
Voronoi-Based Coverage Control of Heterogeneous Disk-Shaped Robots

Omur Arslan and Daniel E. Koditschek

Abstract— In distributed mobile sensing applications, net-
works of agents that are heterogeneous respecting both actua-
tion as well as body and sensory footprint are often modelled by
recourse to power diagrams — generalized Voronoi diagrams
with additive weights. In this paper we adapt the body power
diagram to introduce its “free subdiagram,” generating a
vector field planner that solves the combined sensory coverage
and collision avoidance problem via continuous evaluation of
an associated constrained optimization problem. We propose
practical extensions (a heuristic congestion manager that speeds
convergence and a lift of the point particle controller to the
more practical differential drive kinematics) that maintain the
convergence and collision guarantees.

I. INTRODUCTION

Among the many proposed multiple mobile sensor coor-

dination strategies [1], Voronoi-based coverage control [2]

uniquely combines both deployment and allocation in an

intrinsically distributed manner [3] via gradient descent (the

“move-to-centroid” law) down a utility function minimizing

the expected event sensing cost to adaptively achieve a

centroidal Voronoi configuration (depicted on the left in

Fig. 1). Since the original application to homogeneous point

robots [2], a growing literature considers the extension

to heterogeneous groups of robots differing variously in

their sensorimotor capabilities [4]–[7] by recourse to power

diagrams — generalized Voronoi diagrams with additive

weights [8].

A. Motivation and Prior Literature

Although it inherits many nice properties of a standard

Voronoi diagram such as convexity and dual triangulability,

a power diagram may possibly have empty cells associated

with some (unassigned) robots and/or some robots may not

be contained in their nonempty cells [8], as situation depicted

on the middle in Fig. 1. Such occupancy defects (Definition

1) generally cost resource inefficiency or redundancy1, and,

crucially, they re-introduce the problem of collision avoid-

ance — the chief motivation for the present paper.

Voronoi-based coverage control implicitly entails collision

avoidance for point robots since robots move in their pair-

wise disjoint Voronoi cells [2], but an additional collision

avoidance strategy is mandatory for safe navigation of finite

size robots. Existing work on combining coverage control

and collision avoidance generally uses (i) either heuristic
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1Note that a power diagram with an occupancy defect can be beneficial
in certain applications to save/balance energy across a mobile network of
power limited agents [7].
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Fig. 1. An illustration of (left) the Voronoi and (middle) power diagrams
of an environment based on a noncolliding placement of point robots, where
the weights of power cells are shown in parentheses. Although each point
robot is always contained in its Voronoi cell, power cells associated with
some robots (e.g. the 7th robot) may be empty and/or some robots (e.g. the
1st and 4th robots) may not be contained in their nonempty power cells.
(Right) A collision free disk configuration does not necessarily have Voronoi
cells containing respective robot bodies.

approaches based on repulsive fields [9], [10] and reciprocal

velocity obstacles [11] causing robots to converge to con-

figurations far from optimal sensing configurations; or (ii)

the projection of a vector field whenever a robot reaches the

boundary of its partition cell [4], [12] introducing a source of

discontinuity. An important observation made in [4] is that

it is sufficient to restrict robot bodies to respective Voronoi

regions for collision avoidance, but this is a conservative

assumption for robot groups with different body sizes (as

illustrated on the right in Fig. 1).

B. Contributions and Organization of the Paper

In this paper, we provide a necessary and sufficient con-

dition for identifying collision free configurations of finite

size robots in terms of their power diagrams, and accord-

ingly propose a constrained coverage control (“move-to-

constrained-centroid”) law whose continuous and piecewise

smooth flow asymptotically converges to an optimal sensing

configuration avoiding any collisions along the way. We

extend the practicability of the result by adding a congestion

management heuristic for unassigned robots that hastens

the assigned robots’ progress, and, finally, adapt the fully

actuated point particle vector field planner to the widely

used kinematic differential drive vehicle model (retaining

the convergence and collision avoidance guarantees in both

extensions).

This paper is organized as follows. Section II briefly

summarizes coverage control of point robots. Section III

discusses occupancy defects of power diagrams. In Section

IV we introduce a novel use of power diagrams for identi-

fying collision free multirobot configurations, and then pro-

pose a constrained optimization framework combining area

coverage and collision avoidance, and present its practical

extensions. Section V offers some numerical studies of the



proposed algorithms. Section VI concludes with a summary

of our contributions and a brief discussion of future work.

II. COVERAGE CONTROL OF POINT ROBOTS

A. Location Optimization of Homogeneous Robots

Let Q be a convex environment in R
N with a priori

known event distribution function φ : Q → R>0 that

models the probability of some event occurs in Q, and

p := (p1, p2, . . . , pn) ∈ Qn be a (noncolliding) placement

of n ∈ N point robots in Q.2 Suppose that the event

detection (sensing) cost of ith robot at location q ∈ Q is

a nondecreasing differentiable function, f : R → R, of

the Euclidean distance, ‖q− pi‖, between q and pi. Further

assume that robots are assigned to events based on a partition

of Q yielding a cover, W:= {W1,W2, . . . ,Wn}, a collection

of subsets (“cells”), Wi, whose union returns Q but whose

cells have mutually disjoint interiors. 3 A well established

approach (arising in both facility location [3], [13] and

quantization [14], [15] problems) achieves such a cover by

minimizing the expected event sensing cost,

H (p,W) :=

n∑

i=1

∫

Wi

f (‖q− pi‖)φ (q) dq. (1)

