-B1). This model is only a slight modification9 of BHop [20].

This analytically tractable model (i) allows us to “separate” the radial dynamics (encapsulated in κ)

from the contributions of the fore-aft model itself, (ii) captures the exchange of vertical and horizontal

energy through stepping, and (iii) matches the empirically observed Raibert conditions (Fig. 5) as well as

empirical data (Fig. 15), suggesting it is physically applicable and not just an analytical convenience.

For now we restrict our attention to κ “ 1, and generalize to include the radial dynamics in §III. With

this restriction,

F fapvq :“ F spv, 1q “ Rpγ ´ 2βqv, (12)

While we choose to parameterize the return map as a function of v P R
2, it is really a 1D map:

Proposition 4 (Fore-aft stability). MBHop with the Raibert controller presents a stable touchdown return

map.

8We suspect that the less restrictive Geyer approximation [28] is sufficient, but leave this generalization to future work.
9Specifically, the similarities are apparent between (11) and (19) of [20]. The slightly discrepancy should be attributed to our insistence on

using the physical touchdown and sweep angles β and γ in the model, whereas the abstract parameter θ in [20] results in a more succinct

form.
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Figure 5. A contour plot of the fore-aft acceleration 9x` ´ 9x produced by the MBHop model for a range of fore-aft speed 9x and touchdown

angle β. This plot depicts that (in a range around the neutral angle), this model captures all the conditions of assumption 2.

Proof. We can check that F fa satisfies each of the Raibert conditions (Fig. 5), thereby concluding

automatically from Proposition 3 that the Raibert controller will ensure local stability.

Alternatively, the utility of our simple analytical model (11)-(12) is that we can directly compute the

stability properties under the Raibert controller (10),

DF fapvq :“ R ` JRv ¨ pDγ ´ 2DβqeT1 , (13)

where R is evaluated at γ ´ 2β. By inspection, the (desired) fixed point of (12) is β “ γ{2 (this is the

neutral touchdown angle). Evaluated at the fixed point,

DF fapv˚q “ I ´ 2kpJv
˚eT1 “

”
1`2kpv

˚
2 0

´2kpv
˚
1 1

ı
, (14)

which is lower-triangular. The eigenvalues are t1, 1 ` 2kpv
˚
2u, which capture the local stability of the

single fore-aft DOF (1 ` 2kpv2 ă 1) as well as the degeneracy of the map.

To see why the last statement is true, note that we can find a rank 1 map

ι : R2 Ñ R : v ÞÑ }v},

which is invariant to F fa, i.e. ι ” ι ˝ F fa. Taking a gradient of both sides and using the chain rule,

Dι|v “ Dι|F fapvq ¨ DF fa|v.

Evaluating at the fixed point v˚,

Dι|v˚ “ Dι|v˚ ¨ DF fa|v˚ ,

i.e. Dι|v˚ is a left eigenvector of DF fa|v˚ with unity eigenvalue.

Consequently, under iterations of this map, we get an invariant submanifold spanned by the orthogonal

complement of the unity eigenvector, resulting in a “dimension reduction” (to a codimension 1 submani-

fold). In our case, F fa is really a 1D map, even though its (co)domain in R
2.

C. SLIP as a Parallel Composition

In order to anchor our 1DOF templates in the classical SLIP model (2DOF point mass with 2DOF

springy leg), we simply “play back” our devised control schemes (Sections III-A and III-B). In the

following subsections, we check that the closed-loop executions in the higher-DOF body still resemble

a cross-product of our template behaviors. For instance, prior literature has observed a decomposition of

SLIP dynamics into radial and tangential components, but to our knowledge there is no complete account

of the stability of the parallelly composed (closed-loop) templates in these components.



1) Hybrid Dynamical Model of SLIP: We will construct our template plant model from [27]: a bead of

mass 1 at (Cartesian) coordinates pxs, zsq P R
2, with a springy (Hooke’s law spring constant ks) massless

leg of length10 θs2 P R` (where R` is restricted to strictly positive reals, and is open) and rest length ρl,

at an angle of θs1 P S1 from vertical. Let qs :“ pθs1, θ
s
2, x

s, zsq. Using assumption 3(iv) as a convenience

(though that assumption is not required for this formulation), the touchdown and lift-off conditions can

be specified in terms of the zeros of as :“ zs ´ ρl.

Define Qs
i :“ S1 ˆ R` ˆ R ˆ Ii, where R “ I1 \ I2 :“ p´8, ρls \ pρl,8q. Then, Ds

i :“ TQs
i, and

f s
1pqs, 9qsq :“

˜
9qs,

«
´

2 9θs
1

9θs
2

θs
2

θs2
9θs1
2

`kspρl´θ
s
2q

‹

ff¸
, (15)

f s
2pqs, 9qsq :“

´
9qs,

”
‹
0

´g

ı¯
, (16)

where the unspecified components are (i) the mass-center dynamics which are constrained by r x
s

zs s “

θs2

”
´ sin θs1
cos θs1

ı
in (15), and (ii) the degenerate massless leg dynamics in (16).

a) The Guard Set is BDs: Since Qs is itself a cross product of Euclidean spaces and Lie groups, we

can identify the tangent bundle with a cross product, TQs
i « Qs

i ˆ R
4. Then, the boundary of the product

space only contains parts from Ii, which corresponds exactly to the zeros of as (§III-C1).

b) Reset Maps: Let us define the functions

Cart : S1 ˆ R` Ñ R
2 :

“
θ1
θ2

‰
ÞÑ θ2

“
´ sin θ1
cos θ1

‰
(17)

Pol : R2 Ñ S1 ˆ R` : u ÞÑ
“

=u
}u}

‰
. (18)

The reset maps are defined as

rs1 : D
s Ñ Ds :

»
–

θ
9θ

rxz s
r 9x

9z s

fi
fl ÞÑ

«
θ
9θ

Cartpθq

DCart|θ¨ 9θ

ff
,

rs2 : D
s Ñ Ds :

»
–

θ
9θ

rxz s
r 9x

9z s

fi
fl ÞÑ

»
——–

Polprxz sq
DPol¨r 9x

9z s
r ´z tanβp 9xq

z s
r 9x

9z s

fi
ffiffifl .

