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Abstract— This paper introduces and solves the problem of to specification using algebraic predicates involving treda
cluster-hierarchy-invariant particle navigation in Con.f(Rd;J). distances, but working out a few simple examples will
e o o o cOMVTC th reader tha hei complexiygrows very quick
supports. We build a hybrid closed loop controller guaranted ' the number of agents and l?ranchlness of t_he desired
to bring any other configuration that supports 7 to the desired  hierarchy. Moreover, the generation of such predicates fro
goal,x* € Conf (R, J), through a transient motion whose each high level specification is not simple (it essentially regsi
configuration along the way also supports that hierarchy. the kind of analysis we introduce in this paper), and, worse,
it is particularly tricky to express the precise but noridig
relationship implied by “stick together” in this manner. Of

Given an index setJ = [n] := {l,...,n} C N, @ course, the virtue of such precise yet flexible task formula-
configuration, x = (x;);c;, IS @ labeled placement of tions is that they might likely be composable without (much)
|J| = n distinct Euclidean particles;. We find it convenient jnterference with further “orthogonal” task specificaofor
to identify theconfiguration spacgl] with the set of distinct example, perhaps the prime-numbered agents were given
labelings, i.e., the injective mappings gfinto R?, that position of local forward leadership because theyyenjo

d N o the most acute sensory endowment and we might now like
Conf (R, J) = {X € (RY) ’HXi — x| #0,¥i# j € J}' separately to instruct them to track any spherical white
objects whizzing around their assigned zone.

Hierarchical motion planning represents an important open
rproblem domain in robotics as reviewed with some care
in [3]. In that work, a two layer hierarchy is maintained
by recourse to a fine grained cellular decomposition of the
configuration space permitting the systematic applicatibn

|. INTRODUCTION

A clustering is a partition ofJ, J € Part [J], induced
by the relative loci of a configuration’s particles:;),. ;
Conf(R?,.J), in a manner we shall make precise below i
sectionll-B.3. A hierarchy, 7: = {J;},.,., C Part[J],
is a list of partitions of/, ordered byrefinement: i.e. each

. “ 1 C T . . i ) -
'€ J; has aparent’,J € I €J;-,, and we declare by multiple gradient-style vector fields one “preparing” thexn

definition that alwayd,: = {J}. A cluster hierarchyis a 0 f . iall 4 141 hvbrid svst .
hierarchy,m on J, induced by a nested family of clusterings 0 form a “sequentially compose [4] hybrid system using
constructions in the manner introduced by [5]. Here, we

supported by the configuration — again in a manner made o b
precise in sectionl-B.3, address the problem of maintaining arbitrarily deep and

This paper introduces and solves the problem of Clus‘,[e?_omplex hierarchies and seek to substitute analyticaglimisi

hierarchy-invariant particle navigation irConf(Rd,J). or computational effort, replacing the familiar fine-grad,

Namely, we are given a desired goal configuratian, c numerically determined (contractible) cellular decomtas

d - : ith a far coarser but topologically more intricate decompo
Conf(]R , J) andr, a specified cluster hierarchy that the goa}gﬁon into “strata.” We strongly believe (but do not exitlic

supports. We build a hybrid closed loop controller guaradte address beyond some speculative concluding remarks) that
to bring any other configuration that supportto the desired ress bey . pecuiativ nciuding :
the intrinsic properties of a hierarchy will make it possitd

" d ) .
goal, x € Conf.(R ’J)’ through a transient motion v_vhose replace our present centralized (full state informationutb
each configuration along the way also supports that hleyarCQhe entire group available instantaneously to each indalid

A. Motivation agent) algorithm with a provably correct distributed vensi
It is of widespread interest in robotics and automation There is a dual task domain wherein we expect the ability

applications to generate vector field planners [2] capabfg “servo” around h|iratr_ch|callly stpeuﬁeAd r(]:onflgﬁrau?ns
of enforcing complex coordinated group tasks specified if}ay OPen up NEW TODOLC applications. uge tterature

language such as: “you even-numbered agents stick togetﬁérperceptual and Iea_lr_nlng algonth_ms is bound up in the
ystematic decomposition of erstwhile homogeneous featur

near the goal box while the odd-numbered agents play smal . .
9 9 piay ector clouds into clustered subgroups. Whereas fixed reso-

group zone defense organized around their numerically clos™. lust K ) lud bl oredti
est prime-numbered agents.” Such tasks are often amena N CIUSIErs are Known 1o preciude reasonably axioraetiz
oundations [6], cluster hierarchies similar (but, im@orty,