Now observe that, for any fixed p, the optimal task

assignment minimizing H is the standard Voronoi diagram

V (p) := {V1, . . . , Vn} of Q based on the configuration p,

Vi =
{

q ∈ Q
∣
∣
∣ ‖q− pi‖ ≤ ‖q− pj‖ , ∀j 6= i

}

. (2)

Thus, given the optimal task assignment of robots, the

objective function H takes the following form

HV (p):=H (p,V (p)) =

n∑

i=1

∫

Vi

f (‖q− pi‖)φ (q) dq, (3)

and it is common knowledge that [2], [3], [15]

∂HV (p)

∂pi
=

∫

Vi

∂

∂pi
f (‖q− pi‖)φ (q) dq. (4)

In the special case of f (x) = x2, the partial derivative of

HV has a simple physical interpretation as follows:

∂HV (p)

∂pi
= 2mVi

(pi − cVi
) , (5)

where mVi
and cVi

, respectively, denote the mass and the

center of mass of Vi according to the mass density function φ,

mVi
:=

∫

Vi

φ (q) dq, cVi
:=

∫

Vi

q φ (q) dq. (6)

Assuming first order (completely actuated single integra-

tor) robot dynamics,

ṗi = ui, (7)

2Here, N is the set of all natural numbers; R and R>0 (R≥0) denote the

set of real and positive (nonnegative) real numbers, respectively; and R
N

is the N -dimensional Euclidean space.
3We will generally refer to such decompositions as “diagrams” but also

occasionally allow the slight abuse of language to follow tradition and refer
to W as a partition.

the standard “move-to-centroid” law asymptotically steering

point robots to a centroidal Voronoi configuration with the

guarantee of no collision along the way is

ui = −k (pi − cVi
) , (8)

where k ∈ R>0 is a fixed control gain and the Voronoi

diagram V (p) of Q is assumed to be continuously updated.

Note that mVi
and cVi

are both continuously differentiable

functions of p as are both HV and ui [16]. Finally, observe,

again, that the coverage control ui supports a distributed

implementation whose local communications structure is

specified by the associated Delaunay graph [2].

B. Location Optimization of Heterogeneous Robots

In distributed sensing applications, heterogeneity of

robotic networks in sensing and actuation [4]–[7] is of-

ten modelled by recourse to power diagrams, generalized

Voronoi diagrams with additive weights [8]. More precisely,

for a given multirobot configuration p ∈ Qn, the event

sensing cost of ith robot at location q ∈ Q is assumed to be

given by the power distance, ‖q− pi‖
2−ρ2i where ρi ∈ R≥0

is the power radius of ith robot. Accordingly, the task

assignment of robots are determined by the power diagram

P (p,ρ) := {P1, P2, . . . , Pn} of Q based on the configura-

tion p and the associated power radii ρ := (ρ1, ρ2, . . . , ρn),

Pi :=
{

q ∈ Q
∣
∣
∣ ‖q−pi‖

2−ρ2i ≤ ‖q−pj‖
2−ρ2j , ∀j 6= i

}

, (9)

and the location optimization function becomes

HP (p,ρ) =

n∑

i=1

∫

Pi

(

‖q−pi‖
2−ρ2i

)

φ (q) dq. (10)

Note that in the special case of ρi = ρj for all i 6= j the

power diagram P (p,ρ) and the Voronoi diagram V (p) of

Q are identical, i.e., Pi = Vi.

Similar to (5), for fixed ρ, the partial derivative of HP

takes the following simple form [4], [7], [10],

∂HP (p,ρ)

∂pi
= 2mPi

(pi − cPi
) , (11)

where mPi
and cPi

are the mass and the center of mass of

Pi, respectively, as defined in (6). 4 For the single integrator

robot model (7), the standard “move-to-centroid” law of het-

erogeneous robotic networks asymptotically driving robots to

a critical point of HP (.,ρ), where robots are located at the

centroids of their respective power cells, is defined as

ui = −k (pi − cPi
) , (12)

for some fixed k ∈ R>0 and the power diagram P (p,ρ) of

Q is assumed to be continuously updated. Notwithstanding

its welcome inheritance of many standard Voronoi properties

(e.g., convexity, dual triangulability), a power diagram may

yield empty cells associated with some robots and/or some

robots may not be contained in their nonempty power cells,

illustrated in Fig. 1. In consequence, contrary to the case

4 To be well defined we set cPi
= pi whenever Pi has an empty interior.



of homogeneous robots, the “move-to-centroid” law of het-

erogeneous point robots is discontinuous and it cannot guar-

antee collision free navigation. Thus, in past literature, for

robots of finite but heterogeneous size, the standard “move-

to-centroid” law inevitably requires an additional heuristic

collision avoidance strategy for safe navigation.

III. OCCUPANCY DEFECTS OF POWER DIAGRAMS

Definition 1 (Occupancy Defect) The power partition,

P (p,ρ), associated with configuration p ∈ Qn and radii

ρ ∈ (R≥0)
n

is said to have an occupancy defect if pi 6∈ Pi

for some i ∈ {1, 2, . . . n}.

Configurations incurring occupancy defects introduce a

number of problems. First of all, empty partition cells cause

resource redundancy because some robots may never be

assigned to any event happening around them. Such robots

do not only become redundant, but also complicate collision

avoidance as (moving or stationary) obstacles and limit the

mobility of others. In general, robots that are not contained

in their respective cells require an extra care for collision

avoidance.

A straightforward characterization of an occupancy defec-

tive configuration is: 5

Proposition 1 Given radii ρ ∈ (R≥0)
n

, configuration p ∈
Qn does not incur an occupancy defective power diagram if

and only if ‖pi − pj‖
2 ≥

∣
∣ρ2i − ρ2j

∣
∣ for all i 6= j.

