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ABSTRACT

This paper discusses the application of Castigliano’s The-
orem to a half circular beam intended for use as a shaped, tun-
able, passively compliant robot leg. We present closed-form
equations characterizing the deflection behavior of the beam
(whose compliance properties vary along the leg) under ap-
propriate loads. We compare the accuracy of this analytical
representation to that of a Pseudo Rigid Body (PRB) approx-
imation in predicting the data obtained by measuring the de-
flection of a physical half-circular beam under the application
of known static loads. We briefly discuss the further applica-
tion of the new model for solving the dynamic equations of a
hexapod robot with a C-shaped leg.

1 INTRODUCTION

This paper describes our effort to characterize the
compliant properites of constant and tunable stiffness C-
shaped legs for RHex-like running robots. RHex is a bioin-
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spired robot that utilizes six compliant legs to store and re-
turn energy, enabling fast and efficient running on a great
variety of natural terrain [1,2] (see Edubot in Fig. 1, which
is a smaller version of RHex). While the C-leg has proven
very successful in the field [3], the very same complicated,
spatial compliance properties that confer such great ad-
vantage in the running application present a special chal-
lenge for those who, like us, motivated by the hope of more
rational robot design, seek a useful dynamical model of
the locomotion it affords. Presently, suitable running gaits
for a given leg stiffness and payload are identified empiri-
cally [4]. As one important step toward the development of
a more analytically informed design methodology, we de-
sire a simple, lumped parameter model that can 1) capture
the elastic behavior of a C-leg more accurately (both con-
stant stiffness and variable stiffness configurations) and 2)
can be used to capture the dynamics of a running hexapod.

Modeling the deflections of a curved elastic element
presents several challenges — the first and foremost being
the selection of a suitable model. There are several ap-
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proaches one could employ including the Finite Element
method (FE), the chain algorithm, and the Pseudo-Rigid-
Body (PRB) model to name a few. The FE method is prob-
ably the most common due to its explicit incorporation
into many 3D modeling programs. An elastic element is
divided into a finite number of discrete sub-elements [5]
whereby the behaviour of each element is expressed in
terms of nodal forces and moments. This approach tends
to be computationally expensive and requires a larger in-
vestment of time to optimize a flexure geometry for given
loading conditions. The Chain Algorithm is another nu-
merical method which discretizes an elastic element into
smaller elements which are analyzed in succession [6].
This method is computationally less expensive than FE
method though it presents some challenges in defining the
boundary conditions. Both methods offer reliable, accurate
numerical representation of complex geometries and load-
ing conditions that would otherwise be impossible to ana-
lyze with any confidence using a closed form solution [6].
However, presented as we are in this problem with sim-
ple geometries that experience moderate amount of deflec-
tions that lend themselves to closed form models would be
preferable because of the greater parametric insight they
lend, if one could be confident in their accuracy.

One simple closed form approach is the Pseudo-Rigid-
Body (PRB) model, which approximates the deflection be-
haviour of an elastic member as two rigid links that are
connected by a torsional spring [6,7]. The torsional spring
and the lengths of the rigid links are used to characterize
the stiffness of the member and the deflection path of the
loading point. This approach has been used in our previ-
ous studies [8, 9] to capture the spatial compliant proper-
ties of an initially curved beam.

In [9], we present a tunable stiffness C-leg using the
method of structure-controlled stiffness whereby the stiff-
ness of the C-leg is adjusted by moving a compliant slider
along the length of the leg (see Fig. 2). In its simplest form
this can be viewed as an intially curved, stepped cantilever
beam. Capturing the spatial compliance of this structure
with the PRB model presents a special challenge as this
model assumes a thin elastic element of constant cross-
section.