2) Anchoring the 1DOF Templates: Consequent upon the above model—where each hybrid mode is

dynamically 2DOF—SLIP is a 4D dynamical system (one parameterization being px, z, vq, where v P R
2

is the touchdown velocity, and px, zq P R
2 is the Cartesian location of the point mass at touchdown).

The efficacy of our 2D return map analysis is established by arguments similar to those of [30]: the

Poincare section zTD “ ρl cos βpvq eliminates one dimension, and the equivariance of the dynamics with

x eliminates another.

We first observe that our MBHop model of §III-B2 still represents the pendular stance correctly under

assumption 3. However, κ is not a fixed parameter, but evolves according to dynamics similar to F v in

Proposition 2. From (10) and (11), the embedded pκ “ 1, v “ v˚q submanifold is invariant. We show in

Proposition 6 that it is also attracting.

Let us define hw : R2 Ñ R
2 as

w “ hwpvq :“ Rp´βpvqqv. (19)

Lemma 5. Let V :“ tv P R
2 : v2 ă ´2ρl

Ts
u. Then hw|V is a local diffeomorphism.11

10We use θ for leg “joints” to be consistent with [29].
11Physically, the restriction to V means that the hopper must have sufficient vertical component of touchdown velocity, essentially eliminating

“grazing” ground impacts.



Proof. Note that

Dhw “ R ´ JRvDβeT1 ,

where R is understood to be evaluated at ´βpvq. By inspection, Dhw could only have a test vector RTJRv

in its kernel, i.e.

Dhw ¨ pRTJRvq “ p1 ´ DβeT1R
TJRvqJRv ‰ 0,

since we know v ‰ 0, Dβ “
´
Ts
2ρl

` kp

¯
and so

1 ´ DβeT1R
TJRv “ 1 ` v2

´
Ts
2ρl

` kp

¯
ă 0,

by the conditions assumed on kp. Thus Dhw is nonsingular, and hw is a local diffeo.

The vector w gives a tangential/radial decomposition of v (i.e. polar with respect to the leg angle).

Additionally, using (8), we can “recover” the κ-dynamics in the coupled system: κ “ hκpw2q. We prefer

the redundant pv, κq parameterization because of analytical tractability.

Proposition 6 (Stability of SLIP as a composition). For (i) stable vertical hopping with ´1 ` εr ă
´DF v

1 |˚ ă 1 ´ εr, (ii) sufficiently12 small kp in the Raibert contoller, parallel composition of the radial

and fore-aft templates results in a locally stable 2D return map, F s.

Proof. We choose to perform our stability analysis at a section just after touchdown (in w “ hwpvq
coordinates). From (11), the return map in w-coordinates is

ĂF spwq :“ hw ˝ F s ˝ h´1
w pwq|κ“hκpw2q

“ Rpηpwqq
“
1
hκpw2q

‰
w,

where η :“ pγ ´ β ´ β ˝ F sq ˝ h´1
w . Now,

DĂF s “ Dw
ĂF s ` Dκ

ĂF s ¨ Dhκe
T
2 ,

where the first summand can be thought of as loosely the isolated fore-aft subsystem behavior, and the

second summand is the perturbation from the radial subsystem. We will evaluate this quantity at the fixed

point w˚ “ hwpv˚q.

Observe that using (10), Dη|˚ “ ´2kpe
T
1Dh

´1
w . Proceeding just like in Proposition 2,

Dhκ|˚ “ ´
1

w˚
2

´
1 ` DF v

1 |w˚
2

¯
,

Dκ
ĂF s “ Rpηqe2e

T
2w ùñ Dκ

ĂF s|˚ “ w˚
2e2.

Lastly, the “isolated” term computes similar to (14),

Dw
ĂF s “ R r 1

κ s ` JR r 1
κ swDη,

ùñ Dw
ĂF s|˚ “ I ` Jw˚Dη|˚.

Putting all of these together,

DĂF s|˚ “
“
1

´DF v
1 |˚

‰
` pqT ,

where p :“ ´2kpJw
˚, qT :“ eT1Dh

´1
w . Using the matrix determinant lemma,

trDĂF s “ 1 ´ DF v
1 |˚ ` pT q

detDĂF s “ ´DF v
1 |˚

´
1 ´ qT

”
1

´DF v
1 |´1

˚

ı
p
¯
.

12Formally, this means that kp can be chosen as a function of εr.
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Figure 6. A hybrid 2DOF inertial reorientation template with two segments pinned at the CoM and no gravity. Left: the net angular

momentum of the system is constant. Right: the system can correct the net angular momentum using reaction torques on the main body

segment, but the tail DOF is subject to an unmodeled disturbance  , or δ in (20).