Proof. By Definition 1, P (p,ρ) has no occupancy defect if

and only if pi ∈ Pi for all i, which is the case if and only if

‖pi − pi‖
2 − ρ2i ≤ ‖pi − pj‖

2 − ρ2j , (13)

‖pj − pj‖
2 − ρ2j ≤ ‖pj − pi‖

2 − ρ2i , (14)

for all i 6= j. Thus, the result follows. �

IV. COMBINING COVERAGE CONTROL AND COLLISION

AVOIDANCE

Throughout the rest of paper, we consider hetero-

geneous disk-shaped multirobot configurations, p =
(p1, p2, . . . , pn) ∈ Qn, in Q with associated vectors of

nonnegative body radii β := (β1, β2, . . . , βn) ∈ (R≥0)
n

and sensory footprint radii σ := (σ1, σ2, . . . , σn) ∈ (R≥0)
n

,

where ith robot is centered at pi ∈ Q and has body radius

βi ≥ 0 and sensory footprint radius σi ≥ 0. Accordingly,

we will denote by B (p,β) = {B1, B2, . . . , Bn}, a cover

we term the body diagram of Q, solving the power problem

(9), (10), defined from HB (p,β); and we will denote by

S (p,σ) = {S1, S2, . . . , Sn}, a cover we term the sensor

diagram of Q, solving the corresponding problem defined

by HS (p,σ). We also find it convenient to denote the

configuration space of body-noncolliding disks of radii β

in Q as

Conf (Q,β) :=
{

p ∈ Qn
∣
∣
∣ ‖pi−pj‖ > βi+βj ∀i 6= j,

D (pi, βi) ⊂ Q̊ ∀i
}

, (15)

5In [5] the authors note the issue of empty power cells and give a similar
sufficient condition for each robot to be contained in its power cell.

where D (x, r) :=
{
y ∈ R

N
∣
∣ ‖x− y‖ ≤ r

}
is the closed disk

in R
N centered at x ∈ R

N with radius r ≥ 0, and Q̊ is the

interior of Q. Note that the vectors of body radii β and

sensory footprint radii σ are not necessary equal since β

models the heterogeneity of robots in body size, σ models

their heterogeneity in sensing and actuation.

A. Encoding Collisions via Body Diagrams

A geometric characterization of collision free multirobot

configurations in Q via their body diagrams is:

Proposition 2 Let B (p,β) be the body diagram of Q

associated with configuration p ∈ Qn (such that pi 6= pj for

all i 6= j) and body radii β ∈ (R≥0)
n

. Then p is collision

free if and only if every robot body is contained in the interior

of its body cell, i.e.,

p ∈ Conf (Q,β) ⇐⇒ D (pi, βi) ⊂ B̊i ∀i. (16)

Proof. The sufficiency (⇐=) follows because B (p,β) is a

cover of Q whose elements have disjoint interiors. Hence,

given D (pi, βi) ⊂ B̊i for all i, we have D (pi, βi) ⊂ Q̊ and

D (pi, βi)∩D (pj , βj) = ∅ for all i 6= j, and so ‖pi − pj‖ >

βi + βj . Thus, p ∈ Conf (Q,β).
To see the necessity (=⇒), for any p ∈ Conf (Q,β) we

will show that pi ∈ Bi for all i, and the distance between

pi and the boundary ∂Bi of Bi is greater than βi, i.e.,

minx∈∂Bi
‖x− pi‖ > βi, and so D (pi, βi) ⊂ B̊i.

It follows from Proposition 1 that for any p ∈ Conf (Q,β)
B (p,β) has no occupancy defect (Def. 1), i.e., pi ∈ Bi ∀i.

The boundary ∂Bi of Bi is defined by the boundary ∂Q

of Q and the separating separating hyperplane between body

cells Bi and Bj for some j 6= i [8]. By definition (15), we

have minx∈∂Q ‖x− pi‖ > βi for any p ∈ Conf (Q,β).
Now observe that, for any i 6= j the separating hyperplane

between body cells Bi and Bj is perpendicular to the line

joining pi and pj and is given by [8]

Hij :=
{

x∈R
N
∣
∣
∣2xT(pi−pj)=β2

j −β2
i +‖pi‖

2−‖pj‖
2
}

,(17)

and the perpendicular distance of pi to Hij is given by

d (pi, Hij) :=
‖pi − pj‖

2
+

β2
i − β2

j

2 ‖pi − pj‖
. (18)

Note that d (pi, Hij) is negative when B (p,β) has an

occupancy defect; and we have from Proposition 1 that

B (p,β) is free of such a defect for any p ∈ Conf (Q,β)
and so d (pi, Hij) ≥ 0. One can further show that for any

i 6= j

d (pi, Hij) = βi +
‖pi − pi‖

2 + β2
i − β2

j − 2βi ‖pi − pi‖

2 ‖pi − pi‖
,

= βi +
(‖pi − pi‖ − βi)

2 − β2
j

2 ‖pi − pi‖
︸ ︷︷ ︸

>0, since p∈Conf(Q,β)

> βi, (19)

which completes the proof. �

To determine a collision free neighborhood of a configura-

tion p∈Conf(Q,β) with a vector of body radii β∈(R≥0)
n

,
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Fig. 2. (left) Encoding collision free configurations via body diagrams:
A configuration of disks is nonintersecting iff each disk is contained in the
interior of its body cell. (right) Free subcells, obtained by eroding each body
cell with its associated disk radius.

we define a free subdiagram F (p,β) := {F1, F2, . . . , Fn} of

the body diagram B (p,β) = {B1, B2, . . . , Bn} by eroding

each cell removing the volume swept along its boundary,

∂Bi, by the associated body radius, see Fig. 2, as [17] 6

Fi :=Bi\
(
∂Bi⊕D(0, βi)

)
=

{

q∈Bi

∣
∣
∣
∣
min
x∈∂Bi

‖x−q‖>βi

}

.(20)

Note that Fi is a nonempty convex set because pi ∈ Fi and

the erosion of a convex set by a ball is convex. 7

The following observation yields a (possibly conservative)

convex inner approximation of the free configuration space

neighborhood surrounding free configuration as

p ∈ Conf (Q,β) ⇒
∏

F (p,β) ⊂ Conf (Q,β) , (21)

where
∏

F (p,β) = F1 × F2 × . . .× Fn.

