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Abstract—We introduce the use of hierarchical clustering
for relaxed, deterministic coordination and control of multiple
robots. Traditionally an unsupervised learning method, hierarchi-
cal clustering offers a formalism for identifying and representing
spatially cohesive and segregated robot groups at different
resolutions by relating the continuous space of configurations to
the combinatorial space of trees. We formalize and exploit this
relation, developing computationally effective reactive algorithms
for navigating through the combinatorial space in concert with
geometric realizations for a particular choice of hierarchical
clustering method. These constructions yield computationally
effective vector field planners for both hierarchically invariant
as well as transitional navigation in the configuration space.
We apply these methods to the centralized coordination and
control of n perfectly sensed and actuated Euclidean spheres
in a d-dimensional ambient space (for arbitrary n and d).
Given a desired configuration supporting a desired hierarchy,
we construct a hybrid controller which is quadratic in n and
algebraic in d and prove that its execution brings all but a
measure zero set of initial configurations to the desired goal with
the guarantee of no collisions along the way.

Index Terms—multirobot systems, navigation functions, for-
mation control, swarm robots, configuration space, coordinated
motion planning, hierarchical clustering, cohesion, segregation.

I. INTRODUCTION

C
ooperative, coordinated action and sensing can promote

efficiency, robustness, and flexibility in achieving com-

plex tasks such as search and rescue, area exploration, surveil-

lance and reconnaissance, and warehouse management [2].

Despite significant progress in the analysis of how local rules

can yield such global spatiotemporal patterns [3]–[5], there

has been strikingly less work on their specification. With few

exceptions, the engineering literature on multirobot systems

relies on task representations expressed in terms of rigidly

imposed configurations — either by absolutely targeted posi-

tions, or relative distances — missing the intuitively substantial

benefit of ignoring fine details of individual positioning, to

focus control effort instead on the presumably far coarser

properties of the collective pattern that matter. We seek a

more relaxed means of specification that is sensitive to spatial

distribution at multiple scales (as influencing the intensity of
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A preliminary version of this paper is presented in the conference paper
[1] for point particles and a certain choice of hierarchical clustering. In this
paper, we propose a general hierarchical navigation framework for a broad
class of clustering methods and disk-shaped robots.

Fig. 1. Moving from one spatial distribution to another is generally carried
through rearrangements of robot groups (clusters) at different resolution
corresponding to transitions between different cluster structures (hierarchies).

interactions among individuals and with their environment [6])

and the identities of neighbors (as determining the capabilities

of heterogeneous teams [7]) while affording, nevertheless, a

well-formed deterministic characterization of pattern.

We are led to the notion of hierarchical clustering. We rein-

terpret this classical method for unsupervised learning [8] as a

formalism for the specification and reactive implementation of

collective mobility tasks expressed with respect to successively

refined partitions of the agent set in a manner depicted in

Fig. 1. There, we display three different configurations of

five planar disks whose relative positions are specified by

three distinct trees that represent differently nested clusters

of relative proximity. The first configuration exhibits three

distinct clusters at a resolution in the neighborhood of 2

units of distance: the red and the blue disks; the yellow and

the orange disks; and the solitary green disk. At a coarser

resolution, in the neighborhood of 4 units of distance, the

green disk has merged into the subgroup including the red

and the blue disks to comprise one of only two clusters

discernible at this scale, the other formed by the orange and

the yellow disks. It is intuitively clear that this hierarchical

arrangement of subgroupings will persist under significant

variations in the position of each individual disk. It is similarly

clear that the second and third configurations (and significant

variations in the positions of the individual disks of both)

support the very differently nested clusters represented by the

second and third trees, respectively. In this paper, we introduce

a provably correct and computationally effective machinery

for specifying, controlling invariantly to, and passing between

such hierarchical clusterings at will.

As an illustration of its utility, we use this formalism to

solve a specific instance of the reactive motion planning
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TABLE I
CONSTITUENT PROBLEMS OF HIERARCHICAL ROBOT NAVIGATION

Problem Solution Theorem Description
1 Table IV 4 Hierarchy invariant vector field planner
2 Table V 5 Reactive navigation across hierarchies
3 Eqn.(33) 6 Cross-hierarchy geometric realization

problem suggesting how the new “relaxed” hierarchy-sensitive

layer of control can be merged with a task entailing a tradi-

tional rigidly specified goal pattern. Namely, for a collection

of n disk robots in Rd we presume that a target hierarchy has

been specified along with a goal configuration that supports it,

and that the robot group is controlled by a centralized source of

perfect, instantaneous information about each agent’s position

that can command exact instantaneous velocities for each

disk. We present an algorithm resulting in a purely reactive

hybrid dynamical system [9] guaranteed to bring the disk

robots to both the hierarchical pattern as well as the rigidly

specified instance from (almost) arbitrary initial conditions

with no collisions of the disks along the way. Stated formally

in Table III, the correctness of this algorithm is guaranteed by

Theorem 1 whose proof appeals to the resolution of various

constituent problems summarized in Table I. The construction

is computationally effective: the number of discrete transitions

grows in the worst case with the square of the number of

robots, n; each successive discrete transition can be computed

reactively (i.e., as a function of the present configuration) in

time that grows linearly with the group size; and the formulae

that define each successive vector field and guard condition

are rational functions (defined by quotients of polynomials

over the ambient space of degree less than 3) entailing terms

whose number grows quadratically with the number of robots.

In summary, the main contributions of the present paper are:

• a novel abstraction for ensemble task encoding and con-

trol in terms of hierarchical clustering, yielding precise

yet flexible organizational specifications at selectively

multiple resolutions,

• a provably correct generic hierarchical navigation frame-

work for collision free feedback motion planning for

multirobot systems,

• a computationally efficient instantiation of the hierarchi-

cal navigation framework for coordinated control of an

arbitrary number of disk-shaped robots operating in an

ambient space (of dimension d ≥ 2).

On a more conceptual level, we believe this paper breaks

new ground by introducing a topologically nontrivial symbolic

abstraction that reduces the complexity of high level planning

in the abstract symbol space [10] while nevertheless keeping

the associated physical problems within the scope of reactive

(real time) planning methods. In particular, our hierarchical

decomposition is not cellular — i.e., it is not the case that

a stratum of clusterings is contractible [11]. Rather, each

component has a known homotopy type. That information

enables the construction of a vector field to handle continuous

motions whose flow is designed to respect it, as must be the

case if its basin (the physical initial conditions it can handle

correctly) is to fill out the entire component.
This paper is organized as follows. We review in the next

section the relevant background literature: first on reactive

multirobot motion planning to relate the difficulty and impor-

tance of our sample problem to the state of the art in this field;

next on the role of hierarchy in configuration spaces as ex-

plored both in biology and engineering. Because the notion of

hierarchical clustering is a new abstraction for motion planning

we devote Section III to a presentation of the key background

technical ideas: first we review the relevant topological prop-

erties of configuration spaces; next the relevant topological

properties of tree spaces; and, finally, prior work establishing

properties of certain functions and relations between them.

Because we feel that the specific motion planning problem we

pose and solve represents a mere illustration of the larger value

of this abstraction for multirobot systems we devote Section

IV to a presentation of some of the more generic tools from

which our particular construction is built: first we introduce

the notion of hierarchy invariant navigation; next we discuss

the combinatorial problem of hierarchy rearrangement as a

graph navigation problem; and finally we interpret a subgraph

of that combinatorial space as a “prepares” graph [12] for the

hierarchy-invariant cover of configuration space. In Section V

we pose and solve the specific motion planning problem using

the concepts introduced in Section III and the tools introduced

in Section IV. Section VI offers some numerical studies of

the resulting algorithm. We conclude in Section VII with a

summary of the major technical results that yield the specific

contribution followed by some speculative remarks bearing on

the likelihood that recent extensions of these ideas presently

in progress [13] might afford a distributed reformulation, thus

addressing the first (and better explored) remarkable biological

inspiration for multirobot systems.

II. RELATED LITERATURE

A. Multirobot Motion Planning

1) Complexity: The intrinsic complexity of multibody con-

figurations impedes computationally effective generalizations

of single-robot motion planners [14], [15]. Coordinated motion

planning of thick bodies in a compact space is computationally

hard. For example, moving planar rectangular objects within a

rectangular box is PSPACE-hard [16] and motion planning for

finite planar disks in a polygonal environment is strongly NP-

hard [17]. Even determining when and how the configuration

space of noncolliding spheres in a unit box is connected entails

an encounter with the ancient sphere packing problem [18]. As

a result, although they ensure certain optimality properties and

handle complex environments, most available multirobot path

planning algorithms suffer from having at least exponential

computation time with the number of robots limiting their

applicability to problems entailing a small number of robots

in real-time settings [19]. Within the domain of reactive or

vector field motion planning, which is the main focus of this

paper, it has proven deceptively hard to determine exactly this

line of intractability. Consequently, this intrinsic complexity

for coordinated vector field planners is generally mitigated by

either assuming objects move in an unbounded (or sufficiently

large) space [20], [21], as we do in Section V, or sim-

ply assuming conditions sufficient to guarantee connectivity
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between initial and goal configurations [22], [23]. On the

other hand, more relaxed versions entailing (perhaps partially)

homogeneous1 (unlabeled) specifications for interchangeable

individuals have yielded computationally efficient planners

in the recent literature [24]–[27], and we suspect that the

cluster hierarchy abstraction may be usefully applicable to

such partially labeled settings.

2) Reactive Multirobot Motion Planning: Since the prob-

lem of reactively navigating groups of disks was first intro-

duced to robotics [29], [30], most research into vector field

planners has embraced the navigation function paradigm [31].

A recent review of this two decade old literature is provided

in [20], where a combination of intuitive and analytical results

yields a nonsmooth centralized planner for achieving goal

configurations specified up to rigid transformation. As noted in

[20], the multirobot generalization of a single-agent navigation

function is challenged by the violation of certain assumptions

inherited from the original formulation [31]. One such assump-

tion is that obstacles are “isolated” ( i.e. nonintersecting). In

the multirobot case, every robot encounters others as mobile

obstacles, and any collision between more than two robots

breaks down the isolated obstacle assumption [20]. In some

approaches, the departure from isolated interaction has been

addressed by encoding all possible collision scenarios, yielding

controllers with terms growing super-exponentially in the

number of robots, even when the workspace is not compact

[21]. In contrast, our recourse to the hierarchical representation

of configurations affords a computational burden growing

merely quadratically in the number of agents. In [22], the

problem is circumvented by allowing critical points on the

boundary (with no damage to the obstacle avoidance and

convergence guarantees), but, as mentioned above, very con-

servative assumptions about the degree of separation between

agents at the goal state are required. In contrast, our recourse to

hierarchy allows us to handle arbitrary (non-intersecting) goal

configurations, albeit our reliance upon the homotopy type of

the underlying space presently precludes the consideration of

a compact configuration space as formally allowed in [22].

Another limitation of navigation function approaches is the

requirement of proper parameter tuning to eliminate local

minima. Some effort has been given to automatic adaptation

of this parameter [23], and, in principle, the original results

of [31] guarantee that any monotone increasing scheme must

eventually resolve the issue of local minima, however, this

is numerically unfavorable (the Hessian of the resulting field

becomes stiffer) and incurs substantial performance costs

(transients must slow as the tuning parameter increases).2 In

contrast, our recourse to hierarchy removes the need for any

1Following the literature we use the term “heterogeneity” to connote
the robots’ diversity in actuation, sensing, computation, communication and
energy resources, which generally determines constraints on task assignment
[2], [24], [28]. For example, each robot in a fully heterogeneous (uniquely
labeled) group has a specific task (or target) whereas robots in a homogeneous
(unlabeled) group are interchangeable. In this paper we consider fully hetero-
geneous robot groups since any method proposed for heterogeneous robots
can be easily applied to (partially) homogeneous robots.