Now notice that since Dhw is well-conditioned, we can claim an upper bound on

|pT q| ď 2kp}Jw
˚}}Dh´1

w } ď kpΞ.

Also, the quadratic form qT
”
1

´DF v
1 |´1

˚

ı
p must have

ˇ̌
ˇqT

”
1

´DF v
1 |´1

˚

ı
p
ˇ̌
ˇ ď |pT q|,

since
”
1

´DF v
1 |´1

˚

ı
has norm less than 1.

It can be checked that both eigenvalues are of absolute value bounded by unity iff all of (i) det ă 1,

(ii) det ą tr ´ 1, and (iii) det ą ´tr ´ 1 are true. These inequalities follow from condition (ii) of

Proposition 6 and choosing small enough kp such that 2kpΞ ă εr.

IV. HYBRID INERTIAL REORIENTATION (2DOF)

Our decision to energize the hopping behavior with a tail leaves introduces a new actuated DOF whose

tight dynamical coupling to both the mass center and the body orientation dynamics requires its careful

control throughout the locomotion cycle. Recent literature [13] has seen the development of a 1DOF

“inertial reorientation” template for correcting the “shape” coordinate in a two-link body experiencing

free-fall (constrained by conservation of angular momentum). Raibert [14] introduced a pitch stabilization

mechanism relying on reaction torques from hip actuation during stance. In this paper, we adopt the

approach of composing these templates for 2DOF stabilization of appropriately defined “pitch” and “shape”

coordinates of a two-link body/tail model.

Since in the physical system the tail actuator, τ2, is unavailable for attitude control in stance (because

it is being “monopolized” as the destabilizing energy source for the SLIP subsystem), and the Raibert

pitch correction mechanism (using the hip actuator, τ1) is unavailable in flight (due to absence of ground

reaction force), we present a hybrid inertial reorientation (HIR) template (Fig. 6) as the simplest exemplar

body on which this 2DOF template is anchored.

We omit the Lagrangian derivation for this familiar subsystem [13], but exploit the fact that when

pinned at the CoM, the dynamics are second-order LTI with no Coriolis terms. We perform a change of

coordinates (inverting the constant inertia tensor) to obtain the (decoupled) dynamics

“
:a1
:a2

‰
“

#
r τ1δ s “: pa1pTa, τ1q (stance),

r 0
τ2 s “: pa2pTa, τ2q (flight),

(20)



where pa1, a2q are the “pitch” and “shape” coordinates, respectively, and δ is an unmodeled disturbance

term (explicitly added here with an eye toward the use of tail for spring energization in the physical

system). In (20) we have now represented HIR as two independent subsystems on which two identical

1DOF templates will be anchored in parallel (albeit in alternating stages of the hybrid execution).

Taking advantage of the direct affordance (by which we mean that both of the two decoupled 1DOF

systems are completely actuated in, one and then other, of the alternating modes of their hybrid dynamics),

we employ a graph-error controller [31] as a type of reduction. Since our reference first-order dynamics

are just 9ai “ ´kai, the independent closed-loop 1DOF subtemplate vector fields, fp : Ta1 ÞÑ 9Ta1 and

f sh : Ta2 ÞÑ 9Ta2, are defined as

:ai “ ´kgp 9ai ` kaiq “ ´kgkai ´ kg 9ai, (21)

where the gain kg is understood to be high enough to make the transients of the anchoring dynamics

irrelevant.

A. Hybrid Dynamical Model of HIR

Since the isolated model does not have any intrinsic physical mechanism for transitioning between

modes, we add an exogenous clock signal, ψa P S1 such that ψa P r0, πs represents stance, and the

complement represents flight. In this paper we sidestep the issue of phase-synchronization for the various

compartments, but simply use ψa to ensure our gains our tuned properly for the timescales of the coupled

system (Proposition 9).

Define Da “ TS2 ˆ tp0, πs \ pπ, 2πsu. Now the closed-loop template dynamics, f a : TS2 ˆ S1 Ñ
T pTS2 ˆ S1q can be specified as

f a
1 p

“
Ta
ψa

‰
q “

„
0 I 0”

´kgk 0 ´k 0
0 0 0 0

ı
0 0

0 0 ωa

 “
Ta
ψa

‰
`

”
03ˆ1

δ
0

ı
,

f a
2 p

“
Ta
ψa

‰
q “

„
0 I 0”

0 0 0 0
0 ´kgk 0 ´k

ı
0 0

0 0 ωa

 “
Ta
ψa

‰
, (22)

the guards sets are BDa “ TS2 ˆ ttπu \ t2πuu and the reset maps rai “ id simply modify the dynamics

(20) at ψa “ π (stance to flight) and ψa “ 0 (flight to stance).

B. HIR Stability Analysis

Let us denote δ̄ris :“
ş
δdt, the interval being over the stance phase of stride i. Also, define δ̄max “

maxt δ̄rts.

Proposition 7 (HIR Stability). Setting

k ą 2ωa

π
log

`
1 ` δ̄max{εa

˘

results in the desired limiting behavior for F a: }a} Ñ Bεap0q, a neighborhood of 0 of size εa.

