
Clustering-Based Robot Navigation and Control

Omur Arslan, Dan P. Gulranik, and Daniel E. Koditschek

Abstract— In robotics, it is essential to model and understand
the topologies of configuration spaces in order to design prov-
ably correct motion planners. The common practice in motion
planning for modelling configuration spaces requires either a
global, explicit representation of a configuration space in terms
of standard geometric and topological models, or an asymp-
totically dense collection of sample configurations connected
by simple paths. In this short note, we present an overview
of our recent results that utilize clustering for closing the gap
between these two complementary approaches. Traditionally an
unsupervised learning method, clustering offers automated tools
to discover hidden intrinsic structures in generally complex-
shaped and high-dimensional configuration spaces of robotic
systems. We demonstrate some potential applications of such
clustering tools to the problem of feedback motion planning
and control. In particular, we briefly present our use of
hierarchical clustering for provably correct, computationally
efficient coordinated multirobot motion design, and we briefly
describe how robot-centric Voronoi diagrams can be used for
provably correct safe robot navigation in forest-like cluttered
environments, and for provably correct collision-free coverage
and congestion control of heterogeneous disk-shaped robots.

I. INTRODUCTION

With the increasing use of robots in our daily lives, from

household applications [1] to elder/patient assistance [2] to

self-driving vehicles [3], it has become even more crucial

for autonomous robotics systems to be able to safely move

in their workspaces in order to accomplish given tasks. Two

commonly encountered approaches to tackle the safe robot

navigation problem are configuration space motion planning

and sampling-based motion planning [4], [5].

Once an explicit representation of a robot’s configuration

space is obtained, a number of configuration space motion

planners [4], [5], such as discrete planners, cell decomposi-

tion and roadmap methods, and feedback motion planners,

can be used to safely steer the robot toward its target

configuration, satisfying given task specifications. However,

configuration spaces generally have complex shapes and are

difficult, if not impossible, to explicitly describe in terms

of standard geometric and topological models. Also, the

complexity of motion planning is known to grow exponen-

tially as configuration spaces grow in dimension [6]. These

limitations therefore restrict the applicability of configuration

space planners to low dimensional settings.

Alternatively, sampling-based methods [4], [5], such as

probabilistic roadmaps, rapidly-exploring random trees, and

their variants, resolve such limitations by producing (open-

loop) navigation paths based on randomly sampled robot
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Fig. 1. Clustering-based motion planning: A new perspective for closing the
gap in modelling configuration spaces between configuration space motion
planning and sampling-based motion planning.

configurations and simple connectivity criteria. Although

they require no explicit constructions of configuration spaces,

sampling-based methods strongly rely on fast collision detec-

tors, efficient nearest neighbor and graph search algorithms,

effective sampling strategies (especially around narrow pas-

sages), and informative metric selection [7].

In brief, these two widely used motion planning methods

fundamentally differ from each other in modelling con-

figuration spaces: on one hand, we have methods based

on global, explicit representations of configuration spaces;

on the other hand, we have methods based on individual,

sample configurations connected by simple paths. As a new

alternative approach, we propose the use of clustering for

closing the gap between these two complementary motion

planning methods to combine their strengths in modelling

configuration spaces (see Fig. 1).

Traditionally an unsupervised learning method, clustering

offers automated tools to discover coherent groups (clusters)

in configuration spaces to model their unknown global or-

ganizational structure (e.g., hierarchical clustering), and to

determine collision-free local neighborhoods of robot config-

urations (e.g., partitional clustering) [8]. A unique strength

of configuration space clustering over arbitrary configuration

space partitioning, such as cellular decompositions, is that

clustering not only yields a cover of a configuration space in

terms of configuration clusters, but also relates each covering

element to a clustering model (e.g., cluster hierarchies and

finite set partitions) that deciphers the structural properties

of the associated configuration cluster. Hence, on a more

conceptual level, clustering can be viewed as a symbolic

abstraction relating the continuous space of configurations

to the (combinatorial) space of clustering models. We argue

that the intrinsic local structures in configuration spaces

that are identified by clustering can be exploited to design

computationally efficient, provably correct motion planners.



II. OUR CONTRIBUTIONS

Inspired by the use of clustering for modelling global

organizational structure, we introduce a novel abstraction for

ensemble task encoding and control of multirobot systems

in terms of hierarchical clustering that yields precise yet

flexible organizational specifications at selectively multiple

resolutions [9]. Based on this new abstraction and an explicit

topological characterization of the associated configuration

clusters, we construct a provably correct, computationally

efficient hierarchical navigation framework [10], [11] for

collision-free coordinated multirobot motion design toward

a designated configuration via online sequential composition

of hierarchy-preserving local controllers [9].

Inspired by the use of clustering for locality identification,

we introduce a new, robot-centric application of Voronoi

diagrams to identify a collision-free convex neighborhood

of a robot moving in a cluttered environment, which turns

out to be a simple but effective way of extracting the

intrinsic local geometric structure of the configuration space

around the robot’s instantaneous position. Based on robot-

centric Voronoi diagrams, we design a provably correct,

collision-free coverage and congestion control algorithm for

distributed mobile sensing applications of heterogeneous

disk-shaped robots [12], and we introduce a sensor-based

reactive navigation algorithm for exact navigation of a disk-

shaped robot in forest-like cluttered environments [13].