2It bears mention in passing that partial differential equations (e.g., har-
monic potentials [32]) yield self-tuning navigation functions but these are
intrinsically numerical constructions that forfeit the reactive nature of the
closed form vector field planners under discussion here.

comparable tuning parameter.
Many of the concepts and some of the technical construc-

tions we develop here were presented in preliminary form in

the conference paper [1], building on the initial results of

the conference paper [33]. This presentation gives a unified

view of the detailed results (with some tutorial background)

and contributes a major new extension by generalizing the

construction of [1] from point particles to thickened disks of

non-zero radius (necessitating a more involved version of the

hierarchy invariant fields in Section V-B).

B. The Use of Hierarchies as Organizational Models

1) Hierarchy in Configuration Space: That a hierarchy of

proximities might play a key role in computationally efficient

coordinated motion planning had already been hinted at in

early work on this problem [34]–[36]. Partial hierarchies

that limit the combinatorial growth of complexity have been

explicitly applied algorithmically to organize and simplify the

systematic enumeration of cluster adjacencies in the configu-

ration space [37]. Moreover, hierarchical discrete abstraction

methods are successfully applied for scalable steering of a

large number of robots as a group all together by controlling

the group shape [38], and also find applications for congestion

avoidance in swarm navigation [39]. While the utility of

hierarchies and expressions for manipulating them are by no

means new to this problem domain, we believe that the explicit

formal connection [40] we exploit between the topology of

configuration space [41] and the topology of tree space [42]

through the hierarchical clustering relation [8] is entirely new.
2) Hierarchy in Biology and Engineering: Biology offers

spectacularly diverse examples of animal spatial organization

ranging from self-sorting in cells [43], tissues and organs

[44], [45], and groups of individuals [46]–[48] to more pat-

terned teams [7], [49]–[51], all the way through strategic

group formations in vertebrates [52], [53], mammals [54]–

[57], and primates [58], [59] hypothesized to increase efficacy

in foraging [49], [50], hunting [52], [54], [55], [58], logistics

and construction [7], [51], predator avoidance [60], [61], and

even to stabilize whole ecologies [62] — all consequent upon

the collective ability to target, track, and transform geomet-

rically structured patterns of mutual location in response to

environmental stimulus. These formations are remarkable for

at least two reasons. First, their global structure seems to

arise from local signaling and response amongst proximal

individuals coupled to specific physical environments [63], in

a manner that might be posited as a paradigm for generalized

emergent intelligence [64]. Second, these formations appear

to resist familiar rigid prescriptions governing absolute or

relative location, instead giving wide latitude for individual

autonomy and detailed positioning (intuitively, a necessity for

negotiating fraught, highly dynamic interactions such as arise

in, say, hunting [54], [56]), while, nevertheless, supporting

the underlying coarse, deterministic “deep structure” as a

dynamical invariant. It is this second remarkable attribute of

biological swarms that inspires the present paper.
This profusion of pattern formation in biology has inspired

a commensurate interest in robotics, yielding a growing litera-

ture on group coordination behaviors [28], [65]–[67] motivated
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by the intuition that the heterogeneous action and sensing

abilities of a group of robots might enable a comparably

diverse range of complex tasks beyond the capabilities of a

single individual. For example, group coordination via splitting

and merging behaviours creates effective strategies for obstacle

avoidance [68], congestion control [39], shepherding [69], area

exploration [69], [70], and maintaining persistent and coherent

groups while adapting to the environment [67]. In almost all of

the robotics work in this area, formation tasks are given based

upon rigid specifications taking either the form of explicit

formation or relative distance graphs, with few exceptions

including the “shape” abstraction of [38] or applications in

unknown environments such as area coverage and exploration

[71]. Alternatively, hierarchical clustering offers an interesting

means of ensemble task encoding and control; and it seems

likely that the ability to specify organizational structure in the

precise but flexible terms that hierarchy permits will add a

useful tool to the robot motion planner’s toolkit.

TABLE II
PRINCIPAL SYMBOLS USED THROUGHOUT THIS PAPER

J , r Sets of labels and disk radii [III-A]

Conf
(

Rd, J, r
)

The conf. space of labelled, noncolliding disks (1)
BTJ The space of binary trees [III-B]
HC Hierarchical clustering [III-C]
HC2-means Iterative 2-means clustering [V]
S(τ) The stratum of a tree, τ ∈ BTJ , (2)
Portal (σ, τ) Portal configurations of a pair, (σ, τ), of trees (5)
Portσ,τ Portal map [IV-A3]
AJ = (BTJ ,EA) The adjacency graph of trees [III-D]
NJ = (BTJ ,EN) The NNI-graph of trees [III-D]

III. HIERARCHICAL ABSTRACTION

This section describes how we relate multirobot config-

urations to abstract cluster trees via hierarchical clustering

methods and how we define connectivity in tree space.

A. Configuration Space

For convenience, we restrict our attention to Euclidean disks

moving in a d-dimensional ambient space, but many concepts

introduced here can be generalized to any metric space.
Given an index set, J = [n] := {1, . . . , n} ⊂ N, a heteroge-

neous multirobot configuration, x = (xj)j∈J
, is a labeled non-

intersecting placement of |J | = n distinct Euclidean spheres,3

where ith sphere is centered at xi ∈ Rd and has radius

ri ≥ 0. We find it convenient to identify the configuration

space [41] with the set of distinct labelings, i.e., the injective

mappings of J into Rd, and, given a vector of nonnegative

radii, r := (rj)j∈J
∈ (R≥0)

J
, we will find it convenient to

denote our “thickened” subset of this configuration space as4

Conf
(
Rd, J, r

)
:=

{
x∈(Rd)

J
∣∣∣‖xi−xj‖>ri+rj , ∀i 6=j∈J

}
, (1)

where ‖.‖ denotes the standard Euclidean norm on R
d.

B. Cluster Hierarchies

A rooted semi-labelled tree τ over a fixed finite index set

J is a directed acyclic graph Gτ = (Vτ , Eτ ), whose leaves,

3Here, |A| denotes the cardinality of set A.
4Here, R and R≥0 denote the set of real and nonnegative real numbers,

respectively; and Rd is the d-dimensional Euclidean space.
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Fig. 2. An illustration of (a) a heteregeneous configuration of unit disks
in Conf

(

R2, [6] ,1
)

and (b) its iterative 2-mean clustering [72] hierar-
chy τ in BT[6], where the dashed lines in (a) depict the separating
hyperplanes between clusters, and (b) illustrates hierarchical cluster re-
lations: parent - Pr (I, τ), children - Ch (I, τ), and local complement
(sibling) - I−τ of cluster I of the rooted binary tree, τ ∈ BT[6]. An
interior node is referred by its cluster, the list of leaves below it; for
example, I = {3, 5}. Accordingly the cluster set of τ is C (τ) =
{

{1}, {2}, . . . , {6}, {1, 6}, {3, 5}, {2, 4}, {1, 3, 5, 6}, {1, 2, 3, 4, 5, 6}
}

.

vertices of degree one, are bijectively labeled by J and interior

vertices all have out-degree at least two; and all of whose edges

in Eτ are directed away from a vertex designated to be the

root [73]. A rooted tree with all interior vertices of out-degree

two is said to be binary or, equivalently, nondegenerate, and

all other trees are said to be degenerate. In this paper BTJ

denotes the set of rooted nondegenerate trees over leaf set J .

A rooted semi-labelled tree τ uniquely determines (and

henceforth will be interchangeably termed) a cluster hierarchy

[74]. By definition, all vertices of τ can be reached from the

root through a directed path in τ . The cluster of a vertex

v ∈ Vτ is defined to be the set of leaves reachable from v by

a directed path in τ , see Fig. 2. Let C (τ) denote the set of all

vertex clusters of τ .

For every cluster I ∈ C (τ) we recall the standard notion of

parent (cluster) Pr (I, τ) and lists of children Ch (I, τ), ances-

tors Anc (I, τ) and descendants Des (I, τ) of I in τ , illustrated

in Fig. 2 — see [33] for explicit definitions of cluster relations.

Additionally, we find it useful to define the local complement

(sibling) of cluster I ∈ C (τ) as I−τ := Pr (I, τ) \ I .

C. Configuration Hierarchies

A hierarchical clustering5 HC ⊂ Conf
(
Rd, J, r

)
× BTJ is

a relation from the configuration space Conf
(
Rd, J, r

)
to the

space of binary trees BTJ [8], an example depicted in Fig. 2.

In this paper we will only be interested in clustering methods

that can classify all possible configurations (i.e. for which HC

assigns some tree to every configuration), and so we need:

Property 1 HC is a multi-function.

Most standard divisive and agglomerative hierarchical clus-

tering methods exhibit this property, but generally fail to be

functions because choices may be required between different

but equally valid cluster splitting or merging decisions [8].

Given such an HC, for any x ∈ Conf
(
Rd, J, r

)
and τ ∈

BTJ , we say x supports τ if and only if (x, τ) ∈ HC. The

stratum associated with a binary hierarchy τ ∈ BTJ , denoted

5Although clustering algorithms generating degenerate hierarchies are avail-
able, many standard hierarchical clustering methods return binary clustering
trees as a default, thereby avoiding commitment to some “optimal” number
of clusters [8], [75].
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Fig. 3. The Quotient Space Conf(C, [3] , 0)/ ∼, where for any x,y ∈
Conf(C, [3] , 0), x ∼ y ⇐⇒ x3−x1

x2−x1
= y3−y1

y2−y1
. Here, point particle

configurations are quotiented out by translation, scale and rotation, and so
x1 = 0 + 0i, x2 = 1 + 0i and x3 ∈ C \ {x1, x2}. Regions are colored
according the associated cluster hierarchies results from their iterative 2-mean
clustering [72]. For instance, any configuration in the white region supports
all hierarchies in BT[3].

by S(τ) ⊂ Conf
(
R

d, J, r
)
, is the set of all configurations

x ∈ Conf
(
Rd, J, r

)
supporting the same tree τ [33],

S(τ) :=
{
x ∈ Conf

(
R

d, J, r
) ∣∣∣ (x, τ) ∈ HC

}
, (2)

and this yields a tree-indexed cover of the configuration space.

For purposes of illustration, we depict in Fig. 3 the strata of

Conf(C, [3] ,0) — a space that represents a group of three

point particles on the complex plane. 6 7

The restriction to binary trees precludes tree degeneracy [73]

and we will avoid configuration degeneracy by imposing:

Property 2 Each stratum of HC includes an open subset of

configurations, i.e. for every τ ∈ BTJ , S̊(τ) 6= ∅ .8

Once again, most hierarchical clustering methods respect this

assumption: they generally all agree (i.e. return the same

result) and are robust to small perturbations of a configuration

whenever all its clusters are compact and well separated [75].

Given any two configurations supporting the same cluster

hierarchy, moving between them while maintaining the shared

cluster hierarchy (introduced later as Problem 1) requires:

Property 3 Each stratum of HC is connected.

For an arbitrary clustering method this requirement is gener-

ally not trivial to show, but when clusters of HC are linearly

separable, one can characterize the topological shape of each

stratum to verify this requirement, as we do in Section V-A.