Proof. Simply integrating the first-order dynamics (22), we get the touchdown return map F a : S2 Ñ S2,

F apaq “ ζ ¨
`
a ` δ̄ r 0

1 s
˘
, (23)

where ζ :“ e´kπ{ωap1 ´ kπ{ωaq. Iterating this return map, at stride n P Z`,

arns “ ζtar0s ` pζnδ̄r0s ` ¨ ¨ ¨ ` ζδ̄rn ´ 1sqe2, (24)

and using the triangle inequality,

}arns} ď |ζ|n ¨ }ar0s} ` δ̄max

ˇ̌
ˇ ζ

1´ζ

ˇ̌
ˇ . (25)
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Figure 7. The Jerboa is a 2 Kg robot with hip-actuated legs and a 2DOF tail, pictured on the left as it appeared in the experiments of

Section VI. On the right is our model for the planarized 4DOF system for comparison.

Note that ζ ă 1

1`δ̄max{εa
is a sufficient condition to ensure that }arts} ď εa asymptotically stable. Some

algebra reveals that

k ą 2ωa

π
log

´
1 ` δ̄max

εa

¯
(26)

is, in turn, a condition sufficient to insure that previous inequality involving ζ .

V. PHYSICAL SYSTEM: TAILED, COMPLIANT-LEGGED BIPED

Our target physical platform is a tailed bipedal robot that we have built, which (when planarized) we

model as shown in the center of Fig. 1. We were able to formally show template-anchor relations going

from 1DOF to 2DOF templates (Propositions 6 and 7), because of the availability of simple models

(§III-B2), or trivial dynamics (§IV). However, as we proceed up the desired hierarchy (Fig. 1), there are

no easily accessible tools that let us directly analyze the effects of coupling in the return map. In this

section, we only show (Proposition 9) that under a highly restrictive assumption 5 (that essentially makes

the tail sweep negligible), the closed-loop tailed monoped return map F tm has an invariant submanifold

where it is equal to F s ˆF a, but we also leave as conjecture that this invariant submanifold is attracting.

The first two subsections of this section discuss (in an informal manner) the design process of the robot

platform we have designed, built, and implemented the tail-energized hopping behavior on.

A. Jerboa: Design and Construction

The Jerboa was designed with the goal of being a dynamic, agile robot with an inertial appendage. We

defer an in-depth discussion of morphological constraints and tradeoffs to future work, but present the

following basic design decisions here:

i) With an eye on power density constraints13, the robot is underactuated. There are 12 spatial DOFs (6

for the body, 2 for each revolute leg, 2 for the tail) and 4 actuators. When planarized with a boom and

virtual constrains on the appendages (as we have done in this paper), there are 6 planar DOFs: 3 for

the body, 2 for the single leg and 1 for the pitching tail. Raibert showed that an underactuated robot

can be dynamically stable [14], and in order to have the best performance, we limited the number of

actuators on the robot to the minimum number that we believe is required to achieve a wide variety14

of behaviors.

13Adding actuated DOFs parasitically increases mass, but it is not a direct consequence that a proportionate amount of usable power will

be added to the robot body by the extra DOFs.
14We have some preliminary empirical evidence that the Jerboa can quasistatically and dynamically balance, in order to sit, stand, walk,

hop, run, turn, leap, etc. Careful investigation of each of these behaviors is planned for future work.



Table IV

PARAMETER VALUES

Mass (with battery) 2.419 Kg Dimensions (without tail) 0.21 m (L) ˆ 0.23 m (W) ˆ 0.1 m (H)

Tail length 0.3 m Tail mass 150 g

Leg length 0.105 m Leg motor stall torque 3.5 N/m

Peak power density 181 W/Kg Peak force density 36 N-m/Kg

Figure 8. The jerboa tail is a 2DOF spherical joint controlled using coaxial motors through a mechanical linkage. Though there are driven

sprockets visible in this image, the version of the robot presented in this paper did not have this additional reduction stage.

ii) The body has low inertia (due to the mass of the motors being concentrated near the CoM, and the

appendages being light), and the actuators are configured such that they can impart correspondingly

large accelerations to the body (with an eye towards “agility”). Future work is planned to reconcile our

inclination with emerging definitions of specific agility [32], but intuitively it seems as if “integrated

magnitude of body acceleration” is a reasonable metric to aim for.

iii) The hips are actuated, but the leg extension is completely passive. This particular form of underac-

tuated leg has been demonstrated to have great versatility in RHex [33], for steady-state running as

well as transitional maneuvers [34].

iv) The robot contains an inertial appendage which is endowed with the same amount of power as the

hips. Recent research in biomechanics [12] and robotics [13] has demonstrated the utility of tails as

inertial “self-righting” devices, and on the Jerboa we promote it to a primary source of locomotory

energy and control.

In the remainder of this section, we outline the electromechanical aspects of the construction of the

robot. A summary of important mechanical measurements is provided in table IV.

1) 2DOF tail: The tail appendage is configured as a 2DOF spherical joint with a point mass at the

distal tip. The joint itself is constructed using a linkage (Fig. 8) such that identical motor displacements

result in a pitching motion, and differential motor displacements result in a yawing motion. The forward

kinematics map from motor angles µ1, µ2 P T 2 to the tail pitch and yaw angles, φ2, φyaw P T 2 has a

simple form when restricted to zero yaw (i.e. µ1 “ µ2),

φ2pµ1, µ2q|φyaw“0 “ µ1 “ µ2. (27)

For the behavior under study in this paper, a virtual constraint ensures that φyaw “ 0. We leave a full

kinematic analysis of the 2DOF mechanism to future work.