Lemma 1 Let p ∈ Conf (Q,β) be a multirobot configura-

tion with a vector of body radii β ∈ (R≥0)
n

, and F (p,β)
be the free subdiagram of the body diagram B (p,β).

Then q ∈ Qn is a collision free multirobot configuration

in Conf (Q,β) if qi ∈ Fi (i.e., D (qi, βi) ⊂ B̊i) for all i.

Proof. The results directly follows from B (p,β) covering a

partition of Q, as discussed in the proof of Proposition 2. �

B. Coverage Control of Heterogeneous Disk-Shaped Robots

Consider a heterogeneous multirobot configuration p ∈
Conf (Q,β+ǫ) with associated vectors of body radii β ∈
(R≥0)

n
, safety margins ǫ ∈ (R>0)

n
and sensory footprint

radii σ ∈ (R≥0)
n

, and let S (p,σ) = {S1, . . . , Sn} be the

sensory diagram of Q based on robot locations p and sensory

footprint radii σ, and F (p,β+ǫ) = {F1, . . . , Fn} be the

free subdiagram associated with configuration p and enlarged

body radii β+ǫ. Here we use ǫ to guarantee the clearance

between any pair i 6= j of robots to be at least ǫi + ǫj . 8

6Here, 0 is a vector of all zeros with the appropriate size, and A ⊕
B := {a+ b | a ∈ A, b ∈ B} is the Minkowski sum of sets A and B.

7It is obvious that the erosion of a half-space by a ball is a half-space.
Hence, since the erosion operation is distributed over set intersection [17],
and a convex set can be defined as (possibly infinite) intersection of half-
spaces [18], the erosion of a convex set by a ball is convex.

8Having a positive vector of safety margins ǫ enables us to consider col-

lision free configurations in Conf (Q,β+ǫ) ⊂ Conf (Q,β). Throughout
the rest of the paper, in order the compress the notation, we will abuse the
notation and use Conf (Q,β+ǫ) to refer to the closure of the configuration
space in (15).

Now, in contrast to the standard “move-to-centroid” law

that steers each robot directly towards the centroid, cSi
, of its

sensory cell, Si, we propose a coverage control policy that

selects a safe target location, called the constrained centroid

of Si, that solves the following convex programming 9

minimize ‖qi − cSi
‖2

subject to qi ∈ F i

(22)

where F i is a closed convex set. It is well known that the

unique solution of (22) is given by [18, Section 8.1.1] 10

cSi
:=

{
cSi

, if cSi
∈ F i,

ΠF i
(cSi

) , otherwise,
(23)

where ΠC (x) denotes the metric projection of x ∈ R
N

onto a convex set C ⊂ R
N , and note that ΠC is piece-

wise continuously differentiable [20]–[22].11 Accordingly,

for the single integrator robot dynamics (7), our “move-to-

constrained-centroid” law is defined as

ui = −k (pi − cSi
) , (24)

where k ∈ R>0 is a fixed control gain, and we assume

that S (p,σ) and F (p,β+ǫ) are continuously updated.

We find it convenient to have GS (Q,β+ǫ,σ) denote the

set of equilibria of our “move-to-constrained-centroid” law

where robots are located at the constrained centroid of their

respective sensory cells, 12

GS(Q,β+ǫ,σ) :=
{

p∈Conf (Q,β+ǫ)
∣
∣
∣ pi=cSi

∀i
}

. (25)

In the special case of identical sensory footprint radii, i.e.,

σi = σj for all i 6= j, these stationary configurations are

called the constrained centroidal Voronoi configurations [23].

Also note that for homogeneous point robots our “move-

to-constrained-centroid” law in (24) simplifies back to the

standard “move-to-centroid” law in (8).

We summarize the qualitative properties of our “move-to-

constrained-centroid” law as follows:

Theorem 1 For any choice of vectors of body radii β ∈
(R≥0)

n
, safety margin ǫ ∈ (R>0)

n
and sensory footprint

radii σ∈(R≥0)
n

, the configuration space of nonintersecting

disks Conf(Q,β+ǫ) (15) is positive invariant under the

“move-to-constrained-centroid” law in (24) whose unique,

continuous and piecewise differentiable flow, starting at any

configuration in Conf(Q,β+ǫ), asymptotically reaches a lo-

cally optimal sensing configuration in GS(Q,β+ǫ,σ) while

9Here, A is the closure of set A.
10In general, the metric projection of a point onto a convex set can be

efficiently computed using a standard convex programming solver [18]. If
Q is a convex polytope, then a free subcell, Fi, is also a convex polytope
and can be written as a finite intersection of half-spaces. Hence, the metric
projection onto a convex polytope can be recast as quadratic programming
and can be solved in polynomial time [19]. In the case of a convex polygonal
environment, Fi is a convex polygon and the metric projection onto a convex
polygon can be solved analytically since the solution lies on one of its edges
unless the input point is inside the polygon.