D. Graphs On Trees

After establishing the relation between multirobot configu-

rations and cluster hierarchies, the final step of our proposed

abstraction is to determine the connectivity of tree space.

Define the adjacency graph AJ = (BTJ ,EA) to be the 1-

skeleton of the nerve [11] of the Conf
(
Rd, J, r

)
-cover induced

6Here, 0 and 1 are, respectively, vectors of all zeros and ones with the
appropriate sizes.

7Note that the quotient space in Fig. 3 is not fully symmetric for all three
cluster hierarchies because of the nonlinearity of the quotient map. One can
visualize the full symmetry of these hierarchical strata by taking the inverse
stereographic projection of the planar quotient space onto a sphere.

8Here, Å denotes the interior of set A.

A AA B BB C CC

σ τ γ

(σ,A)

(τ, C)

(σ, B)

(γ, C)

(τ,B)

(γ,A)

Fig. 4. An illustration of NNI moves between binary trees: each arrow is
labeled by a source tree and an associated cluster defining the move.

by HC. That is to say, a pair of hierarchies, σ, τ ∈ BTJ ,

is connected with an edge in EA if and only if their strata

intersect, S(σ) ∩ S(τ) 6= ∅. To enable navigation between

structurally different configurations later(Problem 2), we need:

Property 4 The adjacency graph is connected.

Although the adjacency graph is a critical building block

of our abstraction, as Fig. 3 anticipates, HC strata generally

have complicated shapes, making it usually hard to compute

the complete adjacency graph. Fortunately, the computational

biology literature [42] offers an alternative notion of adjacency

that turns out to be both feasible and nicely compatible with

our needs, yielding a computationally effective, connected

subgraph of the adjacency graph, AJ , as follows.

The Nearest Neighbor Interchange (NNI) move at a cluster

A ∈ C (σ) on a binary tree σ ∈ BTJ , as illustrated in Fig. 4,

swaps cluster A with its parent’s sibling C = Pr (A, σ)
−σ

to

yield another binary tree τ ∈ BTJ [76], [77]. Say that σ, τ ∈
BTJ are NNI-adjacent if and only if one can be obtained from

the other by a single NNI move. Note that a pair of NNI-

adjacent trees differs only by one cluster, and the associated

NNI moves joining them can be determined by identifying

their unshared clusters [78]. Moreover, define the NNI-graph

NJ = (BTJ ,EN) to have vertex set BTJ , with two trees

connected by an edge in EN if and only if they are NNI-

adjacent, see Fig. 5. An important contribution of this paper

will be to show how the NNI-graph yields a computationally

effective subgraph of the adjacency graph (Theorem 6) for our

preferred choice of HC.

IV. HIERARCHICAL NAVIGATION FRAMEWORK

Hierarchical abstraction introduced in Section III intrinsi-

cally suggests a two-level navigation strategy for coordinated
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Fig. 5. The NNI Graph: a graphical representation of the space of rooted
binary trees, BTJ , with NNI connectivity, where J = [4] = {1, 2, 3, 4}.
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motion design: (i) at the low-level perform finer adjustments

on configurations using hierarchy preserving vector fields,

(ii) and at the high-level resolve structural conflicts between

configurations using a discrete transition policy in tree space;

and the connection between these two levels are established

through “portals” — open sets of configurations supporting

two adjacent hierarchies. In this section we abstractly describe

the generic components of our navigation framework and we

show how they are put together.

A. Generic Components of Hierarchical Navigation

1) Hierarchy Preserving Navigation: For ease of exposition
we restrict attention to first order (completely actuated single
integrator) robot dynamics, and we will be interested in smooth
closed loop feedback laws (or hybrid controllers composed
from them) that result in complete flows,9

ẋ = f (x) , (3)

where f : Conf
(
Rd, J, r

)
→

(
Rd

)J
is a vector field over

Conf
(
Rd, J, r

)
(1).

Denote by ϕt the flow [82] on Conf
(
Rd, J, r

)
induced by

the vector field f . For a choice of hierarchical clustering HC,
the class of hierarchy-invariant vector fields maintaining the
robot group in a specified hierarchical arrangement of clusters,
τ ∈ BTJ , is defined as [33],

FHC(τ ):=

{

f :Conf
(

R
d
, J, r

)

→
(

R
d
)J ∣
∣

∣
ϕ

t
(

S(τ )
)

⊂S(τ ), t>0

}

.(4)

Hierarchy preserving navigation, the low-level component of

our framework, uses the vector fields of FHC (τ) to invariantly

retract almost all of a stratum onto any designated goal

configuration.10 Thus, we require the availability of such a

construction, summarized as:

Problem 1 For any τ ∈ BTJ and y ∈ S(τ) associated with

HC construct a control policy, fτ,y, using the hierarchy invari-

ant vector fields of FHC (τ) whose closed loop asymptotically

results in a retraction, Rτ,y, of S(τ), possibly excluding a set

of measure zero11, onto {y}.

Key for purposes of the present application is the obser-

vation that any hierarchy-invariant field f ∈ FHC (τ) must

leave Conf
(
Rd, J, r

)
invariant as well, and thus avoids any

self-collisions of the agents along the way. Moreover, the

availability of such a family of hierarchy preserving local

controllers will enable us to focus on the structural aspects of

the multirobot navigation problem while hiding its continuous

details such as collision avoidance and stability.

2) Navigation in the Space of Binary Trees: Whereas the

controlled deformation retraction, Rτ,y, above generates paths

“through” the strata, we will also want to navigate “across”

them along the adjacency graph (which will be later in Section

V replaced with the NNI-graph — a computationally efficient,

9A long prior robotics literature motivates the utility of this fully actuated
“generalized damper” dynamical model [79], and provides methods for “lifts”
to controllers for second order plants [80], [81] as well.

10It is important to remark that, instead of a single goal configuration, a
more general family of problems can be parametrized by a set of goal config-
urations sharing a certain homotopy model comprising a set of appropriately
nested spheres; and for such a general case one can still construct an exact
retraction within our framework.

connected subgraph). Thus, we further require a construction

of a discrete feedback policy in BTJ that recursively generates

paths in the adjacency graph toward any specified destination

tree from all other trees in BTJ by reducing a “discrete Lya-

punov function” relative to that destination, summarized as:

Problem 2 Given any τ ∈ BTJ construct recursively a

closed loop discrete dynamical system in the adjacency graph,

taking the form of a deterministic discrete transition rule, gτ ,

with global attractor at τ endowed with a discrete Lyapunov

function relative to the attractor τ .

Such a recursively generated choice of next hierarchy will play

the role of a discrete feedback policy used to define the reset

map of our hybrid dynamical system.

3) Hierarchical Portals: Here, we relate the (combinatorial)

topology of hierarchical clusters to the (continuous) topology

of configurations by defining “portals” — open sets of con-

figurations supporting two adjacent hierarchies.

Definition 1 The portal, Portal (σ, τ), of a pair of hierar-

chies, σ, τ ∈ BTJ , is the set of all configurations supporting

interior strata of both trees,

Portal (σ, τ) := S̊(σ) ∩ S̊(τ) . (5)

Namely, portals are geometric realizations in the configuration

space of the edges of the adjacency graph on trees, see Fig.

3. To realize discrete transitions in tree space via hierarchy

preserving navigation in the configuration space, we need a

portal map that takes an edge of the adjacency graph, and

returns a target configuration in the associated portal:

Problem 3 Given an edge (σ, τ) ∈ EA of the adjacency graph

AJ = (BTJ ,EA), construct a geometric realization map

Port(σ,τ) : S(σ) → Portal (σ, τ) that takes a configuration

supporting σ, and returns a target configuration supporting

both trees σ and τ .

A portal map will serve the role of a dynamically computed

“prepares graph” [12] for the sequentially composed local

controllers whose correct recruitment solves the reactive co-

ordinated motion planning problem (Theorem 1).

B. Specification and Correctness of the Hierarchical Naviga-

tion Control (HNC) Algorithm

Assume the selection of a goal configuration y ∈ S(τ)
and a hierarchy τ ∈ BTJ that y supports. Now, given

(almost) any initial configuration x ∈ S(σ) for some hierarchy

σ ∈ BTJ that x supports, Table III presents the HNC

algorithm whose flowchart is illustrated in Fig. 6. In short, the

HNC algorithm solves the collision-free multirobot navigation

problem by reactively concatenating low-level continuous hi-

erarchy preserving vector field planners based on a high-level

discrete navigation planner in tree space and a selection of a

“portal” configuration supporting two adjacent hierarchies. We

summarize the important properties of the HNC algorithm as:

11 Recall from [83] that a continuous motion planner in a configuration
space X exists if and only if X is contractible. Hence, if a hierarchical
stratum is non-contractible (Theorem 2), the domain of such a vector field
planner described in Problem 1 must exclude at least a set of measure zero.



IEEE TRANSACTIONS ON ROBOTICS, VOL. ??, NO. ?, MONTH 2016 7

TABLE III
THE HNC ALGORITHM

For (almost) any initial x ∈ S(σ) and σ ∈ BTJ , and desired y ∈ S(τ)
and τ ∈ BTJ ,

1) (Hybrid Base Case) if x ∈ S(τ) then apply stratum-invariant
dynamics, fτ,y (Problem 1).

2) (Hybrid Recursive Step) else,

a) invoke the discrete transition rule gτ (Problem 2) to propose
an adjacent tree, γ ∈ BTJ , with lowered discrete Lyapunov
value.

b) Choose local configuration goal, z := Port(σ,γ) (x) (Prob-
lem 3).

c) Apply the stratum-invariant continuous controller fσ,z (Prob-
lem 1).

d) If the trajectory enters S(τ) then go to step 1; else, the
trajectory must enter S(γ) in finite time in which case
terminate fσ,z, reassign σ ← γ, and go to step 2a).

Theorem 1 The HNC Algorithm in Table III defines a hybrid

dynamical system whose execution brings almost every initial

configuration11 , x ∈ Conf
(
Rd, J

)
, in finite time to an arbi-

trarily small neighborhood of y ∈ S(τ) with the guarantee

of no collisions along the way.

Proof In the base case, 1) the conclusion follows from the

construction of Problem 1: the flow fτ,y keeps the state in

S(τ), approaches a neighborhood of y (which is an asymp-

totically stable equilibrium state for that flow) in finite time.

In the inductive step, a) The NNI transition rule gτ guaran-

tees a decrement in the Lyapunov function after a transition

from σ to γ (Problem 2), and a new local policy fσ,z is

automatically deployed with a local goal configuration z ∈
Portal (σ, γ) found in b). Next, the flow fσ,z in c) is guaran-

teed to keep the state in S(σ) and approach z ∈ Portal (σ, γ)
asymptotically from almost all initial configurations. If the

base case is not triggered in d), then the state enters arbitrarily

small neighborhoods of z and, hence, must eventually reach

Portal (σ, γ) ⊂ S(γ) in finite time, triggering a return to

2a). Because the dynamical transitions gτ initiated from any

hierarchy in BTJ reaches τ in finite steps (Problem 2), it must

eventually trigger the base case. �

Start

x ∈ S(σ) , σ ∈ BTJ ,

y ∈ S(τ) , τ ∈ BTJ
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Is Is
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Fig. 6. Flowchart of the hybrid vector field planner.

V. HIERARCHICAL NAVIGATION OF EUCLIDEAN SPHERES

VIA BISECTING K-MEANS CLUSTERING

We now confine our attention to 2-means divisive hierarchi-

cal clustering [72], HC2-means, and demonstrate a construction

of our hierarchical navigation framework for coordinated nav-

igation of Euclidean spheres via HC2-means.