2) Prismatic-compliant revolute-actuated legs: Even though we adopt the underactuated hip-driven legs

from RHex, the legs are chosen to have “toes” with point contacts instead of the rolling contact typical

of RHex legs for the following reasons:



Compression Extension

Figure 9. Left: Three leg designs considered for the Jerboa; the prismatic spring is “ideal” (in our model of §III, the spring force is

dominantly axial, and the actuator force is predominantly tangential) but difficult to manufacture, and the four-bar designs only approximate

the desired kinematics. Right: Configuration-dependent Jacobians of the compression and extension spring designs, where the displayed

arrows map infinitesimal hip torques and spring extension forces to forces represented by red and blue (resp.) arrows at the toe. Out of these

designs, the pictured version of the robot in Fig. 7 uses compression springs.

i) Our template plant for fore-aft speed control (§III-B2) is an inverted pendulum with a point contact,

and in particular, the toe-placement strategy for fore-aft speed control (10) is only (currently) well-

understood for this leg structure.

ii) The Raibert pitch controller [14], which we use as part of our attitude control (21), depends on a

“rigid” connection between the hip and the toe. With a series-elastic element that may have torsional

compliance (such as a C-leg), the ground reaction force would load up the leg spring, introducing

the spring dynamics as a “lag” in our pitch control strategy.

The left of Fig. 9 shows three leg designs that were considered for the Jerboa: i) a prismatic mechanism

with a nonlinear elastic element, ii) a compression spring in a four-bar mechanism, and iii) an extension

spring in a four-bar mechanism. While the kinematic properties of the first design are the closest to our

model (the spring force at the toe is purely radial, and the motor force at the toe is purely tangential),

this design proved difficult to construct because of the linear bearing required. The kinematics of the

“approximate” leg designs are pictorially depicted in Fig. 9.

The experiments for this paper were all performed with the compression-spring legs. The compliant

element is an off-the-shelf shock absorber for RC vehicles with lightweight construction, but considerable

damping. We believe that the damping in legs was an important limiting factor in the energy of the

hopping behavior demonstrated in §VI.

3) Actuators: The power generated by electromechanical actuators tends to be at unusably high speeds

for legged applications, however at the same time, higher gear reductions are undesirable due to a multitude

of reasons [35]. To this end, we tune our actuator selection to maximize thermal specific torque, KTS—the

torque generated by the motor per unit mass per unit temperature rise. This modification to the torque

density criterion of [35] allows us to incorporate the thermal implications of sustained motor activation15.

Fig. 10 contains a table comparing these metrics for the chosen actuator, a T-motor U8, and the one

selected for X-RHex [36], a Maxon EC-45.

Additionally, we developed custom motor controllers built around Infineon BTN8980 integrated half-

bridges and an STM32F373 microcontroller that are (a) lightweight (20 g), (b) commutate using field-

oriented control (FOC) at 25 KHz (adapted from [37]), (c) deliver up to 55 A peak current and up to 40 V

peak voltage, and (d) have built-in 12-bit rotor position sensing. As a tradeoff for the high power-density of

the driving electronics, they are limited by the heat dissipation ability of the half-bridges. Based on some

crude testing, we have found that we can source approximately 10 A of steady-state current (thermally

15We are assuming a thermal dissipation model for the motor, but not accounting for temperature effects on magnetic flux density.



Maxon EC-45 T-motor U8

Mass (Kg) 0.11 0.24

Gap radius (mm) 43 90

KT (N-m/A) 0.033 0.095

KTS (N-m/Kg˝C) 0.104 0.5
10 20 30 40 50

Current (A)

1
2
3
4
5

Torque (N-m)

Figure 10. Left: The selected actuator for the Jerboa is the T-motor U8, showing a thin profile and large gap radius—desireable properties for

legged applications [35]. Middle: Motor properties relevant to selection for legged applications for the Jerboa motor, and the X-RHex [36]

motor. Right: A torque-current plot for the U8 when coupled with our custom motor controllers of Fig. 11, showing flux saturation at higher

currents and a dashed line for the nominal torque (predicted by KT ).

limited), corresponding to around 1 N-m of torque. Fig. 11 compares the physical dimensions and thermal

performance of the motor controllers to the motors we have chosen. We note the following consequences

of our selection of motor and driving electronics:

i) The high torque density of the chosen motors allows us to completely forgo any static gear-reduction

on the Jerboa (although the 2DOF tail makes use of a linkage to transmit power to a spherical

joint)—affording benefits of “transparency” and eliminating any transmission losses [35], [38].

ii) Power dissipation (to heat) in the motors is not a limiting factor in the robot’s performance with the

current driving electronics.

iii) By eliminating the need for gearboxes and judicious chassis design, we have been able to reduce the

“robot framing cost” to only 40% of the mass of the robot. To put this in context, only 8% of the

mass of X-RHex is motors [36].

Lastly, we highlight some of the design aspects of the Jerboa that are particularly relevant to the subject

of this report (tail-energized hopping via parallel playback of decoupled controllers):

Assumption 4 (Design for decoupled control). The design of the Jerboa specifically ensures (i) leg/tail

axes of rotation are coincident at the “hip,” (ii) the tail mass is small, i.e. mt ! mb, and (iii) center of

mass (approximately configuration-independent by the previous assumption) coincides with the hip.

We point out here that these design decisions are less strict than the ones required for our present

analysis (assumption 5). We believe that the stringency of assumption 5 is not necessary, and provide

some empirical evidence to this effect in Section VI.