The rest of the paper is organized to give an intuitive

overview of these applications with specific references to

the technical papers that present all the mathematical de-

tails. Section IV briefly describes and motivates the generic

components of our hierarchical navigation framework for

coordinated motion design. Section V gives an overview of

robot-centric Voronoi diagrams and their applications to safe

robot navigation and coverage control. Section VI concludes

with a summary of our contributions.

III. RELATED LITERATURE

A commonly encountered approach in motion planning

that is strongly related to clustering is spatial decomposition

[4], [5]. For example, roadmap methods typically construct

a global, one-dimensional graphical representation (skeleton)

of an environment based on its Voronoi decomposition. Hier-

archical decomposition methods, based on quadtrees and oc-

trees, are also successfully applied for representing environ-

ments at multiple resolutions via adaptive cells. In particular,

their recursive constructions yield computationally efficient

solutions for robots operating in unknown and sparse envi-

ronments [14]–[18]. In brief, spatial decomposition methods

are generally employed to build efficient data structures

that approximately model environments, independent of any

specific robot configuration and model, whereas our intended

use of clustering is to explicitly extract immanent local

geometric and topological structures in configuration spaces

around a given robot configuration.

Clustering has also played a key role in the design of

scalable algorithms for motion planning and control of large

groups of robots, because coordinated motion planning of

independent thick bodies in a compact space is known to

be computationally difficult [19], [20]. Hierarchical coor-

dination strategies that divide a large group of robots into

small teams in order to limit coordination across robots

have been shown to alleviate the combinatorial growth

of complexity [21], [22]. Moreover, hierarchical discrete

abstraction methods are successfully applied for scalable

steering of a large number of robots as a unified group by

controlling the group shape [23]. Group coordination via

splitting and merging behaviours also creates effective strate-

gies for obstacle avoidance [24], congestion control [25],

shepherding [22], and area exploration [22]. Alternatively, we

show that hierarchical clustering offers an interesting means

of ensemble task encoding and control; especially, the ability

to specify organizational structure in the precise but flexible

terms that hierarchy permits enables us to specify group

coordination behaviours at selectively multiple resolutions

for safe multirobot navigation.

IV. COORDINATED ROBOT NAVIGATION VIA

HIERARCHICAL CLUSTERING

Cooperative, coordinated action and sensing has been

shown to promote efficiency, robustness, and flexibility in

achieving complex tasks such as search and rescue, area

exploration, surveillance and reconnaissance, and warehouse

management [26]. While accomplishing such a diverse set of

tasks, the spatial distribution of robotic agents is generally

required to change in response to environmental stimulus.

Moving from one spatial distribution to another is generally

carried through rearrangements of robot groups (clusters)

at different resolution corresponding to transitions between

different cluster structures (hierarchies). This observation

leads us to the notion of hierarchical clustering for modelling

the spatial structural organization of multirobot systems.

Hierarchical clustering [8] offers a natural abstraction for

ensemble task encoding and control in terms of precise yet

flexible organizational specifications at different resolutions,

by relating the continuous space of configurations to the

combinatorial space of trees. This hierarchical abstraction

intrinsically suggests a two-level navigation strategy for

coordinated motion design: 1) At the low-level, perform finer

adjustments on configurations by using hierarchy preserving

vector fields [9]; and 2) At the high-level, resolve struc-

tural conflicts between configurations by using a discrete

transition policy in tree space [27]. The connection between

these two levels is established by an optimal selection of a

portal configuration supporting two adjacent hierarchies [10],

[28]. Accordingly, we propose a provably correct generic

hierarchical navigation framework [11] for collision-free

coordinated motion design toward any given destination via

a sequence of hierarchy-preserving controllers [11], whose

generic components and their relations are illustrated in Fig.

2.

For a choice of a hierarchical clustering algorithm, we

demonstrate a computationally efficient instantiation of our

hierarchical navigation framework for coordinated control of

an arbitrary number of disk-shaped robots operating in an
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Fig. 2. Generic Components of Hierarchical Navigation Framework

ambient Euclidean space. Here, we reveal that the homotopy

model of configurations sharing the same cluster hierarchy

is a generalized torus. Accordingly, by taking advantage of

the underlying topology, we introduce a recursively defined

vector field for hierarchy-preserving navigation. To enable

controllable switching between different cluster hierarchies

(and so the associated local controllers), we also design a

computationally efficient recursive algorithm for navigating

through the space of cluster hierarchies of n robotic agents

that is guaranteed to reach a desired hierarchy in O(n2)
steps, each step costing O(n) computations [27]. In Fig. 3,

we present a sample trajectory of our hierarchical navigation

planner for four disks moving on a plane, and the sequence

of trees associated with deployed local controllers. It is

useful to emphasize that although the number of potentially

available local controllers for a group of n disks grows

superexponentially with n, our hierarchical navigation plan-

ner automatically deploys at most 1

2
(n − 1)(n − 2) local

controllers [27], illustrating its computational efficiency.