11 Note that cSi
is well defined (see footnote 4), hence cSi

must be as
well given Fi 6= ∅.

12 Note that this set cannot be empty since it contains the minima of a
smooth function over a compact set (22).



strictly decreasing the utility function HS(·,σ) (10) along

the way. If an equilibrium in GS(Q,β+ǫ,σ) is isolated,

then it is locally asymptotically stable.

Proof. The instantaneous ”target” in (24) lies in the clo-

sure of the convex inner approximation to the freespace

neighborhood of any free configuration, cS(p,σ) ∈
∏

F (p,β+ǫ) ⊂ Conf (Q,β+ǫ), hence, according to

Lemma 1, the configuration space tangent vector defined

by (24), −k
(
p− cS(p,σ)

)
∈ TpConf (Q,β+ǫ), is either

interior directed or, at worse, tangent to the boundary of
∏

F (p,β+ǫ). Therefore, by construction (22), the “move-

to-constrained-centroid” law leaves Conf(Q,β+ǫ) posi-

tively invariant.

The existence, uniqueness and continuity of its flow can

be observed using an equivalent hybrid system consisting of

a family of piecewise continuously differentiable local vector

fields as follows. Let uI : DI →
(
R

N
)n

be a local controller

associated with a subset I of {1, 2, . . . , n} defined as

uIi =

{
−k (pi − cSi

) , if i ∈ I

0 , otherwise,
(26)

where its domain is

DI :=
{

p∈Conf (Q,β+ǫ)
∣
∣
∣ S̊i 6= ∅ ∀i ∈ I

}

. (27)

Note that for a given configuration in its domain, DI , a

local policy index, I , indicates which robots are assigned

to sensory cells with nonempty interiors, and so the do-

mains, DI , of local controllers defines a finite open cover

of Conf (Q,β+ǫ). Hence, since all unassigned robots are

stationary under the “move-to-constrained-centroid” law and

every robot whose sensory cell has a nonempty interior is

assigned to the coverage task, one can further conclude that

these local controllers can be composed using the policy

selection strategy, g : Conf (Q,β+ǫ) → P (n) maximizing

the number of assigned robots,13

g (p) := arg max
I⊆{1,...,n}

p∈DI

|I| . (28)

such that the resulting hybrid vector field is the same as

the “move-to-constrained-centroid” law in (24), i.e., for any

p ∈ Conf (Q,β+ǫ)

u (p) = ug(p) (p) . (29)

Note that, since a sensory cell with a nonempty interior can

not instantaneously appear or disappear under any continuous

motion, each time when a local controller is selected by g it

steers the robots for a nonzero time.

Now the continuity properties of each local control policy

can be observed as follows. As in the case of Voronoi

diagrams [16], we have that the boundary of a sensory

cell with a nonempty interior is a piecewise continuously

differentiable function of robot locations, and its centroid is

continuously differentiable with respect to robot locations.

Similarly, the boundary of each element of F (p,β+ǫ) is

13Here P (n) denotes the set of all subsets of {1, 2, . . . , n}.

piecewise continuously differentiable since each free cell

is a nonempty erosion of an element of the body diagram

B (p,β + ǫ) by a fixed closed ball. Hence, one can conclude

that each local control policy is piecewise continuously

differentiable since metric projections onto convex cells are

piecewise continuously differentiable [20]–[22] and the com-

position of piecewise continuously differentiable functions

are also piecewise continuously differentiable [24].

Therefore, the existence, uniqueness and continuously

differentiability of the flow of each local controller uI follow

from the Lipschitz continuity of uI in its compact domain

DI since a piecewise continuously differentiable function

is also locally Lipschitz on its domain [24] and a locally

Lipschitz function on a compact set is globally Lipschitz

on that set [25]. Hence, since their domains define a finite

open cover of Conf (Q,β + ǫ), the unique, continuous and

piecewise differentiable flow of the “move-to-constrained-

centroid” law is constructed by piecing together trajectories

of these local policies.

Finally, a natural choice of a Lyapunov function for the

stability analysis is the continuously differentiable location

optimization function HS (10), and one can verify from (11),

(22) and (24) that for any p ∈ Conf (Q,β+ǫ) 14

ḢS (p,σ) = −k

n∑

i=1

mSi
2(pi − cSi

)
T
(pi − cSi

)
︸ ︷︷ ︸

≥‖pi−cSi‖
2

,

since pi∈Fi and ‖pi−cSi‖
2
≥‖cSi

−cSi‖
2

, (30)

≤ −k

n∑

i=1

mSi
‖pi − cSi

‖2 ≤ 0, (31)

which is equal to 0 only if pi = cSi
for all i, i.e.,

p ∈ GS (Q,β+ǫ,σ). Thus, it follows from LaSalle’s

Invariance Principle [25] that all multirobot configurations

in Conf (Q,β+ǫ) asymptotically reach GS (Q,β+ǫ,σ). If

an equilibrium p∗ in GS (Q,β+ǫ,σ) is isolated, then it is

guaranteed that ḢS (p,σ) < 0 in a neighborhood of p∗, and

so it is locally asymptotically stable [26]. �

C. Congestion Control of Unassigned Robots

In this subsection we shall present a heuristic congestion

management strategy for unassigned robots that improves

assigned robots’ progress.

For a choice of vectors of body radii β∈ (R≥0)
n

, safety

margins ǫ∈(R>0)
n

and sensory footprint radii σ∈(R≥0)
n

,

let p ∈ Conf (Q,β+ǫ) be a multirobot configuration

in Q with the associated body diagram B (p,β+ǫ) =
{B1, . . . , Bn}, free subdiagram F (p,β+ǫ) = {F1, . . . , Fn}
and sensory diagram S (p,σ) = {S1, . . . , Sn}.