B. Modeling for Planar Hopping

Raibert’s planar hopper [14] empirically demonstrated stable hopping using a rigid body with a springy

leg, and in this paper we pursue the same idea, but instantiate vertical hopping by coupling the 1-DOF

leg-spring excitation controller (physically acting through the tail). In flight, the tail actuator grants us

Figure 11. Left: The physical dimensions of our motor controller when compared to the motors they are driving. Right: Infrared image of

of our actuation setup at stall, showing the controller reaching higher temperatures than the motor coils.

http://www.rctigermotor.com


a new affordance that we only use here to regulate the added “shape” DOF. Our physical model is

shown in Fig. 7. The system has a single massless leg with joints θ “ pθ1, θ2q P S1 ˆ R`, a rigid

body px, z, φ1q P SEp2q, and a point-mass tail with revolute DOF φ2, such that the full configuration is

q :“ pθ1, θ2, x, z, φ1, φ2q P Q. We make the following design-time assumptions:

Assumption 5. (i) Leg/tail axes of rotation are coincident at the “hip,” (ii) tail mass is small, i.e. mt ! mb,

(iii) center of mass (configuration-independent by the previous assumption) coincides with the hip, and

(iv) body, tail have high inertia, i.e. ib, it Ñ 8.16

C. Equations of Motion

Using the self-manipulation [29] formulation of hybrid dynamics, the inertia tensor is

M “
“
0
Mb

‰
, where Mb :“

”
M1 MT

o

Mo M2

ı
. (28)

Note that M1 “ pmb ` mtqI and M2 “
“
ib`it it
it it

‰
are constant, and Mo contains the critical cross-

compartment interaction, by way of which we can use our tail actuator (formally acting on an attitude

DOF, φ2) for energizing the shank DOF, θ2.

Let the forward kinematics of the leg be g : θ ÞÑ R
2. The constraint in the stance contact mode is

a1pqq “ r xz s ´ Rpφ1qgpθq, (29)

such that A1pqq “ r RDg I JRg 0 s. In flight mode, a2pqq ” 0. As in [29], the dynamics can be expressed

as ”
M AT

i

Ai 0

ı “
:q
λ

‰
“ r Υ´N

0 s ´
“

C
9Ai

‰
9q. (30)

Define the linear coordinate change h : Y “ S ˆ A Ñ Q, and H :“ Dh such that

h´1 : q ÞÑ

„
pθ1`φ1,θ2,x,zqT

M2

”
φ1
φ2

ı

, (31)

and observe that h´1pqq “ ps, aq is reminiscent of SLIP (§III) and attitude (§IV) coordinates. Define

πs :“ r I4 0 sh´1, πa :“ r 0 I2 sh´1 (32)

The equations of motion are generated in the new coordinates,

:y “ H´1M:pΥ ´ Nq ´ H´1pM:C ` A:T 9AqH 9y. (33)

In stance,

“
:s1
:s2

‰
“

«
τh

mbθ
2
2

´
2 9θ2

9θs
θ2

kspρl´θ2q

mb
`θ2 9θ2s

ff
` τt

ρtmb

”
sin ξ{θ2
´ cos ξ

ı
, (34)

:a “ r ´τh
τt s , (35)

where ξ :“ θ1 ´ φ2 (the tail-leg angle), and the right summand in (34) is quite clearly the disturbance

caused due to the added attitude degrees of freedom.

With the same choice of H, we can similarly recover weakly decoupled flight dynamics:

r :x
:z s “

“
0

´g

‰
` τt

ρtmb

”
sinpφ1`φ2q

´ cospφ1`φ2q

ı
, (36)

:a “ r 0
τt s . (37)

16Even though the dynamic task here is quite different from free-fall, in the language of [13] this is saying that the tail should be light

but effective.



D. “Physical” Decoupling and Anchoring

With the highly restrictive assumption 5 (allowing for infinite tail inertia), the tail motion is essentially

negligible. Under these conditions, we show the emergence of the beginnings of a classical anchoring

relation [10], via a natural (weak) decoupling of the 6DOF dynamics into “point-mass” and attitude

compartments. A more general analysis that is more physically relevant is forthcoming in future work.

Proposition 8 (Flow-invariant submanifold). Under assumption 5, in each hybrid mode, (i) the subman-

ifold U “ tTq P TQ : Tφ1 “ Tφ2 “ 0u is invariant under the action of the flow generated by f tm
i , and

(ii) in each hybrid mode, the closed-loop flow restricted to U, 9Tq “ f tm
i pTq|Uq is a cross-product of the

template vector fields,

f tm
i “ f s

i ˝ πs ˆ f a
i ˝ πa, (38)

where πs and πa represent projections to the SLIP and attitude components of q respectively.

Proof. Applying assumption 5.ii to the equations of motion, the plant dynamics ptmpTq, pτh, τtqq are

:θ|stance “

«
τh

mbθ
2
2

´
2 9θ2

9θs
θ2

kspρl´θ2q

mb
`θ2 9θ2s

ff
` τt

ρtmb

”
sin ξ{θ2
´ cos ξ

ı
,

:a|stance “ r ´τh
τt s ,

r :x
:z s |flight “

“
0

´g

‰
` τt

ρtmb

”
sinpφ1`φ2q

´ cospφ1`φ2q

ı
,

:a|flight “ r 0
τt s , (39)

We can check that we have available affordances through our two actuators to assign (scaled versions

of) our template controllers in Table II, (i) τh|stance “ ´gp1pa1, 9a1q to control a1, and τh|flight “ gfa2 p 9xq to

control 9x, and (ii) τt|flight “ gsh2 pa2, 9a2q to control a2, and τt|stance “ ´ρtθ2mb ¨ gv1p 9zq to control hopping

height17.