In this paper, we present an energy based deflection
analysis method, based upon Castigliano’s Theorem [10],
that is capable of characterizing the spatial compliance of
an initially curved, stepped cantilever beam. The theorem
states that the deflection of any point on a beam is equal
to the partial derivative of total strain energy of the beam
with respect to external forces on that point. Castigliano’s
Theorem is useful when the strain energy of the structure
can be easily expressed in terms of external forces. For the
leg geometry we are considering, it is simple to implement

FIGURE 1. EDUBOT [11]

and computationally more efficient compared to numeri-
cal methods. Taking this point of view, we propose in this
paper a new curved leg compliance model that character-
izes the spatial compliance of the C-leg as a function of
external forces.

The organization of the paper is as follows: in Section
2, we describe the implementation of Castigliano’s Theo-
rem for the force-deflection analysis of a variable stiffness
C-leg. Section 3 presents the experimental setup used in
this study and Section 4 compares the performance of the
Castigliano and PRB models with experimental data. In
Section 5 we close with a summary of the work and a dis-
cussion of future work.

2 CASTIGLIANO’S THEOREM

In this section, we employ Castigliano’s Theorem [10]
to model the deflection path of an elastic curved beam un-
der the effect of external forces. This theorem states that
the displacement resulting from any force (or moment) is
determined by obtaining the partial derivative of the total
strain energy with respect to that force [12,13]. The first
step, therefore, is to calculate the resulting strain energy
for a given load which is expressed as

M? F2Rd CF2Rd MF,
_ Rd7’+Je 7+J' rRdy 07 )

U= 2AeE 2EA 2AG AE

where M, Fg, and Fy are the total bending moment,
tangential and radial forces, respectively, that are created
by the applied forces at the cross section of the curved
beam. It should be noted that
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TABLE 1. TABLE OF VARIABLES USED IN EQN. 1

Variable  Definition Unit
A cross-section area m?
E young’s modulus GPa
e eccentricity m
G shear modulus GPa
R radius of curvature m

4

—

second moment of area  m

C correction factor unitless

dl=Rdy (2)

where R is the radius and [ is the arc length of the
curved element. The parameters in Eqn. (1) are listed in
Tab. 1. The integration interval changes from the loading
point to the fixed end of the curved beam. In general, the
strain energy expression, Eqn. (1), can be approximated by
Eqn. (3) if the radius of the curved beam is on the order of
ten times larger than its thickness [12].

M?2Rd
U~ [(MERdy
2EI

The partial derivative of total strain energy, U in
Eqn. (3), with respect to an arbitrary force F; gives the de-
flection of the loading point, 9; in the direction of the F;,

U

0; = 9F; (4)

2.1 Modeling a Tunable Stiffness C-leg

We now apply Castigliano’s Theorem to the tunable
stiffness C-leg shown in Fig. 2. In the proposed mechan-
ical design presented in [9], the stiffness of the C-leg is
adjusted by sliding a compliant curved member, known
as the compliant slider, along the outside of the C-leg.
This implementation of structure-controlled stiffness al-
lows the sheathed and unsheathed portions of the C-leg
to store and return strain energy. To calculate the strain
energy stored in compliant leg, the forces and moments at
the cross-section were algebraically expressed in terms of
external forces F, and F, as shown in Fig. (3). Note that,

Spur Gear

Compliant J_.," "
Slider %’

(a)

FIGURE 2. SIDE VIEW OF THE TUNABLE STIFFNESS C-LEG
(PRESENTED WITH PERMISSION FROM [9])

the external force F, is along the radius of the leg and F,
is perpendicular to F,. The total bending moment, radial
force and tangential force at the cross-section can be writ-
ten as

FIGURE 3. FORCES AND MOMENT AT CROSS-SECTION

M =F Ay + F)Ax = F,R(1 —cos(y)) + F,Rsin(y)  (5a)
Fr =Fyr+Fyr = Fysin(y)+Fycos(y) (5b)
Fg = Fyg — Fyg = Fycos(y) — Fysin(y) (5¢)

As seen from Eqn. (5a-5c), the contact forces, F,
and F,, determine the cross-sectional forces, Fy and Fg,

R 510 we used

throughout the beam. Since in our case 7
4
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the simpler form of strain energy expression, Eqn. (3), to
express the strain energy stored in the tunable stiffness leg