Consider the following heuristic management of robots:

if ith robot has a sensory cell Pi with a nonempty interior,

then it is assigned to the coverage task with sensory cell

Si; otherwise, since the robot becomes redundant for the

coverage task, it is assigned to move towards a safe location

14AT is the transpose of matrix A.



in Bi. We therefore define the set of “active” domains

A (p,β+ǫ,σ) = {A1, A2, . . . , An} of robots as

Ai :=

{

Si , if S̊i 6= ∅,
Bi , otherwise.

(32)

Note that A (p,β+ǫ,σ) defines a cover of Q and its

elements have nonempty interior for all p ∈ Conf (Q,β+ǫ)
(Proposition 2).

For the first order robot dynamics (7), we propose the

following “move-to-constrained-active-centroid” law

ui = −k (pi − cAi
) , (33)

that steers each robot towards the constrained centroid, cAi
as

defined in (23), of its active domain, Ai, which is the closest

point in F i to the centroid cAi
and so uniquely solves [18]

minimize ‖qi − cAi
‖2

subject to qi ∈ F i

(34)

where F i is convex and k ∈ R>0 is a fixed con-

trol gain. Once again, we assume that A (p,β+ǫ,σ) and

F (p,β+ǫ) are continuously updated. It is also useful to

have GA (Q,β+ǫ,σ) denote the set of equilibria of the

“move-to-constrained-active-centroid” law where robots are

located at the constrained centroid of their active domains,

GA(Q,β+ǫ,σ) :=
{

p∈Conf (Q,β+ǫ)
∣
∣
∣pi=cAi

∀i
}

.(35)

We summarize some important properties of our “move-

to-constrained-active-centroid” law as follows:

Proposition 3 For any β,σ∈ (R≥0)
n

and ǫ∈ (R>0)
n

, the

“move-to-constrained-active-centroid” law in (33) leaves the

configuration space of nonintersecting disks Conf(Q,β+ǫ)
positively invariant; and its unique, continuous and piece-

wise differentiable flow, starting at any configuration

in Conf(Q,β+ǫ), asymptotically reaches GA(Q,β+ǫ,σ)
without increasing the utility function HS(·,σ) (10) along

the way.

Proof. The positive invariance of Conf (Q,β+ǫ) under the

“move-to-constrained-active-centroid” law and the existence,

uniqueness and continuity properties of its flow follow the

same pattern as established in Theorem 1.

For the stability analysis, using (11), (33) and (34), one

can show that the continuously differentiable utility function

HS (.,σ) (10) is nonincreasing along the trajectory of the

“move-to-constrained-active-centroid” law as follows:

ḢS (p,σ) = −k
∑

i∈{1,...,n}

S̊i 6=∅

mSi
2(pi−cSi

)
T
(pi−cSi

)
︸ ︷︷ ︸

≥‖pi−cSi‖
2
,

since pi∈Fi and ‖pi−cSi‖
2

≥‖cSi
−cSi‖

2

− k
∑

i∈{1,...,n}

S̊i=∅

mSi
︸ ︷︷ ︸

=0
since S̊i=∅

2(pi−cSi
)T(pi−cBi

), (36)

≤ −k
∑

i∈{1,...,n}

S̊i 6=∅

mSi
‖pi − cSi

‖2 ≤ 0. (37)

Hence, we have from Lasalle’s Invariance Principle [25] that,

at an equilibrium point of the “move-to-constrained-active-

centroid” law, a robot is located at the constrained centroid,

cSi
, of its sensory cell, Si, if it has a nonempty interior, i.e.,

S̊i 6= ∅. Given that pi = cSi
for all i ∈ {1, . . . , n} with

S̊i 6= ∅, using (11), (33) and (34), one can further show that

ḢB (p,β+ǫ) = −k
∑

i∈{1,...,n}

S̊i 6=∅

mBi
2(pi−cBi

)
T
(pi−cSi

)
︸ ︷︷ ︸

=0,
since pi=cSi

− k
∑

i∈{1,...,n}

S̊i=∅

mBi
2(pi−cBi

)
T
(pi−cBi

)
︸ ︷︷ ︸

≥‖pi−cBi‖
2

,

since pi∈Fi and ‖pi−cBi‖
2

≥‖cBi
−cBi‖

2

, (38)

≤ −k
∑

i∈{1,...,n}

S̊i=∅

mBi
‖pi − cBi

‖2 ≤ 0. (39)

Therefore, at a stationary point of (33) ith robot is located at

the constrained centroid, cBi
, of its body cell Bi if S̊i = ∅.

Overall, by Lasalle’s Invariance Principle, we have that any

multirobot configuration starting in Conf (Q,β+ǫ) asymp-

totically converges to a locally optimal sensing configuration

in GA (Q,β+ǫ,σ), which completes the proof. �

D. Coverage Control of Differential Drive Robots

Consider a noncolliding placement of a heterogeneous

group of disk-shaped differential drive robots (p, θ) ∈
Conf (Q,β+ǫ)× (−π, π]n in a convex planar environment

Q ⊂ R
2 with associated vectors of body radii β ∈ (R≥0)

n
,

safety margins ǫ ∈ (R>0)
n

and sensory footprint radii

σ ∈ (R≥0)
n

, where θ = (θ1, θ2, . . . , θn) is the vector of

robot orientations.

The kinematic equations describing the motion of each

differential drive robot are

ṗi = vi

[
cos θi
sin θi

]

,

θ̇i = ωi,

(40)

where vi ∈ R and ωi ∈ R are, respectively, the linear

(tangential) and angular velocity inputs of ith robot. Note

that the differential drive model is underactuated due to the

nonholonomic constraint
[

− sin θi
cos θi

]T

ṗi = 0.