A. Hierarchical Strata of HC2-means

Iterative 2-means clustering, HC2-means, is a divisive method

that recursively constructs a cluster hierarchy of a configu-

ration in a top-down fashion [72]. Briefly, this method splits

each successive (partial) configuration by applying 2-means

clustering, and successively continues with each subsplit until

reaching singletons. By construction, complementary con-

figuration clusters of HC2-means are linearly separable by a

hyperplane defined by the associated cluster centroids12, as

illustrated in Fig. 2; and the stratum of HC2-means associated

with a binary hierarchy τ ∈ BTJ can be characterized by the

intersection inverse images,

S(τ) =
⋂

I∈C(τ)\{J}

⋂

i∈I

η−1
i,I,τ [0,∞), (6)

of the scalar valued “separation” function, ηi,I,τ :
Conf

(
Rd, J, r

)
→ R [33] returning the distance of agent i

in cluster I ∈ C (τ) \ {J} to the perpendicular bisector of the

centroids of complementary clusters I and I−τ : 13

ηi,I,τ (x) :=
(
xi −mI,τ (x)

)T sI,τ (x)

‖sI,τ (x)‖
, (7)

where the associated “cluster functions” of a partial configu-

ration, x|I = (xi)i∈I , are defined as

c (x|I) :=
1

|I|

∑

i∈I

xi, (8)

sI,τ (x) := c (x|I)− c
(
x|I−τ

)
, (9)

mI,τ (x) :=
c (x|I) + c (x|I−τ )

2
. (10)

We now follow [40] in defining terminology and express-

sions leading to the characterization of the homotopy type of

the stratum, S(τ) , associated with a nondegenerate hierarchy.

The proofs of our formal statements all follow the same pattern

as established in [40], and we omit them to save space here.

Definition 2 A configuration x ∈ Conf
(
Rd, J, r

)
is narrow

relative to the split, {I, J \ I}, if

max
A∈{I,J\I}

r (x|A) <
1

2

∥∥c (x|I)− c (x|J \ I)
∥∥ , (11)

where the radius of a cluster, A ⊂ J , is defined to be14

r (x|A) := max
a∈A

(
‖xa − c (x|A)‖+ ra

)
. (12)

12In the context of self-sorting in heterogeneous swarms [28], two groups
of robot swarms are said to be segregated if their configurations are linearly
separable; and in this regard configuration hierarchies of HC2-means represent
spatially cohesive and segregated swarms groups at different resolutions.

13Here, AT denotes the transpose of a matrix A.
14Recall from p.4 that ri denotes the radius of ith sphere for any i ∈ J .
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Fig. 7. An illustration of (left) narrow and (right) standard disk configurations,
where arrows and dashed circles indicate clusters that can be rigidly rotated
around their centroids while preserving their clustering structures.

Say that x ∈ S(τ) is a standard configuration relative to the

nondegenerate hierarchy, τ ∈ BTJ , if it is narrow relative to

each local split, Ch (I, τ), of every cluster, I ∈ C (τ).

Since configuration hierarchies of HC2-means are invariant

under rigid transformations, and the separating hyperplanes of

complementary clusters are preserved whenever the associated

cluster centroids are kept unchanged, one can observe that:

Proposition 1 If x ∈ S(τ) is a standard configuration then

for each cluster, I ∈ C (τ), any rigid rotation of the partial

configuration, x|I , around its centroid, c (x|I), as illustrated

in Fig. 7, preserves the supported hierarchy τ .

Proposition 2 For any finite label set J ⊂ N and binary tree

τ ∈ BTJ , there exists a strong deformation retraction15

Rτ : S(τ)× [0, 1]→ S(τ) (13)

of S(τ) onto the subset of standard configurations of S(τ).

These two observations yield the key insight reported in [40].

Theorem 2 The set of configurations x ∈ Conf
(
Rd, J, r

)

supporting a binary tree has the homotopy type of (Sd−1)|J|−1.

To gain an intuitive appreciation, one can restate this

result as follows: two configurations in S(τ) are topologi-

cally equivalent if and only if the corresponding separating

hyperplane normals of configuration clusters are the same.16

Hence, navigation in a hierarchical stratum is carried out by

aligning separating hyperplane normals17 18, illustrated in Fig.

8; and using this geometric intuition, we construct in [33]

a family of hierarchy preserving control policies for point

particle configurations, and in the following we extend that

construction to thickened disk configurations.

15In [40] authors study point particle configurations, and they construct
a strong deformation retraction onto standard configurations by shrinking
clusters around their centroids; and one can obtain this result for thickened
spheres by properly expanding cluster configurations instead of shrinking.

16Note that a binary hierarchy over the leaf set J has |J |−1 interior nodes,
i.e. nonsingleton clusters [76].

17In [33] we construct a linear bijective mapping relating the configuration
space and the centroidal separations of complementary clusters of any given
hierarchy such that a multirobot configuration is uniquely determined by
its centroid and the centroidal separations of complementary clusters of the
associated hierarchy. Hence, since the Euclidean d-space and a connected
subset of the real line are both contractible, one can establish the intuitive
connection between the separating hyperplane normals and the homotopy type
of a hierarchical stratum in Theorem 2.

18For the stability analysis of hierarchy invariant local policies of point
particle configurations we use in [33] a Lyapunov function that quantifies
how well the separating hyperplanes of the current and the desired multirobot
configurations are aligned. Similarly, in the proof of Proposition 11 we also
show that the separating hyperplane normals of complementary clusters are
asymptotically aligned with the desired ones.

Fig. 8. The topological shape of a hierarchical stratum intuitively suggests
that global navigation in a hierarchical stratum is accomplished by aligning
separating hyperplanes of configurations.

Theorem 3 Iterative 2-means clustering HC2-means is a multi-

function, and each of its stratum, S(τ) associated with τ ∈
BTJ , is connected and has an open interior.

Proof It is well known that k-means clustering is a multi-

function generally yielding different k-partitions of any given

data, and so is HC2-means (Property 1) [8], [75]. Further, it

follows from Definition 2 and Proposition 2 that standard

configurations in S(τ) is open (Property 2), and Theorem 2

guarantees the connectedness of S(τ) (Property 3). �

B. Hierarchy Preserving Navigation

We now introduce a recursively defined vector field for

navigation in a hierarchical stratum and list its invariance and

stability properties.

Suppose that some desired configuration, y ∈ S(τ) has

been selected, supporting some desired nondegenerate tree,

τ ∈ BTJ . Our dynamical planner takes the form of a

centralized hybrid controller, fτ,y : S(τ)→
(
R

d
)|J|

, defining

a hierarchy-invariant vector field whose flow in S(τ) yields

the desired goal configuration, y, recursively defined according

to logic presented in Table IV. Throughout this section, the tree

τ and the goal configuration y are fixed, and we therefore sup-

press all mention of these terms wherever convenient, in order

to compress the notation. For example, for any x ∈ S(τ),
I ∈ C (τ) and i ∈ I we use the shorthand ηi,I (x) = ηi,I,τ (x)
(7), sI (x) = sI,τ (x) (9), mI (x) = mI,τ (x) (10) and so on.

TABLE IV
THE HIERARCHY-PRESERVING NAVIGATION VECTOR FIELD

For any initial x ∈ S(τ) and desired y ∈ S(τ), supporting τ ∈ BTJ ,

the hierarchy preserving vector field, fτ,y : S(τ)→
(

Rd
)J

,

fτ,y (x) := f̂τ,y (x,0, J) ,

is recursively computed starting at the root cluster J with the zero

control input 0 ∈
(

Rd
)J

as follows: for any u ∈
(

Rd
)J

and I ∈ C (τ),

B
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e
C
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1) function û = f̂τ,y (x,u, I)

2) if x ∈ DA (I) (15),

3) û← fA (x,u, I) (14),

4) else if x 6∈ DH (I) (18),

5) û← fS (x,u, I) (24),

6) else

7) {IL, IR} ← Ch(I, τ),

8) ûL ← f̂τ,y (x,u, IL),

9) ûR ← f̂τ,y (x, ûL, IR),

10) û← fH (x, ûR, I) (19),

11) end

12) return û

% Attracting Field

% Split Separation Field

% Recursion for Left Child

% Recursion for Right Child

% Split Preserving Field
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Fig. 9. An illustration of “sufficiently aligned” separating hyperplanes of
complementary clusters I and I−τ of τ . Both of the current (left) and desired
(right) partial configurations are linearly separable by each others separating
hyperplane, and such an alignment condition needs to be satisfied at each
level of the subtrees rooted at I and I−τ so that the partial configurations
x|I and x|I−τ are steered by the associated attracting fields.

In brief, the hierarchy invariant vector field fτ,y recursively

detects partial configurations whose separating hyperplanes

are “sufficiently aligned” with the desired ones, as specified

in (15) and illustrated in Fig. 9, and that can be directly

moved towards the desired configurations, using a family

of attracting fields fA (14), with no collisions along the

way. Once the partial configurations associated with sibling

clusters I and I−τ of τ are in the domains of their associated

attracting fields, fτ,y rotates these partial configurations while

preserving the hierarchy so that their separating hyperplane is

also asymptotically aligned. Hence, fτ,y asymptotically aligns

the separating hyperplanes of clusters of τ in a bottom-up

fashion; and once the separating hyperplanes of all clusters of

τ are “sufficiently aligned”, fτ,y drives asymptotically each

disk directly towards its desired location. We now present and

motivate its constituent formulae as follows.

The hierarchy-invariant vector field, fτ,y, in Table IV.2) &

IV.3) recursively detects partial configurations, x|I associated

with cluster I ∈ C (τ), that can be safely driven toward the

goal formation in S(τ) using a family of attracting controllers,

fA : S(τ)×
(
Rd

)J
×C (τ)→

(
Rd

)J
, defined in terms of the

negated gradient field of V (x) := 1
2 ‖x− y‖

2
2: for any j ∈ J ,

fA (x,u, I)j :=

{
−(xj−yj), if j ∈ I,

uj , else,
(14)

where u ∈
(
Rd

)J
is a desired (velocity) control input

specifying the motion of complementary cluster J \ I .

To avoid intra-cluster collisions along the way and preserve

(local) clustering hierarchy, for any I ∈ C (τ) the set of

configurations in the domain of the attracting field, fA, is

restricted to

DA (I):=
{
x∈S(τ)

∣∣∣L−→
y

1
2 ‖xi − xj‖

2
≥ (ri+rj)

2
, ∀i 6=j∈I,

L−→
y (xk−mK (x))TsK (x)≥0, ∀k∈K,K∈Des (I, τ)

}
,(15)

where Des (I, τ) is the set of descendants of I in τ . Here,
L−→y f denotes the Lie derivative of a scalar-valued function f
along a constant vector field −→y which assigns the same vector
y to every point in its domain, and one can simply verify that

L−→y
1
2
‖xi − xj‖

2 = (xi − xj)
T (yi − yj) , (16)

L−→y (xk−mK(x))TsK (x) = (yk−mK (y))TsK (x)

+ (xk−mK (x))TsK (y). (17)

Note that (16) quantifies the safety of a resulting trajectory

of fA, and to avoid collision between any pair of disks, i

and j, (16) should be no less than the square of sum of

their radii, (ri + rj)
2
, as required in (15); and (17) quantifies

the preservation of (local) clustering hierarchy and should be

nonnegative for hierarchy invariance. Also observe that since

a singleton cluster contains no pair of distinct indices, and has

an empty set of descendants, the predicate in (15) is always

true for these “leaf” node cases and we have DA (I) = S(τ)
for any singleton cluster I ∈ C (τ). Further, one can simply

verify that y ∈ DA (I) for any I ∈ C (τ).
If a partial configuration, x|I , is not contained in the domain

of the associated attracting field, i.e. x 6∈ DA (I), to avoid
inter-cluster collisions the failure of the condition in Table
IV.4) ensures sibling clusters, Ch (I, τ), will be separated by
a certain distance, specified as:

DH(I) :=
{

x∈S(τ )
∣

∣

∣
ηk,K (x)≥rk+α,∀k∈K,K∈Ch (I, τ )

}

,(18)

where ηk,K (x) (7) returns the perpendicular distance of kth

agent to the separating hyperplane of cluster K ∈ C (τ), and

α > 0 is a safety margin guaranteeing that the clearance be-

tween any pair of disks in complementary clusters, Ch (I, τ),
is at least 2α units. Observe that DH (I) = S(τ) for any

singleton cluster I ∈ C (τ) because such leaf clusters of a

binary tree have no children, i.e. Ch (I, τ) = ∅.