_J‘“l M?R;dy +J‘“2 M?R,dy +J“3 M?R3dy
- 0 2(E1)leg aj 2(El)eff a; 2(El)slider

TABLE 2. TABLE OF VARIABLES USED IN EQN. (6)

Variable Definition Equation
M bending moment Eqn. (5a)
R{,Ry,R3 radius of curvature Eqn. (7)
ay,an,a3 integral intervals Eqn. (8)
(

Lieg:Lef fo1stider second moment of area of crosssection  Eqn. (10)

Eleg:Eef s Eslider ~ young modulus Tab. (3)

where Tab. 2 lists all the symbols and their defining
equations. In our case R, R; and Rj (depicted in Fig. 2) are
almost equal to each other, and for simplicity, can be repre-
sented as a single radius value, R that is found by solving
an explicit formula of a circle that passes through three
points on the leg, which in this particular case is shifted
Marker 1, Marker 2 and Marker 3 shown in Fig. 4,

R1=R2=R3=R (7)

In this study we also assume that the circular leg ge-
ometry does not change after deflection. As depicted in
Fig. 2, the compliant slider can move continuously along
the leg’s arc length from leg stiffness setting (LSS) = 0 to 4.
This has the effect of dividing the leg into three arc lengths
which are defined in Fig. 4 as I(AB) = Iz, I(BC) =
Istigers  1(CD) =l,,4. The integral intervals at any loading
point can be written as

I, (Uree * Lstider)
ay = fRee’ a2 = f“%,
asz = (lfreg+lSlligder+lend) =n-0 (8)

Note that 6 is the angle of leg, which determines the
point of contact of the leg with the ground, with respect

TABLE 3. PROPERTIES OF LEG AND SLIDER

Variable Definition Value
bleg bslider width of the cross-section 18 mm
hieg hstider height of the cross-section 2.5 mm

R radius of leg 57 mm

ElegsEstidersEeff ~ young’s modulus 9.65 GPa

to hip(see Fig. 3) and I; 4., is the length of the compliant
slider that equals to

lider = LSS 1;; LSS €10,1,2,3,4) (9)

where [; is the arc length of slider at LSS=1. From
points B to C in Fig. 4 the slider and leg deform together
as separate but concentric beams (i.e. they are not rigidly
connected to each other and are allowed to slide past one
another) to increase the overall stiffness of the beam. The
second moment of area of the leg covered by the compliant
slider is calculated as [14]

Logf =Iieg + Litider  Where (10a)
3
bleghleg bSlid@’hSIider
Ileg = 12 Lsjider = 10 (10b)

The material and geometric properties of the leg and
compliant slider are presented in Tab. 3.

The partial derivative of Eqn. (6) with respect to F,
and Fy, gives us the deflection amount, 6 = [6X,5y], of the
loading point in the direction of the forces.

oU o :a_U (11)

%= Jr %7 oF

Eqn. (11) can be represented in matrix form as

[2] - [C"’“ C’“y] [ﬁ] ~[CllF) (12)

Y Cyx Cyy || Ly

where the elements of compliance matrix, C, are,
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Cox = —((El)leg(12a1 —16sin(ay) + 2sin(2ay))

1
(ED)es s

- 2(sin(2aq) —sin(2ay))) +

+ (=12(aq — ap) + 16(sin(ay) —sin(ay))

_
(El)slider
+ 16(sin(a,) —sin(az)) — 2(sin(2a;) —sin(2a3))))
R® 1
oy = o= 5 (D
1
(ED)ef s
L
(EI)slider
R, 1
% =5 (En
1
(ED)esy
1

+ S —
(El)slider

(-12(ay — a3)

(6 +2(—4cos(aq) + cos(2ay)))
leg

+

(8(cos(aq) —cos(ay)) —2(cos(2ay) — cos(2a3)))

(8(cos(ay) —cos(az)) — 2(cos(2ay) — cos(2a3))))

(4ay — 2sin(2aq))
leg

+

(—4(ay —ap) +2(sin(2ay) —sin(2a5)))