Let S (p,σ) = {S1, . . . , Sn} (9) be the sensory diagram of

Q based on robot locations p and sensory footprint radii σ,

and F (p,β+ǫ) = {F1, . . . , Fn} (20) be the free subdiagram

associated with configuration p and enlarged body radii β+
ǫ. For a choice of ε ∈ (R>0)

n
with εi > ǫi for all i, we

further define T (p,β+ε) = {T1, T2, . . . , Tn} to be

Ti := conv ({pi} ∪ F ′
i ) (41)

where F (p,β+ε) = {F ′
1, F

′
2, . . . , F

′
n} and conv (A) de-

notes the convex hull of set A. Note that, since F ′
i ⊂ Fi,

pi ∈ Fi and Fi is convex, every element of T (p,β+ε)
is contained in the associated element of F (p,β+ǫ), i.e.,

Ti ⊆ Fi. It is useful to remark that we particularly require

pi ∈ Ti to guarantee an optimal choice of a local target



position in (45) relative to pi, and we construct subset Ti of

Fi to increase the convergence rate of our proposed coverage

control law in (47).

As in the case of “move-to-constrained-centroid” law of

fully actuated robots in (24), for optimal coverage each

differential drive robot will intent to move towards the

constrained centroid, cSi
(23), of its sensory cell, Si, but

with a slight difference due to the nonholonomic constraint.

To determine a linear velocity input guaranteeing collision

avoidance, we select a safe target location that solves the

following convex programming,

minimize ‖qi − cSi
‖2

subject to qi ∈ F i ∩Hi

(42)

where

Hi :=

{

x ∈ Q
∣
∣
∣

[
− sin θi
cos θi

]T

(x− pi) = 0

}

(43)

is the straight line motion range due to the nonholonomic

constraint. Note that F i ∩Hi is a closed line segment in Q.

Hence, once again, the unique solution of (42) is given by

c v
Si

:=

{
cSi

, if cSi
∈ F i ∩Hi,

ΠF i∩Hi
(cSi

), otherwise,
(44)

where ΠC is the metric projection map onto a convex set

C. Similarly, to determine robot’s angular motion, we select

another safe target location that solves

minimize ‖qi − cSi
‖2

subject to qi ∈ T i

(45)

where T i ⊂ F i is convex, and the unique solution of (45) is

cω
Si

:=

{
cSi

, if cSi
∈ T i,

ΠT i
(cSi

), otherwise.
(46)

Accordingly, based on a standard differential drive con-

troller [27], we propose the following “move-to-constrained-

centroid” law for differential drive robots,15

vi = −k
[

cos θi
sin θi

]T (
pi − c v

Si

)
, (47a)

ωi = k atan






[
− sin θi
cos θi

]T (
pi − cω

Si

)

[
cos θi
sin θi

]T (
pi − cω

Si

)




 , (47b)

where k > 0 is fixed. Having GD(Q,β, ǫ, ε,σ) denote its

set of stationary points where the constrained centroids c v
Si

and cω
Si

coincide and ith robot is located at c v
Si

= cωSi
,

GD(Q,β, ǫ, ε,σ):=
{

p∈Conf(Q,β+ǫ)
∣
∣
∣pi=c v

Si
=cω

Si
∀i
}

,

we summarize important qualitative properties of the “move-

to-constrained-centroid” law of differential drive robots as:

Proposition 4 For any β,σ ∈ (R≥0)
n

and ǫ, ε ∈
(R>0)

n
with ǫi < εi for all i, the “move-to-constrained-

centroid” law of differential drive robots in (47) asymp-

totically steers all configurations in its positively invariant

15To resolve indeterminacy we set ωi = 0 whenever pi = cω
Si

.

domain Conf (Q,β+ǫ)×(−π, π]n towards the set of optimal

sensing configurations GD (Q,β, ǫ, ε,σ)×(−π, π]n without

increasing the utility function HS (·,σ) (10) along the way.

Proof. The configuration space Conf (Q,β+ǫ)×(−π, π]n is

positively invariant under the “move-to-constrained-centroid”

law in (47) because, by construction (42), each robot’s

motion is constrained to the associated safe partition subcell

in Q. The existence and uniqueness of its flow can be

established using the pattern of the proof of Theorem 1 and

the flow properties of the differential drive controller in [27].

Now, using HS (·,σ) (10) as a continuously differentiable

Lyapunov function, we obtain the stability properties as

follows: for any (p, θ) ∈ Conf (Q,β+ǫ)× (−π, π]n

ḢS (p,σ) = −k

n∑

i=1

mSi
2(pi − cSi

)
T (

pi − c v
Si

)

︸ ︷︷ ︸

≥‖pi−c v

Si
‖2

,

since pi∈Fi∩Hi and ‖pi−cSi‖
2

≥‖c v

Si
−cSi‖

2

, (48)

≤ −k

n∑

i=1

mSi

∥
∥pi − c v

Si

∥
∥
2
≤ 0, (49)

where ṗi = −k
(
pi − c v

Si

)
. Hence, by LaSalle’s Invariance

Principle [25], at a stationary point of (47) ith robot is located

at c v
Si

. Since for fixed c v
Si

and cω
Si

the standard differential

drive controller asymptotically aligns each robot with the

constrained centroid cω
Si

, i.e.,
[

− sin θi
cos θi

]T(
pi−cω

Si

)
= 0 [27],

it is guaranteed by (42) and (45) that c v
Si

= cω
Si

whenever
∥
∥pi − c v

Si

∥
∥ = 0 and

[
− sin θi
cos θi

]T(
pi−cω

Si

)
= 0. Therefore,

we have from LaSalle’s Invariance Principle that all config-

urations in Conf (Q,β+ǫ)× (−π, π]n asymptotically reach

GD (Q,β, ǫ, ε,σ)× (−π, π]n. �

Finally, note that the “move-to-constrained-active-

centroid” law of Section IV-C can be utilized for congestion

control of differential drive robots by using active domains

in (32) instead of the sensory diagram S (p,σ), and the

resulting coverage law maintains qualitative properties.