While the disks move in DH (I) based on a desired control

(velocity) input u ∈
(
Rd

)J
, Table IV.10) guarantees the

maintenance of the safety margin between children clusters

Ch (I, τ) by employing an additive repulsive field, fH :

S(τ) ×
(
R

d
)J
× C (τ) →

(
R

d
)J

, that rigidly pushes the

children clusters apart as follows:

fH (x,u, I)j := uj + 2αI (x,u)
|K−τ |

|I|

sK (x)

‖sK (x)‖
, (19)

for all j∈K and K∈Ch (I, τ); otherwise, fH (x,u, I)j :=uj ,

where αI (x,u) is a scalar valued function describing the

strength of the repulsive field,

αI (x,u) := max
k∈K

K∈Ch(I,τ)

φk,K (x) · ψk,K (x,u) . (20)

Here, for each individual k in cluster K ∈ Ch (I, τ), φk,K (x)
is exponential damping on the repulsion strength ψk,K (x,y),
in which the amplitude envelop exponentially decays to zero
after a certain safety margin β > α,

φk,K(x):= max

(

e−(ηk,K (x)−rk−α)−e−(β−α)

1− e−(β−α)
, 0

)

, (21)

ψk,K (x,u):= max
(

−
(

ηk,K(x)−rk−α
)

−L−→u ηk,K(x), 0
)

, (22)

where

L−→u ηk,K (x) =
(uk−mK (u))TsK (x)+(xk−mK (x))TsK (u)

‖sK (x)‖

− ηk,K (x)
sK (x)TsK (u)

‖sK (x)‖2
. (23)

Note that fH (x,u, I) is well defined for any singleton cluster

I ∈ C (τ) and is equal to the identity map, i.e. fH (x,u, I) =
u, since Ch (I, τ) = ∅; and also observe that fH (x,u, I) = u

for any I ∈ C (τ) if the complementary clusters Ch (I, τ) are



IEEE TRANSACTIONS ON ROBOTICS, VOL. ??, NO. ?, MONTH 2016 10

well-separated, i.e. ηk,K (x) ≥ rk + β for all k ∈ K and

K ∈ Ch (I, τ). The latter is important to avoid the “finite

escape time” phenomenon19 (Proposition 14).

Finally, Table IV.5) guarantees that if a partial configu-

ration is neither in the domain of the attracting field nor

are its children clusters, Ch (I, τ), properly separated, i.e.

x 6∈ DA (I) ∪ DH (I), then the complementary clusters are

driven apart using another repulsive field, fS : S(τ)×
(
Rd

)J
×

C (τ) →
(
Rd

)J
, until asymptotically establishing a certain

safety margin β > α:

fS (x,u, I)j := − c (x−y|I) + 2βI (x)
|K−τ |

|I|

sK (x)

‖sK (x)‖
,(24)

for all j∈K and K∈Ch (I, τ); otherwise, fS (x,u, I)j :=uj ,

where the magnitude, βI (x), of repulsion between comple-

mentary clusters Ch (I, τ) is given by

βI (x) := max
k∈K

K∈Ch(I,τ)

max
(
−
(
ηk,K (x)−rk−β

)
, 0
)
. (25)

For completeness, we set fS (x,u, I) = fA (x,u, I) for any

singleton cluster I ∈ C (τ).

We summarize the properties of this construction as:20

Theorem 4 The recursion of Table IV results in a well-defined

function fτ,y : S(τ) →
(
Rd

)J
that can be computed in

O
(
|J |

2
)

time for any x ∈ S(τ). For all τ ∈ BTJ , the

stratum S(τ) is positive invariant and any y ∈ S(τ) is

an asymptotically stable equilibrium point of a continuous

piecewise smooth flow arising from fτ,y whose basin of

attraction includes all, except a set of measure zero21, of S(τ).

Proof These results are proven in Appendix I according to the

following plan. Proposition 3 establishes that the recursion in

Table IV indeed results in a function computable in quadratic

time. The invariance, stability, and continuous flow generating

properties of fτ,y are shown using an equivalent system model

within the sequential composition framework [12], as follows.

Table VI defines a new recursion shown in Proposition 4

to result in a family of continuous and piecewise smooth

vector fields. Proposition 5 asserts that the family of domains

associated with these fields (44) defines a (finite) open cover

of S(τ) relative to which a selection function (Table VII)

induces a partition of that stratum. Proposition 6 demonstrates

that the composition of the covering vector field family with

the output of this partitioning function yields a new function

that coincides exactly with the original control field defined

in Table IV. Finally, Proposition 14, Proposition 13 and

Proposition 15 demonstrate, respectively, the flow, positive

invariance and stability properties of fτ,y, which are inherited

19 A trajectory of a dynamical system is said to have a finite escape time
if it escapes to infinity at a finite time [84].

20This construction indeed solves Problem 1 since a flow is a retraction of
its basin into the attractor [85].

21It follows from Theorem 2 that the measure zero set excluded from the
basin of y under the flow generated by fτ,y is the set of configurations
in S(τ) whose separating hyperplane normals are in the opposite direction
from the associated separating hyperplane normal of y for at least one pair
of complementary clusters of τ .

from the flow, invariance and stability properties (Proposi-

tion 10, Proposition 9 and Proposition 11, respectively) of

substratum policies executed over a strictly decreasing finite

prepares graph (Proposition 7) via their nondegenerately, real-

time executed (Proposition 12) sequential composition. �

C. Navigation in the Space of Binary Trees

In principle, navigation in the adjacency graph of trees

(Problem 2) is a trivial matter since the number of trees

over a finite set of leaves is finite. However, in practice, the

cardinality of trees grows super exponentially [73],

|BTJ | = (2 |J | − 3)!! = (2 |J | − 3)(2 |J | − 5) . . . 3, (26)

for |J | ≥ 2. Hence standard graph search algorithms, like

the A* or Dijkstra’s algorithm [86], become rapidly imprac-

ticable. In particular, computing the shortest path (geodesic)

in the NNI-graph, a regular subgraph of the adjacency graph

(Theorem 6), is NP-complete [87].

Alternatively, we have recently developed in [78] an ef-

ficient recursive procedure for navigating in the NNI graph

NJ = (BTJ ,EN) towards any given binary tree τ ∈ BTJ ,

taking the form of a discrete dynamical system as follows:

σk+1 = NNI
(
σk, Gk

)
, (27a)

Gk = uτ (σ
k), (27b)

where NNI
(
σk, Gk

)
denotes the NNI move22 on σk at cluster

Gk ∈ C (τ), illustrated in Fig. 4, and uτ is our NNI control

policy returning an NNI move as summarised in Table V.

Abusing notation, we shall denote the closed-loop system as

σk+1 = gτ
(
σk

)
:= (NNI ◦ u)

(
σk

)
. (28)

In short, since a binary cluster hierarchy is a maximal collec-

tion of “compatible” clusters and two distinct binary hierarchy

always have some incompatible clusters, the NNI control law

recursively identifies and fixes cluster incompatibilities of any

given hierarchy with the desired target hierarchy, refer to [78]

for more details.

TABLE V
THE NNI CONTROL LAW

To navigate from an arbitrary hierarchy σ ∈ BTJ towards any selected
desired hierarchy τ ∈ BTJ in the NNI-graph, the NNI control policy
uτ returns an NNI move on σ at a cluster G ∈ C (σ), as follows:

1) If σ = τ , then just return the identity move, G = ∅.
2) Otherwise,

a) Select a common cluster K ∈ C (σ)∩C (τ) with Ch (K,σ) 6=
Ch (K, τ), and let {KL,KR} = Ch (K,τ).

b) Find a nonsingleton cluster I ∈ C (σ) with children
{IL, IR} = Ch (I, σ) satisfying IL ⊆ KL and IR ⊆ KR.

c) Return a proper NNI navigation move on σ at grandchild G ∈
Ch (I, σ) selected as follows:

i) If I−σ ⊂ KL , then return G = IR.
ii) Else if I−σ ⊂ KR , then return G = IL.

iii) Otherwise , return an arbitrary NNI move at a child of I
in σ; for example, G = IL.

22Here, note that the NNI move at the empty cluster corresponds to the
identity map in BTJ , i.e. σ = NNI (σ,∅) for all σ ∈ BTJ . Therefore, the
notion of identity map in BTJ slightly extends the NNI graph by adding
self-loops at every vertex, which is necessary for a discrete-time dynamical
system in BTJ to have fixed points.
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The NNI control law endows the NNI-graph with a directed

edge structure whose paths all lead to τ , and whose longest

path (from the furthest possible initial hierarchy, σ ∈ BTJ ) is

tightly bounded by 1
2 (|J | − 1) (|J | − 2) for |J | ≥ 2. Given

such a goal we show in [78] that the cost of computing

an appropriate NNI move from any other σ ∈ BTJ toward

an adjacent tree at a lower value of a “discrete Lyapunov

function” relative to that destination is O(|J |). We summarize

such important properties of our NNI navigation algorithm as:

Theorem 5 ([78]) The NNI control law uτ (Table V) recur-

sively defines a closed loop discrete dynamical system (28) in

the NNI-graph, taking the form of a discrete transition rule,

gτ , with global attractor at τ and longest trajectory of length

O
(
|J |

2
)

endowed with a discrete Lyapunov function relative

to which computing a descent direction from any σ ∈ BTJ

requires a computation of time O(|J |).

D. Portal Transformations

We now turn attention to construction of the crucial portal

map that effects the geometric realization of the NNI-graph

as required for Problem 3; and herein we extend our recent

construction of the realization function, Port, in [1] for point

particle configurations to thickened disk configurations.

Throughout this section, the trees σ, τ ∈ BTJ are NNI-

adjacent (as defined in Section III-D) and fixed, and we

therefore take the liberty of suppressing all mention of these

trees wherever convenient, for the sake of simplifying the

presentation of our equations. Since the trees σ, τ are NNI-

adjacent, we may apply Lemma 1 from [78] to find common

disjoint clusters A,B,C such that {A ∪B} = C (σ) \ C (τ)
and {B ∪ C} = C (τ) \ C (σ). Note that the triplet {A,B,C}
of the pair (σ, τ) is unique. We call {A,B,C} the NNI-

triplet of the pair (σ, τ). Since σ and τ are fixed throughout

this section, so will be A,B,C and P := A ∪B ∪ C.