Under assumptions 3.iv and 5.iv, we show that the highlighted terms in (39) vanish inside U:

i) M2 Ñ 8, so in the dynamics equations :a “ 0. Restricted to U, a ” 0. This proves part (i) of the

claim.

ii) From :a ” 0 and (21), τh|stance “ τt|flight “ 0.

iii) Since φ2 “ 0, ξ “ ´φ1 « 0 (from assumption 3.iv).

By comparing the thus-restricted plant dynamics (39) to (15), (16) and (20), we obtain part (ii) of the

result.

Additionally, the invariant submanifold in the flow leads to an invariant submanifold in the hybrid

execution:

Proposition 9 (Return map-invariant submanifold). The set U is invariant under the return map F tmpTq|Uq,

and restricted to U, F tm “ F s ˝ πs ˆ F a ˝ πa.

Proof. We first define the return map F tm by instantiating a “cross-product” hybrid system pDtm, f tm, rtmq
as (a) Dtm :“ Ds ˆ rDa, (b) rtm :“ rs ˆrra, and (c) f tm as defined in Proposition 8, where rDa

i :“ TS2 ˆS1

for each i (ensuring B rDa “ H) and rrai : rDa
i Ñ rDa

i`1 is defined

rrai :
“
Ta
ψa

‰
ÞÑ r Ta

iπ mod 2π s . (40)

With these modifications, the ψa dynamics (22) are ignored, and the clock of the HIR subsystem is

being driven by the SLIP subsystem18. This ensures that the conditions of Proposition 7 still hold, i.e.

πa ˝ F tm “ F a ˝ πa.

17We observe that by assumption 3.ii, θ2 « ρl is roughly constant, so the scaling need not be configuration dependent.
18This coupling interaction importantly invalidates the ωa-dependent bound on k (26). Our solution is to scale the input such that k is

high enough for the shortest feasible transition time in vertical hopping.
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Figure 12. Two datasets corresponding to different tail masses: The blue traces use the mt “ 150 g (as in Table IV), but the red traces use

mt “ 100 g. Note that the tail displacement is larger for the lighter tail mass, although vertical behavior is largely unaffected.

Additionally, the decoupled nature of f tm|U (Proposition 8) allows us to conclude that πs˝F
tm “ F s˝πs,

so that

F tm “ πs ˝ F tm ˆ πa ˝ F tm “ F s ˝ πs ˆ F a ˝ πa,

which concludes the proof.

We leave to future work a proof that U is attracting, which is a requirement for demonstration of

anchoring [10].

VI. EXPERIMENTAL RESULTS

In this section we present empirical data obtained from the Jerboa (§V-A). In the first three subsections,

we present data from a few “nodes” of our composition tree (Fig. 1). Finally, a crucial examination of

our idea of composition of templates, when implemented on the Jerboa, is presented in §VI-D.

A. Effect of Varying Tail Mass on Vertical Hopping

The first empirical result we present corresponds to the top left leaf of Fig. 1—empirical vertical hopping.

In order to facilitate the analysis in this paper, in assumption 5 we stipulated an ideally effective [13]

tail, with negligible mass and infinite inertia. We connected the robot (Fig. 7) to a boom and constrained

the body pitch as well as the fore-aft DOF. By varying the tail mass (with a fixed tail length given in

Table IV), we obtained two vertical hopping datasets plotted in Fig. 12.

We observe the following:

i) Increasing tail mass results in smaller tail displacements. Taken to the limit, this sheds some light on

assumption 5: a large tail mass would indeed render the tail motion negligible.

ii) The hopping height remains relatively unchanged in spite of this physical variation. From (34), the

force acting on the leg-spring depends only on the (feedforward) tail torque, τt (as in Table II).

Consequently, we see that the tail mass is a tunable design parameter that allows us to trade off the

conditions of assumption 5 (negligible mass versus large inertia—both affecting coupling interactions)

without affecting the vertical behavior.

B. Empirical Validation of Attitude-Decoupling Change of Coordinates

An important foundation of our attitude control strategy is the decoupling of the two attitude DOFs

(§IV), such that a1 is controlled in stance, and a2 is controlled in flight (20). However, the body pitch and

tail angle are clearly coupled in flight19. To resolve this, as shown in (31), we use M´1
2 as a decoupling

change of coordinates.

19Since the tail actuator is attached between the body and the tail, tail torques are felt by the body.



0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

φ1
φ2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

a1
a2

Figure 13. Testing our decoupling change of coordinates from the physical body pitch, tail angle coordinates pφ1, φ2q to our chosen attitude

coordinates pa1, a2q by suspending the robot about its CoM (see §VI-B).

In terms of implementation this strategy requires the estimation of a single scalar parameter that defines

M2 up to scale (see the text just after (28)). To test our the change of coordinates empirically, we

suspended the robot about the CoM and applied a feedforward sinusoidal τt signal. The resulting traces

for the physical attitude coordinates are shown in Fig. 13.