(—4(ap — a3) + 2(sin(2a,) —sin(2as3)))) (13)

Equation (12) expresses the deflection of the loading point
as a linear function of external forces. The elements of the
compliance matrix, C in Eqn. (12), are updated when the
point of application of the load (i.e. leg angle 0) changes,
as in the legged locomotion of the RHex robot, or the leg
stiffness is manupulated by shifting the position of the
compliant slider. Since a1, a; and a3 in Eqn. (13) depend
on instantaneous leg angle, the elements of the compliance
matrix are not constant during the motion and the leg acts
as a variable stiffness spring. This new leg model can be
substituted into the dynamic equations for a multi-legged
robot with a C-shaped leg [2]. Furthermore, the stiffness
matrix, which is the inverse of the compliance matrix, C,
can be utilized to find the unknown external forces (such
as ground reaction forces, friction forces and so forth) ap-
plied to the leg.

3 EXPERIMENTAL SETUP

In this study we empirically validate the deflection re-
sults predicted by Castigliano’s Theorem by statically load-
ing a tunable C-leg for a range of leg stiffness settings. Ad-
ditionally, we present these results with those predicted
by the PRB model as an added basis for comparison. In
the experimental setup shown in Fig. 5, the hip portion of

Force Plate

l«—— Cable Linear

Stage
Marker 1\ / latform

P
=

Compliant
Slider

uojje|sued ] wione|d

Linear

/ Stage

Rail

Marker 3

FIGURE 4. TOP VIEW OF THE EXPERIMENTAL SETUP IN
WHICH THE HIP PORTION OF THE LEG IS RIGIDLY AT-
TACHED TO A LINEAR STAGE PLATFORM AND THE LEG
IS DEFLECTED BY MOVING THE STAGE WHILE A FIXED
LENGTH CABLE CONNECTS THE LEG TO A FORCE PLATE
ANCHORED TO THE GROUND PLANE.

the fiberglass tunable stiffness C-leg was anchored to the
platform of a linear stage, and the C-leg was allowed to
cantilever from the platform. A Micos linear stage! and an
AMTI HE6x6 multi-axis force plate were rigidly mounted
to an aluminum base plate. A flexible, fixed length steel
cable connected the force plate to an aluminum clamp that
was fixed to the leg at Marker 2. A pulley was mounted to
the hip to keep the cable normal to the force plate’s surface.
The force plate is capable of measuring up to 10 pounds
with a 12-bit resolution?. The linear stage was commanded
to travel 20 mm at 10mm/s. The deflection path of the
leg was recorded using an Optotrak 3020 by tracking three
IR markers that were mounted to the leg (see Fig. 5). The
sampling rate of both the force plate and motion capture
system was 200 Hz. Leg deflection and force data were
collected for the discrete leg stiffness settings, LSS = 0 — 4,
shown in Fig. 5.

ISee http://www.micos-online.com
2 Additional information can be found at http://www.amti.biz
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FIGURE 5. TOP VIEW OF EXPERIMENTAL SETUP. (a) INI-
TIAL POSITION OF UNDEFLECTED LEG (b) DEFLECTED LEG
(PRESENTED WITH PERMISSION FROM [9])

4 FORCE-DEFLECTION RESULTS

In Fig. 6, we present the actual and estimated deflec-
tion path of loading point A (see Fig. 4) and percentage er-
rors (Fig. 6-c,d) of the two models. Since the current PRB
model is not capable of estimating deflection behaviour of
the leg for intermediate stiffness settings, we only com-
pared the results of two extreme stiffness (LSS = 0 and 4).
The percentage error of two models is defined as follows:

\/(X(i)act - x(i)est)z + (y(i)act - y(i)est)z)

dmux

PE(i) = .100%,

(14)
from i = 1 : n, where x-y is the position of loading
point in the coordinate frame that is attached to point C
in Fig. 4, n is the number of samples and d,,,, is the mag-
nitude of actual maximum deflection. The results show
that, at the LSS = 0 (Fig. 6-a), Castigliano’s method gives
smoother error over the whole deflection range while the
error of PRB model increases gradually. At maximum de-
flection, the percentage error of PRB model is 2.5 times
larger than the error of Castigliano’s model. On the other
hand two models produce almost same error at the stiffest
setting, LSS4 (Fig. 6-b). This indicates that as the compli-
ance of the leg decreases, the deflection behaviour of the
leg is estimated with similar accuracy by both models.
Figure 7-a,b,c presents the actual and estimated de-
flection path of loading point for the intermediate stiffness
settings. As seen from the figure, Castigliano’s model is ca-
pable of accurate prediction of deflection path for various
stiffness settings.
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FIGURE 6. (a)-(b) COMPARISION OF THE DEFLECTION
PATH OF PRB AND CASTIGLIANO MODEL WITH REAL DATA
AT THE STIFFNESS EXTREMES, LSS0 AND LSS4. (c)-(d) PER-
CENTAGE ERROR OF THE TWO MODELS AT THE STIFFNESS
EXTREMES
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TABLE 4. TABLE OF RADIAL STIFFNESS

Radial Stiffness (N/m)

LSS  Actual Castigliano  Error%
0 1280 1220 4.7
1 1400 1480 5.7
2 1730 1870 8
3 2300 2100 8.7
4 2600 2300 11.5

FIGURE 7. COMPARISION OF THE DEFLECTION PATH OF
CASTIGLIANO MODEL WITH REAL DATA AT THE INTERME-
DIATE STIFENESS SETTINGS,(a) LSS1, (b) LSS2 AND (c) LSS3.

Another experiment was performed to measure the de-
flection range of the leg during dynamic locomotion. In
this experiment, a high-speed camera (200 fps) was placed
one meter away from the path of Edubot. The robot’s mo-
tion in the sagittal plane was recorded while it ran at 1.1
m/s. The leg length, which we define as the line length
between the hip and the ground, was measured from the
video data frame-by-frame during the stance phase. This
was repeated for three legs visible to the camera. We inter-
pret these measuments as providing an empirical estimate
of the probability distribution over the physical deflections
in a typical stride, PR(length). The total expected error of
each model is then calculated as

= PE,pqe1-Pr(length), (15)
length

where PE,, 4. is obtained from Eqn. (14). The results
reveal that the total expected error of PRB model is 1.7
times larger than the total expected error of Castigliano’s
model.

Fig. 8 shows the radial force-deflection relationship of
actual data and Castigliano’s model at various leg stiffness
settings where radial deflection is defined as the deflected
radial distance due to the component of the load passing
through the center of circle. The maximum radial stiff-

Fy,m
by,m

results show that the radial stiffness of the empirical data
and Castigliano’s model are almost the same at LSS = 0 and
1. At LSS = 2 to 4 there is approximately 10% difference
between actual and estimated stiffnesses.

ness, =2"=, of each stiffness setting is given in Tab. 4. The
ax

5 CONCLUSION

In this study, the spatial compliance of a tunable C-
shaped leg was modeled using Castiglianos Theorem. The
results suggest that this approach may represent a simple,
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FIGURE 8. COMPARISION OF THE RADIAL FORCE-
DEFLECTION PATH OF ACTUAL AND CASTIGLIANO MODEL
FOR ALL STIFFNESS SETTINGS.(a)ACTUAL (b)CASTIGLIANO

accurate, and computationally efficient method for analyz-
ing deflections especially at intermediate leg stiffess set-
tings. This elastic half circular model is a new addition
to the existing literature on modeling elastic behavior of
the composite C-shaped legs used in the RHex-like class
of robots. Until now, all the simulations in the literature
we are aware of [1,15] have modeled the C-legs as linear
translational springs, which clearly do not capture the two
degree-of-freedom and leg angle dependent stiffness be-
havior of the C-leg in the sagittal plane. This study con-
vinces us that the Castigliano model may likely yield fur-
ther insight into the dynamics of physical RHex-like ma-
chines equipped with these very effective and apparently
simple but, heretofore, poorly modeled legs.
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