In the construction of the portal map, Port (33), we

restrict our attention to the portal configurations with a certain

symmetry property, defined as:

Definition 3 ([1]) We call x ∈
(
Rd

)J
a symmetric configura-

tion associated with (σ, τ) if centroids of partial configurations

x|A, x|B and x|C form an equilateral triangle, as illustrated

in Fig. 10. The set of all symmetric configurations with respect

to (σ, τ) is denoted Sym (σ, τ).

c (x|A)

c (x|B) c (x|C)

c
(x
|A
∪
B
)

c (x|B∪C)

rA

rB rC

Fig. 10. An illustration of a symmetric configuration x ∈ Sym (σ, τ), where
the consensus ball BQ (x) of partial configuration of cluster Q ∈ {A,B, C}
has a positive radius.

An important property of the symmetric configurations is:

Lemma 1 ([1]) Let x ∈ S(σ) be a symmetric configuration
in Sym (σ, τ). If each partial configuration x|Q of cluster Q ∈
{A,B,C} is contained in the associated “consensus” ball
BQ (x) — an open ball23 centered at c (x|Q) with radius

rQ (x) := min
γ ∈ (σ,τ)

D∈{Q,Pr(Q,γ)}\{P}

−
(

c (x|Q)−mD,γ (x)
)T sD,γ (x)

‖sD,γ (x)‖
, (29)

then x also supports τ , i.e. x ∈ S(τ), and so x is a portal

configuration, x ∈ Portal (σ, τ).

Note that for any configuration x ∈ Sym (σ, τ) the consensus

ball of each partial configuration of cluster Q ∈ {A,B,C}
has a nonempty interior, i.e. rQ (x) > 0 [1] — see Fig. 10.

In the following, we first describe how we relate any given

triangle to an equilateral triangle using Napoleon transforma-

tions, and then define our portal map.
1) Napoleon Triangles: We recall a theorem of geom-

etry describing how to create an equilateral triangle from

an arbitrary triangle: construct, either all outer or all inner,

equilateral triangles at the sides of a triangle in the plane

containing the triangle, and so centroids of the constructed

equilateral triangles form another equilateral triangle in the

same plane, known as the “Napoleon triangle” [88] — see

Fig. 11. We will refer to this construction as the Napoleon

transformation, and we find it convenient to define the double

outer Napoleon triangle as the equilateral triangle resulting

from two concatenated outer Napoleon transformations of

a triangle. Let NT : R3d → R3d denote the double outer

Napoleon transformation, see [89] for an explicit form of NT.

It is also useful to remark that the double outer Napoleon

transformation yields an equilateral triangle optimally aligned

with an arbitrary given triangle by virtue of minimizing sum

of square distances between the paired vertices [90].
The NNI-triplet {A,B,C} defines an associated trian-

gle with distinct vertices for each configuration, △A,B,C :
S(σ)→ Conf

(
Rd, [3] ,0

)
,

△A,B,C (x) :=
[
c (x|A) ,c (x|B) ,c (x|C)

]T
. (30)

The double outer Napolean tranformation of △A,B,C (x)
returns symmetric target locations for c (x|A), c (x|B) and

23In a metric space (X, d), the open ball B (x, r) centered at x ∈ X with
radius r ∈ R≥0 is B (x, r) = {y ∈ X | d (x, y) < r}.

A

B

C

A′

B′C ′

A′′

B′′
C ′′

c (△ABC)

Fig. 11. Outer Napoleon Triangles △A′B′C′ and △A′′B′′C′′ of △ABC

and △A′B′C′ , respectively, and △A′′B′′C′′ is referred to as the double
outer triangle of △ABC . Note that centroids of all triangles coincides, i.e.
c (△ABC) = c (△A′B′C′ ) = c (△A′′B′′C′′ ).
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c (x|C), and the corresponding displacement of c (x|P ), de-

noted NoffA,B,C : Conf
(
Rd, J, r

)
→ Rd, is given by the

formula24

NoffA,B,C (x) := c (x|P )− Γ · NT ◦ △A,B,C (x) , (31)

where Γ := 1
|P |

[
|A| ,|B| ,|C|

]
⊗ Id ∈ Rd×3d, and the vertices

of the associated equilateral triangle with compensated offset

of c (x|P ) are24

[
cA,cB,cC

]T
:= NT◦△A,B,C (x)+13⊗NoffA,B,C (x). (32)

2) Portal Maps: We now define a portal map, Port :
S(σ)→ Portal (σ, τ), to be

Port (x):=

{
x , if x∈Portal (σ, τ),
(Mrg◦Scl◦Ctr) (x), otherwise,

(33)

where Ctr : S(σ) → Sym (σ, τ) rigidly translates the partial

configurations, x|A, x|B and x|C, to the new centroid loca-

tions, cA, cB and cC (32), respectively, yielding a symmetric

configuration,

Ctr (x) :=

{
xi , if i 6∈P,
xi−c (x|Q)+cQ, if i∈Q,Q∈{A,B,C},

(34)

It is important to observe that Ctr keeps the barycenter of

x|P fixed, and so separating hyperplanes of the rest of clusters

ascending and disjoint with P are kept unchanged.
After obtaining a symmetric configuration in Sym (σ, τ),

Scl : Sym (σ, τ) → Sym (σ, τ) rigidly translates each partial

configuration, x|A, x|B and x|C, to scale and fit into the

corresponding consensus ball so that the new configuration

simultaneously support both subtrees of σ and τ rooted at P ,

Scl (x) :=




xi, , if i 6∈ P

xi+ζ ·
(
c (x|Q)−c (x|P )

)
, if

i∈Q,
Q∈{A,B,C},

(35)

where ζ ∈ [0,∞) is a scale parameter defined as

ζ := max
Q∈{A,B,C}

max

(

r (x|Q) + α

rQ (x)
, 1

)

− 1. (36)

Here, α > 0 is a safety margin as used in (20), and r (x|Q)
(12) denotes the centroidal radius of partial configuration x|Q
and rQ (x) (29) is the radius of its consensus ball. Note

that Scl preserves the configuration symmetry, i.e. centroids

c (x|A), c (x|B) and c (x|C) still form an equilateral triangle

after the mapping, and lefts the barycenter of x|P unchanged.

Finally, Mrg : Sym (σ, τ) → Sym (σ, τ) iteratively translates

and merges partial configurations of common complementary

clusters of σ and τ , in a bottom-up fashion starting at P , to

simultaneously support both hierarchies σ and τ ,

Mrg (x) := MrgP (x) , (37)

where for any I ∈ {P} ∪ Anc (P, σ)

MrgI (x) :=

{
x , if I = J,

(MrgPr(I,τ) ◦ SepI) (x), otherwise.
(38)

Here, SepI separates sibling clusters I and I−σ such that the

clearance between every agent in I ∪ I−σ and the associated

24Here, Id is the d×d identity matrix, and 1k is the Rk column vector of
all ones. Also, ⊗ and · denote the Kronecker product and the standard array
product, respectively.

separating hyperplane is at least α units (i.e. if x̂ = SepI (x)

for some x ∈
(
Rd

)J
with sI,σ (x) 6= 0, then ηk,K,σ (x̂) ≥

rk + α for any k ∈ K , K ∈ {I, I−σ}): for any j ∈ J

SepI (x)j :=




xj , if j 6∈Pr (I, σ),

xj+2λ |K−σ|
|Pr(K,σ)|

sK,σ(x)
‖sK,σ(x)‖

, if
j ∈ K,

K∈{I, I−σ},
(39)

where the required amount of centroidal separation, λ ∈
[0,∞), is given by

λ := max
k∈K

K∈{I,I−σ}

max
(

− (ηk,K,σ (x)−rk−α) , 0
)

. (40)

Note that since c (x|P ) = c (x̂|P ) for any x ∈ S(σ) and

x̂ = (Scl ◦ Ctr) (x), we always have sI,σ (x̂) 6= 0 for

any I ∈ {P} ∪ Anc (P, σ), which is required for SepI
to be well defined. Further, using (39), one can verify that

c (x|Pr (I, σ)) = c (x̂|Pr (I, σ)) = c (x̃|Pr (I, σ)) for x̃ =
SepI (x̂), and so sA,σ (x̃) 6= 0 for any A ∈ Anc (I, σ), which

guarantees that recursive calls of SepI in the computation of

Port are always well-defined.

We find it useful to summarize some critical properties of

the portal map for the strata of HC2-means as:

Theorem 6 ([91]) The NNI-graph NJ = (BTJ ,EN) is a

subgraph of the HC2-means adjacency graph AJ = (BTJ ,EA),
i.e. for any pair (σ, τ) of NNI-adjacent trees in BTJ ,

Portal (σ, τ) 6= ∅. Further, given an edge, (σ, τ) ∈ EN ⊂
EA, a geometric realization via the map Port(σ,τ) : S(σ)→

Portal (σ, τ) (33) can be computed in quadratic, O
(
|J |2

)
,

time with the number of leaves, |J |.

VI. NUMERICAL SIMULATIONS

For the sake of clarity, we first illustrate the behavior of the

hybrid system defined in Section V for the case of four disks

moving in a two-dimensional ambient space.25

In order to visualize in this simple setting the most com-

plicated instance of collision-free navigation and observe

maximal number of transitions between local controllers, we

pick the initial, x ∈ S(τ1), and desired configurations,

x∗ ∈ S(τ4), where disks are placed almost on the horizontal

axis and left-to-right ordering of their labels are (1, 2, 3, 4) and

(3∗, 1∗, 4∗, 2∗), respectively, and their corresponding cluster-

ing trees are τ1 ∈ BT[4] and τ4 ∈ BT[4], see Fig. 12.

The resultant trajectory of each disk following the hybrid

navigation planner in Section V, the relative distance between

each pair of disks and the sequence of trees associated with

visited hierarchical strata are shown in Fig. 12. Here, the disks

start following the local controller associated with τ1 until they

enter in finite time the domain of the following local controller

associated with τ2 at xc ∈S(τ1) ∩ S(τ2) — shown by cyan

dots in Fig. 12. After a finite time navigating in S(τ2) and

S(τ3), respectively, the group enters the domain of the goal

controller fτ4,x∗ (Table IV) at xr∈S(τ3)∩S(τ4) — shown by

red dots in Fig. 12, and fτ4,x∗ asymptotically steers the disks

25For all simulations we consider unit disks moving in an ambient plane,
i.e. rj = 1 for all j ∈ J , and we set α = 0.2 and β = 1; and all simulations
are obtained through numerical integration of the hybrid dynamics generated
by the HNC algorithm (Table III) using the ode45 function of MATLAB.
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Fig. 12. An illustrative navigation trajectory of the hybrid dynamics generated by the HNC algorithm for 4 disks in a planar ambient space. Disks are placed
on the horizontal axis for both the initial and desired configurations in different orders, from left to right (1, 2, 3, 4) and (3∗, 1∗, 4∗, 2∗) at the start and
goal, respectively. (a) The sequence of trees associated with deployed local controllers during the execution of the hybrid navigation controller. (b) Centroidal
trajectory of each disk colored according the active local controller, where xc ∈ S(τ1)∩S(τ2), xg ∈ S(τ2) ∩S(τ3) and xr ∈ S(τ3)∩S(τ4) shown by
cyan, green and red dots, respectively, are portal configurations. (c) Space-time curve of disks (d) Pairwise distances between disks.

to the goal configuration x∗ ∈ S(τ4). Finally, note that the

total number of binary trees over four leaves is 15; however,

our navigation planner reactively deploys only 4 of them.