Recall from (37) that in flight, :a1 “ 0. In practice, we observe from the right of Fig. 13 that there are

small a1-variations are at a much slower time scale than a2-variations. The reason that :a1 is not zero is

that we were unable to suspend the robot at precisely the CoM, and so gravity exerts a net moment on

the body—appearing as a slow a1-oscillation. Other than this minor deviation of our physical platform

from assumption 5, it appears as if the attitude-decoupling change of coordinates is indeed effective.

C. Trading off Forward Speed and Hopping Height for “Leaping”

The “stepping” fore-aft control using the touchdown angle as a control input (10) essentially allows us

to trade off vertical and fore-aft energy—appearing as a pure rotation in (12). Even though for steady-state

behavior we choose the touchdown angle to stabilize forward speed, it also allows for transient behaviors

such as a one-shot “leaping” motion (term coined by Raibert [14]). In particular, choosing a larger (in

magnitude from vertical) touchdown angle than that dictated by (10) results in added vertical height and

reduced fore-aft speed.

The results of an empirical test of this one-shot leaping strategy are showing in Fig. 14: we can indeed

get a large increase in apex height using this strategy. This kind of “asymmetry” [14] or deviation from

steady-state may have important applications in behaviors that require rapid changes in the body energy,

and we plan to explore more such behaviors in future work.

D. Empirical Validation of Composition

By physically constraining some of the DOFs, we test our hierarchical composition (Fig. 1) at as many

“nodes” of the composition tree as possible. Note that it is infeasible to isolate the fore-aft or the closed-

loop pitch correction templates in a physical setting. The results are summarized in Fig. 15. Five strides

are averaged within each category, and aligned with ground truth knowledge of the touchdown event. We

observe that

i) there is a vertical limit cycle that retains its rough profile and magnitude through three anchoring

bodies,

ii) the hip angle roughly satisfies :θ1 “ 0 in stance and the stance duration is roughly constant (corrob-

orating assumptions 3.ii-iii, and our MBHop model (11),

iii) the shape coordinate is destabilized in stance and stabilized in flight, and the pitch-deflections are

small in magnitude over the stride, and in agreement with (22).

Qualitatively, the “tailed point-mass hopper” configuration attained stable forward hopping at controlled

speeds upwards of 20 strides, only limited by space. The fully unlocked system has so far hopped for

about 10 strides at multiple instances before failing due to accumulated error causing large deviations
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Figure 14. Top: Snapshots of fore-aft hopping behavior in a trial where we test a “leaping” motion [14]—the robot stubs its toe at the last

touchdown in order to gain a boost in vertical height at the expense of forward speed (see §VI-C). The red line shows the CoM-trajectory of

the robot. Bottom: Corresponding traces showing near-steady-state behavior in the fore-aft compartment (leg angle, θ1 and vertical height,

z are plotted) before the “stubbing” event (red overlay). The leg angle shows the “neutral angle” with a thin horizontal line, and in order to

leap; note that a much larger (in magnitude from vertical) touchdown angle is chosen in order to leap. The leg height (z) plot shows the

robot getting around 50% larger apex height in the subsequent flight phase.

from the limit cycle. We believe the prime reason for this is that the CoM is significantly aft of the hip

(violating assumption 5.i). We attempted to compensate for this effect with a counterbalance visible in

Fig. 7, but an unacceptably large weight would have been required to completely correct the problem.

In the video attachment, we include clips of the robot hopping along a boom, with varying degrees

of physical constraint corresponding to the “bodies” of Fig. 15 (annotated in the video). The controller

implemented on the hardware is agnostic of the physical constraint, and takes the decoupled form of a

cross-product of the rows of Table II.

VII. DISCUSSION AND CONCLUSION

Raibert’s hopper [14] made significant empirical advances in the field of robotics, but to our knowledge,

no previous account in the literature has provided any formal conditions under which such simple and

decoupled control strategies will work. In this paper, we apply simple decoupled controllers using similar

ideas (including the exact same fore-aft (10) and pitch (22) controllers), but with a new vertical hopping

scheme (§III-A) and a new tail appendage to enable it. Moreover, we construct abstract models (that

appear to, nevertheless, be representative of empirical data) that enable us to present analyses of stability

for each of these subsystems, and make steps towards a local proof of stability for the tailed hopper (a

subject of future work by the authors).

The first focus of future work is a complete analysis of stability of tail-energized hopping on the Jerboa,

and development of formal tools for design and verification of parallel composition. Second, our analysis

in this paper is very specifically targetted to the tailed hopper (including the hand-designed hierarchy

in Fig. 1), but in future work we plan to generalize these ideas to other tasks as well as platforms. As
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Figure 15. A single stride (stance with shaded background followed by flight), where each column corresponds to some representative time

series from each of the four 1DOF templates from §III-IV, and the traces (mean and standard deviation) correspond to different “bodies”

realized by variably constraining the robot—red: tailed vertical hopper (i.e. pθ1, x, φ1q locked), green: tailed point-mass hopper (i.e. φ1

locked), blue: tailed planar hopper (all free)—in which these templates are being anchored.

explained in §II, we focus on closed-loop templates in this paper, but there is an accompanying interesting

problem of assignment of actuator affordances to the control of specific compartments. Lastly, we see in

this paper that a sufficient condition for enabling a simple parallel composition is a physical decoupling

(§V-D) through the design (summarized in assumption 5) and natural dynamics of the system. In the

future we wish to leverage recent advances in self-manipulation [29] to enable a direct analysis of the

system dynamics, perhaps even enabling tools for designing machines based on a desired composition

hierarchy (Fig. 1).
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