V. ENCODING COLLISIONS VIA ROBOT-CENTRIC

VORONOI DIAGRAMS

In motion planning, Voronoi diagrams are traditionally

encountered in the design of roadmap methods [4], [5] for

constructing unidimensional graphical representations of en-

vironments, independent of any specific robot configuration.

We introduce a new, robot-centric application of Voronoi

diagrams to encode robot collisions exactly by exploiting

the local structure of configuration spaces around a robot

configuration. This also enables us to determine a safe

convex neighborhood of a robot configuration.

Motivated by recent interest in agile navigation in dense

human crowds [29], or in natural forests, such as now

negotiated by rapid flying [30] and legged [31] robots, we

(a)

(b) (c)

Fig. 3. Illustrative navigation trajectory of our hierarchical motion planner
for four disks moving in a planar ambient space [11]: (a) Sequence of
trees associated with deployed local controllers during the execution of the
navigation planner, (b) Navigation paths, (c) Space-time curve of disks

Fig. 4. Exact robot navigation using robot-centric generalized Voronoi
diagrams [13]. The Voronoi cell (yellow) associated with the robot defines
its obstacle free convex local neighborhood, and the continuous feedback
motion towards the metric projection (red dot) of a given desired goal (red
disk) onto the associated local free space (green polygon) asymptotically
steers almost all robot configurations (green disks) to the goal, with no
collisions along the way. Example trajectories of the feedback motion
planner starting at a set of initial configurations (green disks) towards the
goal location (red disk) for (middle) a fully actuated and (right) a differential
drive robot.

propose a new reactive motion planner taking the form of

a feedback law, relative to a fixed goal location, that can

be computed using only local knowledge of the environment

identified by the Voronoi cell around the robot [13], see Fig.

4. In particular, we show that the continuous feedback motion

toward the metric projection of the desired goal onto the

robot’s convex Voronoi cell steers almost all robot configu-

rations to the goal in environments cluttered with spherical

obstacles, while avoiding collisions along the way. Having

such a collision-free convex neigbourhood of the robot also

enables us to simply extend these provable properties to the

standard differential drive vehicle model.

In Figure 4, we demonstrate the motion pattern generated

by our reactive motion planner in a cluttered environment.

Here, it is important to observe that the resulting navigation

trajectories and the boundary of the Voronoi diagram of

the environment are significantly consistent. In other words,

the robot balances its distance to all proximal obstacles

while navigating toward its destination, which is a desired

autonomous behaviour for many practical settings instead of

grazing the obstacle boundary.

What is more, in distributed mobile sensing applications,

Voronoi diagrams are often utilized for solving sensory

task assignment and for modelling group heterogeneity in

actuation, sensing, computation and energy sources [32]–

[34]. In addition to these usages, we tailor Voronoi diagrams

to encode collisions in a heterogeneous group of disk-shapes

robots. Accordingly, based on standard coverage control of

point robots [32]–[34], we propose a constrained coverage

control law for heterogeneous disk-shaped robots that solves

the combined sensory coverage and collision avoidance prob-

lem [12]. We further introduce a congestion management

heuristic for unassigned robots to hasten the assigned robots’

progress, while retaining the provable properties.

In Fig. 5, we present the resulting trajectories of our

proposed coverage control algorithms for a sample dis-

tributed coverage task. As seen in Figure 5(left), the 2nd

robot is initially not assigned to any region. Since our

safe coverage control algorithms prevent self-collisions and

collisions with the boundary of the environment, the 2nd

robot stays unassigned for all future time; therefore, the 1st
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Fig. 5. Safe coverage control of heterogeneous disk-shaped robots with a
heuristic management of unassigned robots [12]. (left) Initial configuration
of heterogeneous robots, where the weight of sensory cell are shown in
the parenthesis, and the resulting trajectories of (middle) our safe coverage
control law, (right) our coverage control law with the congestion heuristic.

robot is blocked and it can not move to a better coverage

location in Fig. 5(middle). Fortunately, while guaranteeing

collision avoidance, our coverage control law with a conges-

tion heuristic steers unassigned robots to improve assigned

robots’ progress, as illustrated in Fig. 5(right).

VI. CONCLUSION

In this paper, we give an overview of our use of clus-

tering for modelling configuration spaces and for design of

provably correct motion planners. This new philosophy for

modelling configuration spaces, still in its infancy, yields

promising results for closing the gap between standard

configuration space and sampling-based motion planning

approaches. To demonstrate some potential applications of

clustering to feedback motion design, we present the use

of hierarchical clustering for provably correct coordinated

multirobot motion design [9]–[11], and we show how the

robot-centric Voronoi diagrams can be used for provably cor-

rect safe robot navigation in cluttered environments [13], and

for safe coverage and congestion control of heterogeneous

mobile sensor networks [12]. We believe that these nontrivial

applications of clustering to robot motion design only scratch

the surface of its long-term potential.
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