We now consider a similar, but slightly more complicated

setting: a group of six disks in a plane where agents are

initially placed evenly almost on the horizontal axes and switch

their positions at the destination as shown in Fig. 13(a), which

is also used in [20] as an example of complicated multi-agent

arrangements. While steering the disks towards the goal, the

hybrid navigation planner automatically deploys only 6 local

controllers out of the family of 945 local controllers. The time

evolution of the disk is illustrated in Fig. 13(a).

Moreover, to demonstrate the efficiency of the deployment

policy of our hybrid planner, we separately consider groups of

8 and 16 disks in an ambient plane, illustrated in Fig. 13. The

eight disks are initially located at the corner of two squares

whose centroids coincide and the perimeter of one is twice

of the perimeter of the other. At the destination, disks switch

their locations as illustrated in Fig. 13(b). For sixteen disk

case, disks are initially placed at the vertices of a 4 by 4 grid,

and their task is to switch their location as illustrated in Fig.

13(c). Although there are a large number of local controllers

for the case of groups of 8 and 16 disks (
∣∣BT[8]

∣∣ > 105

and
∣∣BT[16]

∣∣ > 6× 1015), our hybrid navigation planner only

deploys 9 and 19 local controllers, respectively.

The number of potentially available local controllers for

a group of n disks (26) grows super exponentially with

n. On the other hand, if agents have perfect sensing and

actuation modelled as in this paper, our hybrid navigation

planner automatically deploys at most 1
2 (n− 1) (n− 2) local

controllers [78], illustrating its computational efficiency.

Finally, although the HNC algorithm in Section V is pri-

marily constructed based on the topological characterization

of the associated hierarchical strata and does not ensure the

optimality of its resulting navigation paths, we still find it

useful to include a brief statistical analysis of the metric

properties of its navigation paths. Since the geodesic distance

(i.e. the shortest path length) between any pair of multirobot

configurations is very difficult to compute in practice, as done

in [22], [30], in order to quantify navigation paths we consider

the normalized navigation path length, Γ, defined as the ratio

of the total navigation distance travelled by all robots to the

straight-line Euclidean distance between any initial and goal

configurations [30],

Γ :=

∑n
i=1

∫∞

0 ‖ẋi(t)‖ dt∑n
i=1 ‖xi(0)− x∗i ‖

, (41)

where x (t) is the time trajectory of the navigation path of the

HNC algorithm asymptotically joining the initial configuration

x (0) to the goal configuration x∗ = limt→∞ x (t). Further, to

ensure an unbiased selection of initial and goal configurations,

we consider unit disk configurations (i.e., ri = 1 for all

i = 1 . . . n) uniformly distributed in a square region of edge

length 2k
∑n

i=1 ri = 2kn, where the parameter k > 0 models

how tight disks are packed. In Fig. 14 we present the effect of

group size, n, and configuration tightness, k, on the normalized

navigation path length, Γ. 26 As expected, the normalized

navigation path length increases with increasing configuration

tightness and group size in average, since the closer the disks

are packed and the greater they are in number, the more diffi-

cult they navigate to their destination. We also observe that the

average normalized path length of the HNC algorithm has the

same order of magnitude as those of other available navigation

function based algorithms [22], [30] whose convergence and

path properties significantly depend on parameter tuning.
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Fig. 14. (left) Average normalized navigation path length versus group size,
n, and configuration tightness, k. (right) Mean and standard deviation of the
normalized navigation path length for configuration tightness k = 2.

VII. CONCLUSION

In this paper, we introduce a novel application of clustering

to the problem of coordinated robot navigation. The notion of

26Each data point in Fig. 14 is obtained using 500 pairs of uniformly
sampled random initial and goal configurations.
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Fig. 13. Example trajectories of the hybrid vector field planner for (a) 6, (b) 8 and (c) 16 disks in a planar ambient space. (top) Trajectory and (bottom)
state-time curve of each disk. Each colored time interval demonstrates the execution duration of an activated local controller. Dots correspond to the portal
configurations where transitions between local controllers occur at.

hierarchical clustering offers a natural abstraction for ensemble

task encoding and control in terms of precise yet flexible

organizational specifications at different resolutions. Based on

this new abstraction, we propose a provably correct generic

hierarchical navigation framework for collision-free motion

design towards any given destination via a sequence of hierar-

chy preserving controllers. For 2-means divisive hierarchical

clustering [72], based on a topological characterization of the

underlying space, we present a centralized online (completely

reactive) and computationally efficient instance of our hier-

archical navigation framework for disk-shaped robots, which

generalizes to an arbitrary number of disks and ambient space

dimension.

Work now in progress targets more practical settings in

the field of robotics including navigating around obstacles

in compact spaces and a distributed implementation of our

navigation framework. We are also exploring a number of ap-

plication settings for hierarchical formation specification and

control including problems of perception, perceptual servoing,

anomaly detection and automated exploration and various

problems of multi-agent coordination.

In the longer term, especially when the scalability and

efficiency of hierarchical protocols in sensor networks for

information routing and aggregation is of concern [92], these

methods suggest a promising unifying framework to simulta-

neously handle control, communication and information ag-

gregation (fusion) in multi-agent systems.

APPENDIX I

PROPERTIES OF THE HIERARCHY INVARIANT VECTOR

FIELD

Although the recursive definition of the hierarchy preserving

navigation policy, fτ,y, in Table IV expresses an efficient

encoding of intra-cluster and inter-cluster interactions and

dependencies of individuals, which we suspect will prove to

have value for distributed settings, it yields a discontinuous

vector field complicating the qualitative (existence, unique-

ness, invariance and stability) analysis. We find it convenient

to proceed instead by developing an alternative, equivalent

representation of this vector field. Namely, we introduce a

family of continuous and piecewise smooth covering vector

fields whose application over a partition (derived from their

covering domains) of the stratum yields a continuous piece-

wise smooth flow (identical to that generated by the original

construction) which is considerably easier to analyze because

it admits an interpretation as a sequential composition [12]

over the covering family. Space limitations force a choice

between a complete listing of the detailed proofs vs. a more

intuitive explanation of how the construction works. We have

chosen to err on the latter side, merely stating the main results

and omitting all proofs (for which the reader is referred to the

extended technical report version [91]) in favor of an informal

interpretation of the their meaning.

We find it useful to first observe that the original construc-

tion yields a well defined and effectively computable function.
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Proposition 3 ([91]) The recursion in Table IV results in a

well defined function, fτ,y : S(τ) →
(
Rd

)J
, that can be

computed for each configuration x ∈ S(τ) in O
(
|J |

2
)

time.

A. An Equivalent System Model

Key for understanding the hierarchy preserving navigation

policy, fτ,y, in Table IV is the observation that for any x ∈
S(τ) the list of visited clusters of τ satisfying base conditions

during the recursive computation of fτ,y defines a partition J

of J compatible with τ , i.e. J ⊂ C (τ).27

Now observe, depending on which base condition holds

(Table IV.2) or Table IV.4)), every block I of partition J,

associated with any given x∈DA(I)∪ (S(τ)\DH(I)), can be

associated with a binary scalar b̂I (x)∈{−1,+1} such that28

b̂I (x) =

{
+1 , if x ∈ DA (I) ,
−1 , if x 6∈ DA (I) ∪DH (I) ,

(42)

where DA (I) and DH (I) are defined as in (15) and (18),

respectively. We will use this configuration space labeling

scheme to recast the hierarchy preserving control policy fτ,y
as an online sequential composition of a family of continuous

and piecewise smooth local controllers indexed by partitions of

J compatible with τ and associated binary vectors as follows.

A partition J of J is said to be compatible with τ ∈ BTJ

if and only if J ⊂ C (τ), and denote by PJ (τ) the set of

partitions of J compatible with τ . Accordingly, define SPJ (τ)
to be the set of substratum policy indices,

SPJ (τ) :=
{
(J,b)

∣∣∣ J ∈ PJ (τ) ,b ∈ {−1,+1}
J
}
. (43)

For any partition J ∈ PJ (τ) of J and b := (bI)I∈J
∈

{−1,+1}J, the domain D (J,b) of a local control policy hJ,b,

presented in Table VI, is defined to be

D (J,b) :=
⋂

I∈J

(
DB (I, bI) ∩

⋂

K∈Anc (I,τ)

DH (K)
)
, (44)

where the set of configurations satisfying the base condition

associated with cluster I of J and binary scalar bI is given by

DB (I, bI) :=

{
DA (I), if bI = +1,
S(τ) , if bI = −1,

(45)

and all ancestors K ∈ Anc (I, τ) of I in τ satisfy the

recursion condition of having properly separated children

clusters described by DH (K) (18). Accordingly, let Vτ (J)
denote the set of clusters of τ visited during the recursive

computation of hJ,b in Table VI,

Vτ (J) :=
{
K ∈ C (τ)

∣∣K ⊇ I, I ∈ J
}
. (46)

Note that J ∈ Vτ (J) since J is a partition of the root cluster

J and any block I ∈ J satisfies I ⊆ J .

27Note that the recursions in Table IV and Table VII have the same base and
recursion conditions, and the recursion in Table VII returns the list of clusters
satisfying base conditions, which defines a partition of J (Proposition 4).
Hence, using the relation between these recursions in Proposition 6, one can
conclude this observation.

28Observe from Table IV that any x ∈ S(τ) satisfies a base condition (Ta-
ble IV.2) or Table IV.4)) at cluster I∈C (τ) if x∈DA (I)∪(S(τ)\DH (I)).
Note that DA(I)∪

(

S(τ)\DH (I)
)

= DA(I)∪
(

S(τ)\(DA(I) ∪DH (I))
)

,
and DA (I) and S(τ) \ (DA (I) ∪DH (I)) are disjoint.

TABLE VI
LOCAL CONTROL POLICIES IN A HIERARCHICAL STRATUM

Let J be a partition of J with J ⊂ C (τ), and b = (bI)I∈J
∈

{−1,+1}J. For any desired y ∈ S(τ), supporting τ ∈ BTJ , and ini-

tial x ∈ D (J,b)(44), the local control policy, hJ,b :D (J,b)→
(

Rd
)J

,

hJ,b (x) := ĥJ,b (x, 0, J) ,

is recursively computed starting at the root cluster J with the zero cont-

rol input 0∈
(

Rd
)J

as follows: for any u∈
(

Rd
)J

and I∈Vτ (J) (46),
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1) function û = ĥJ,b (x,u, I)

2) if I ∈ J,

3) if bI = +1

4) û← fA (x,u, I) (14),

5) else

6) û← fS (x,u, I) (24),

7) end

8) else

9) {IL, IR} ← Ch(I, τ),

10) ûL ← ĥJ,b (x,u, IL),

11) ûR ← ĥJ,b (x, ûL, IR),

12) û← fH (x, ûR, I) (19),

13) end

14) return û

% Attracting Field

% Split Separation Field

% Recursion for Left Child

% Recursion for Right Child

% Split Preserving Field

Observe that each local control policy hJ,b is a recursive

composition of continuous functions of x, so it is continuous:

Proposition 4 ([91]) The recursion in Table VI defines a con-

tinuous and piecewise smooth function,29 hJ,b :S(τ )→
(

R
d
)J

.