V. NUMERICAL SIMULATIONS

A common source of collisions between robots while

performing a distributed sensing task is a concentrated event

distribution which generally causes robots to move towards

the same small region of the environment.16 We therefore

consider the following event distribution, φ : [0, 10]
2 → R>0,

for a homogeneous group of disk-shaped robots operating in

a 10× 10 square environment,

φ (q) = e
−

∥

∥

∥

∥

q−
[

7
7

]∥
∥

∥

∥

2

. (50)

In Fig. 3 we present the resulting trajectories of our proposed

coverage control algorithms. Since the event distribution

16For all simulations we set k = 1, ǫi = 0.05 and εi = 0.1 for
all i ∈ {1, 2, . . . , n}, and all simulations are obtained through numerical
integration of the associated coverage control law using the ode45 function
of MATLAB, and the computation of the centroid of a power cell in (6) is
approximated by discretizing the power cell by a 20× 20 grid.
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Fig. 3. Avoiding collisions around a concentrated event distribution. (a) Initial configuration of a homogeneous robot network, where the weight of sensory
cell are shown in the parenthesis, and the resulting trajectories of (b) the standard “move-centroid” law (12), (c) the “move-to-constrained-centroid” law
(24), (d) the “move-to-constrained-active-centroid” law (33), (e) the “move-to-constrained-centroid” law of differential drive robots (47) which are initially
aligned with the horizontal axis.
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Fig. 4. Safe coverage control of heterogeneous disk-shaped robots with a heuristic management of unassigned robots. (a) Initial configuration of a
heterogeneous robot network, where the weight of sensory cell are shown in the parenthesis, and the resulting trajectories of (b) the standard “move-
centroid” law (12), (c) the “move-to-constrained-centroid” law (24), (d) the “move-to-constrained-active-centroid” law (33), (e) the “move-to-constrained-
active-centroid” law of differential drive robots which are initially aligned with the horizontal axis.

is concentrated around a small region, as expected, the

standard “move-to-centroid” law steers robots to a centroidal

Voronoi configuration where robots collide. On the other

hand, since a Voronoi partition has no occupancy defect, our

“move-to-constrained-centroid” and “move-to-constrained-

active-centroid” laws yield the same trajectory that asymp-

totically converges a collision free constrained centroidal

Voronoi configuration. It is also well known that minimizing

the location optimization function HS (10) generally results

in a locally optimal sensing configuration, and we observe

in Figures 3.(c) and 3.(e) that, although they are initiated at

the same location, fully actuated and differential drive robots

asymptotically reach different constrained centroidal Voronoi

configurations.

To demonstrate how unassigned robots may limit the

mobility of others, we consider a heterogeneous group of

disk-shaped robots operating in a 10× 10 environment with

the following event distribution function, φ : [0, 10]
2 → R>0,

φ (q) = 1 + 10e
−1

9

∥

∥

∥

∥

q−
[

8
8

]∥
∥

∥

∥

2

+ e
− 1

2

∥

∥

∥

∥

q−
[

8
2

]∥
∥

∥

∥

2

+ e
− 1

2

∥

∥

∥

∥

q−
[

8
4

]∥
∥

∥

∥

2

+ e
−

∥

∥

∥

∥

q−
[

3
7

]∥
∥

∥

∥

2

,

(51)

which is also used in [7]. In Fig. 4 we illustrate the resulting

trajectories of our safe coverage control algorithms. As seen

in Fig. 4.(a), the 2nd robot is initially not assigned to any

region. It stays stationary for a certain finite time under the

the standard “move-to-centroid” law during which the 1st

robot moves through it. Also notice that the 3rd robot violates

the workspace boundary before converging a safe location.

In summary, the “move-to-centroid” law steers disk-shaped

robots to a locally optimal sensing configuration without

avoiding collisions along the way. Our “move-to-constrained-

centroid” law prevents any possible self-collisions and colli-

sions with the boundary of the environment. However, since

the 2nd robot stays unassigned for all future time, the 1st

robot is blocked and it can not move to a better coverage

location. Fortunately, while guaranteeing collision avoidance,

our “move-to-constrained-active-centroid” law steers unas-

signed robots to improve assigned robots’ progress for both

fully actuated and differential drive robots, as illustrated in

Figures 4.(d) and 4.(e), respectively.

VI. CONCLUSION

In this paper we introduce a novel use of power diagrams

for identifying collision free multirobot configurations, and

propose a constrained optimization framework combining

coverage control and collision avoidance for fully actuated

disk-shaped robots, comprising the main contributions of the

paper. We also present its extensions for the widely used

differential drive model and for congestion management of

unassigned robots. Numerical simulations demonstrate the

effectiveness of the proposed coverage control algorithms.

Work now in progress targets another extension of

Voronoi-based coverage control for hierarchical settings,

based on nested partitions of convex environments [28].We

also believe that encoding collision free configurations in

terms of power diagrams might have a significant value for

robot motion planning, and we are currently exploring its

possible usage in the design of feedback motion planners

[29].
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