To conclude our introduction of the family of covering fields

in Table VI, we now observe that the vector field fτ,y in Table

IV is an online concatenation of continuous local controllers,

hJ,b, of Table VI using a policy selection method described

in Table VII, summarized as:

TABLE VII
POLICY SELECTION ALGORITHM

For any initial x ∈ S(τ) and desired y ∈ S(τ), supporting τ ∈ BTJ ,
the policy selection algorithm, p : S(τ)→ SPJ (τ),

p (x) := p̂ (x, J) ,

recursively generates a local policy index in SPJ (τ) (43) starting at
the root cluster J as follows: for any I ∈ C (τ),
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1) function (Î, b̂) = p̂ (x, I)

2) if x ∈ DA (I) (15),

3) Î← {I},

4) b̂← +1,

5) else if x 6∈ DH (I) (18),

6) Î← {I},

7) b̂← −1,

8) else

9) {IL, IR} ← Ch (I, τ),

10) (ÎL, b̂L)← p̂ (x, IL),

11) (ÎR, b̂R)← p̂ (x, IR),

12) Î← ÎL ∪ ÎR,

13) b̂← b̂L‖b̂R , 30

14) end

15) return (Î, b̂)

29Note that if f : U → Rm is continuous and piecewise smooth on an
open set U ⊂ Rn, then it is locally Lipschitz on U [93].

30Here, p‖q denotes the concatenation of vectors p and q. That is to say,
let X,Y be two sets and A,B be two finite sets of coordinate indices, then
for any p ∈ XA and q ∈ Y B we say r ∈ XA × Y B is the concatenation
of p and q, denoted by r = p‖q, if and only if ra = pa and rb = qb for
all a ∈ A and b ∈ B.
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Proposition 5 ([91]) For any given configuration x ∈ S(τ)
the policy selection algorithm p in Table VII always returns a

valid policy index, (J,b) = p (x), in SPJ (τ) (43) such that

the domain D (J,b) (44) of the associated local control policy

hJ,b (Table VI) contains x, i.e. x ∈ (D ◦ p) (x).

Proposition 6 ([91]) For any given x ∈ S(τ), the vector field

fτ,x (Table IV) and the local control policy hJ,b (x) (Table

VI) selected as (J,b) = p (x) (Table VII) generate the same

control (velocity) inputs, i.e. fτ,y (x) = hp(x) (x).

Since the vector field fτ,y is defined for entire S(τ), it is

useful to remark that the domains, D (J,b) (44), of substratum

policies, hJ,b, define a cover of S(τ) indexed by partitions of

J compatible with τ and associated binary vectors.

B. Online Sequential Composition of Substratum Policies

We now briefly describe the logic behind online sequential

composition [12] of substratum policies.

To characterize our policy selection strategy, we first define

a priority measure31 for each local controller hJ,b associated

with a partition J ∈ PJ (τ) of J and b ∈ {−1,+1}J to be

priority (J,b) :=
∑

I∈J

bI |I|
2
. (47)

Note that the maximum and minimum of the priority measure

is attained at the coarsest partition {J} of J , and bJ = +1
and bJ = −1, respectively, i.e. priority ({J},+1) = |J |

2

and priority ({J},−1)=− |J |
2
. Accordingly, we shall refer

to the local control policy with index ({J} ,+1) as the goal

policy since it has the highest priority and asymptotically

steers all configurations in its domain D ({J} ,+1)(44) to y

following the negated gradient of V (x) = 1
2 ‖x− y‖, i.e.

h{J},+1 (x) = −(x− y) for any x ∈ D ({J} ,+1). Note that

since the root cluster J has no ancestor, i.e. Anc (J, τ) = ∅,

by definition (44), D ({J} ,+1) = DA (J), and DA (J) (15)

contains the goal configuration y.

We now introduce an abstract connection between local

policies for high-level planning:

Definition 4 Let (J,b) , (J′,b′) ∈ SPJ (τ) be two distinct

substratum policy indices. Then hJ,b is said to prepare hJ′,b′

if and only if all trajectories of hJ,b starting in its domain

D (J,b), possibly excluding a set of measure zero, reach

D(J′,b′) in finite time.32

Accordingly, define the prepares graph PG=(SPJ (τ),EPG)
to have vertex set SPJ (τ)(43) with a policy index (J,b) ∈
SPJ (τ) connected to another policy index (J′,b′) by a

directed edge in EPG if and only if hJ,b prepares hJ′,b′ .

Although, the prepares graph PG is the most critical com-

ponent of the sequential composition framework [12] defin-

ing a discrete abstraction of continuous control policies, the

exponentially growing cardinality of substratum policies [91]

31In the past literature, such a priority assignment of local controllers is
done using backchaining of the prepares graph in an offline manner [12].

32 Here, we slightly relax the original definition of the prepares relation
in [12] by not requiring the knowledge of goal sets, globally asymptotically
stable states, of local control policies in advance.

and the lack of an explicit characterization of globally asymp-

totically stable configurations of substratum policies make it

usually difficult to compute the complete prepares graph.
Alternatively, we introduce a computationally efficient and

recursively constructed graph of substratum policies that is

nicely compatible with our needs, yielding a subgraph of the

prepares graph, where every policy index is connected to the

goal policy index ({J} ,+1) through a directed path:

Definition 5 Let P̂G = (SPJ (τ) , ÊPG) be a graph with vertex

list SPJ (τ), and a policy index (J,b) ∈ SPJ (τ) that is

connected to another policy index (J′,b′) ∈ SPJ (τ) by a

directed edge in ÊPG if and only if at least one of the following

properties holds:33

(i) (Complement) There exists a singleton cluster I ∈ J such

that bI = −1, and J′ = J and b′ ∈ {−1,+1}
J
′

with

b′I = +1 and b′D = bD for all D ∈ J \ {I}.
(ii) (Split) There exists a nonsingleton cluster I ∈ J such

that bI = −1, and J′ = J \ {I} ∪ Ch (I, τ) and b′ ∈

{−1,+1}
J
′

with b′K = −1 for all K ∈ Ch (I, τ) and

b′D = bD for all D ∈ J \ Ch (I, τ).
(iii) (Merge) There exists a nonsingleton cluster I∈C (τ) such

that Ch (I, τ) ⊂ J and bK = +1 for all K ∈ Ch (I, τ),

and J′ = J \ Ch (I, τ) ∪ {I} and b′ ∈ {−1,+1}
J
′

with

b′I = +1 and b′D = bD for all D ∈ J \ Ch (I, τ).

We summarize some important properties of P̂G as follows:

Proposition 7 ([91]) The graph P̂G = (SPJ (τ) , ÊPG), as

defined in Definition 5, is an acyclic subgraph of the prepares

graph PG = (SPJ (τ) ,EPG) (Definition 4) such that all

policy indices in SPJ (τ) are connected to the goal policy

index ({J} ,+1) through directed paths in ÊPG, of length at

most O
(
|J |

2
)

hops, along which priority (47) is strictly

increasing, i.e. for any
(
(J,b), (J′,b′)

)
∈ ÊPG

priority(J′,b′) > priority (J,b) . (48)

Although a given local policy can prepare more than one

potential successor (i.e. higher priority), our policy selection

method chooses the one with the strictly highest priority:

Proposition 8 ([91]) For any given x ∈ S(τ) the policy

selection method, p, in Table VII always returns the index of

a local controller with the maximum priority among all local

controllers whose domain contains x,

p (x) = arg max
(J′,b′)∈SPJ (τ)

x∈D(J′,b′)

priority(J′,b′). (49)

and all the other available local controllers have strictly lower

priorities.

C. Qualitative Properties of Substratum Policies

We now list important qualitative properties of the substra-

tum control policies of Table VI. Let J be a partition of J

compatible with τ , i.e. J ⊂ C (τ), and b ∈ {−1, 1}
J
.

33One may think of these conditions as restructuring operations of policy
indices by merging/splitting of partition blocks and/or alternating binary index
values, like NNI moves of trees in Section III-D.
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Proposition 9 ([91]) The domain, D (J,b) (44), of a substra-

tum policy, hJ,b (Table VI), is positive invariant.

Proposition 10 ([91]) (Substratum Existence and Uniqueness)

The vector field hJ,b (Table VI) is locally Lipschitz in S(τ);
and for any initial x ∈ D (J,b) ⊂ S(τ) there always exists a

compact (bounded and closed) subset W of D (J,b) (44) such

that all trajectories of hJ,b starting at x remain in W for all

future time. Thus, there is a unique continuous and piecewise

smooth flow of hJ,b in D (J,b) that is defined for all future

time.

Proposition 11 ([91]) (Finite Time Prepares Relation) Each

local control policy, hJ,b, with the exception of the goal

controller h{J},+1, steers (almost) all configurations in its

domain, D (J,b), to the domain, D (J′,b′), of another local

controller, hJ′,b′ , at a higher priority (47) in finite time.

Proposition 12 ([91]) (Nonzero Execution Time) Let xt be

a trajectory of the local control policy hJ,b starting at

x0 ∈ D (J,b) such that p
(
x0

)
= (J,b). Then the local

controller is guaranteed to steers the group for a nonzero time

until reaching the domain of a local controller at a higher

priority (47), i.e.

inf
t

{
t ≥ 0

∣∣p
(
xt
)
6= (J,b)

}
> 0. (50)

D. Qualitative Properties of Stratum Policies

A list of important qualitative properties of the hierarchy

preserving navigation policy of Table IV are:

Proposition 13 ([91]) The stratum S(τ) is positive invariant

under the hierarchy-invariant control policy, fτ,y (Table IV).

Proof Recall that the domains, D (44), of local control

policies in Table VI define a cover of S(τ) (Proposition 5)

each of whose elements is positively invariant under the flow

of the associated local policy (Proposition 9). Thus, the result

follows since the hierarchy preserving vector field fτ,y is

equivalent to online sequential composition of local control

policies of Table VI based on the policy selection algorithm

in Table VII (Proposition 6). �

Proposition 14 ([91]) (Stratum Existence and Uniqueness)

The hierarchy invariance control policy, fτ,y (Table IV), has

a unique, continuous and piecewise smooth flow, ϕt, in S(τ),
defined for all t ≥ 0.

Proof Recall from Proposition 6 that fτ,y is equivalent to on-

line sequential composition of a family of substratum policies

which have unique, continuous and piecewise smooth flows,

defined for all t ≥ 0, in their positive invariant domains

(Proposition 10). Since their domains define a finite closed

cover of S(τ) (Proposition 5), the unique, continuous and

piecewise flow of fτ,y is constructed by piecing together

trajectories of these substratum policies. �

Proposition 15 ([91]) Any y ∈ S(τ) is an asymptotically

stable equilibrium point of the hierarchy-invariant control

policy, fτ,y (Table IV), whose basin of attraction includes

S(τ), except a set of measure zero.

Proof Using the equivalence (Proposition 6) of the hierar-

chy preserving field fτ,y and the sequential composition of

substratum control policies of Table VI based on the policy

selection method in Table VII, the result can be obtained as

follows.

Since priority (47) is an integer-valued function with

bounded range [− |J |
2
, |J |

2
], using Proposition 8 and Propo-

sition 11, one can conclude that the disks starting at almost

any configuration in S(τ) reach the domain D ({J} ,+1)
of the goal policy h{J,+1} in finite time after visiting at

most O
(
|J |2

)
of other local control policies. Note that

y ∈ D ({J} ,+1). Then, the goal policy h{J},+1,

h{J},+1 (x) = −∇
1
2 ‖x− y‖

2
2 = − (x− y) , (51)

asymptotically steers all configuration in D ({J} ,+1) to y

while keeping its domain of attraction DA (J) positively

invariant (Proposition 9), which completes the proof �
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