* Department of Electrical and Systems Engineering, Unigeref ~ NOt identical) to the kind we introduce here have been
PePnSylvania, Philadelphia, PA 19104 shown to resolve such contradictions [7]. An early example
Departments of Mathematics and Electrical and Computingirteer- ; ; ; ;
ing, University of lllinois at Urbana-Champaign, Urbanhk,81801 SUQQeStmg the virtues of perceptual .servo.lng [8] enteyls
11t will become clear in sectiofl-B that ¢ is the “level” andL < Inn moving a robot around until the cc_)nflguratlon of certain
is the “depth” of the tree associated with this hierarchy. perceptually worthy feature vectors is “properly” arradge



We suspect there is far greater power and generality to beA terminal vertex corresponds to a singleton cell (hence
explored in servoing feature vector configurations into thbaving out-degree zero), as opposed to iaterior vertex

sort of precise but flexible nested cluster relationshia thcorresponding to a non-singleton cell. For later use, we not
form the central object of study here. the following fact, whose (omitted) proof can be establishe

o by induction.
B. Contributions

construction of a centralized hybrid controller in sectlin  ; ¢ N. Thenr has|.J| — 1 interior vertices.

that is shown to bring the entire “stratum” of configurations

supporting a specified hierarchy to a goal configurationevhil Proof: See AppendixA. [ ]
preserving the hierarchy along the way. However, we are also

very enthusiastic about the method by which these resuls Clusters

obtain. Namely, the identification of a stratum’s homotopy 1) Cluster Functions:Given I C J, denote byx|I, the
type (the generalized torus revealed in Theo®muggests natia| configurationobtained from the restricted labeling,
a change of coordinates into an appropriately “thlckenecﬁu .= (x;)ic1, interpreted geometrically as a “cluster”
h_omotopy model wherein the business of manueverir_lg thg 1] distinct points within the ambient spaci¢. Using
hierarchy 40b) can be nearly decoupled from the businesgis notion, a configuration gives rise to a variety of useful
of preserving it 400). “cluster functions, ” including the centroid of any partial
configuration, and, given two proper subsetsB C J, the

1. BACKGROUND, NOTATION AND PRELIMINARY , ,
separation vector from the centroid of oméA to that of

RESULTS X S ) ;
. ] the otherx|B along with the midpoint of their centroids,
A. Hierarchies defined, respectively, as
1) Trees: A hierarchy,7 = {J;},-,,, uniquely deter- 1
mines (and henceforth will be conflated with) a tree — cx|l) := —le-, 2
a loop-free graph whose vertices are identified with the ] i€l
constituent cells of the various partitiores(7) : =Up<¢<r1J¢ s(x;4;B) 1= c¢(x|B)—c(x|A), 3)

and whose edges represent the set inclusion relation. We wil
take the top cellJ, = {J}, to be the root, and this induces m(x; 4;B) = : )

2
an f?”e'f“a“"” "on the graph, aIIovv:ng us"to s“peak ?f OUt_For the latter two of these cluster functions, in the context
or “in-directed” edges as well as “levels” or “depth” down

of a specified binary treer, and specified split,A =
the tree. e . . .
We adopt the following notation 1, B = I*“, we will abuse notation via the shorthand, e.qg.,
P 9 my - (X) ::m(x;I;ILC), andsy - (x) ::s(x;I;ILC).
Anc (I,7) = {Ve(? (1) ‘1 - V} , The scalar valuedseparation magnitudefunction 3
Prif ) e{VeCm V2L AYEC(NSUCY TV, (i A) = (o —m(x AT\ A) s (x 4T\ 4)) (5)
Ch(I,7)={VeC(r)|VCI AYeC(r)stV CY I},
Des(I,7)={VeC(r)|V C I},

¢ (x|A) + ¢ (x|B)

and its associated local split variant; - (x) = (z; —
my - (x),sr,-(x)) will figure prominently throughout the
for the standard notions of, respectively, the set of ancgst sequel.
parents, children and descendants of a vertex in the tree.2) Central Voronoi TesselationsiWe take the following
Because the children comprise a partition of each parent, wiefinitions from [9] to which the reader is referred for a more
find it convenient to define éocal complementargluster, careful presentation of these ideas.vAronoi tessellation
I+, of a clusterl € C(7) as (VT) is a decomposition of an open setC R via a metric,
. Rd d _ ] i reqi ,

It e {vee() ’ Pr(I,7)=Pr(V,7),V#I}, (1) @ RERT = By into voronol regions(cells) {M}ie[k]’
{x e Q| d(x,z) < d(x,), Vj € [k]}, forall i € [k],

(6)

not to be confused with the standard (global) complemean -
I¢ = J — I, which is distinct (unles®r (I,7) = J). -
2) NondegeneracyA binary partition is called asplit, aroun-d a ,ﬂﬂ'te set ,Of generators- (seedzs),.: {Zid}ie[.k]’
and a tree is said to bebinary or, equivalently, non- contained inf2 [9]..US|ng the voronoi tessellation @* with
degeneratef the children of each parent node comprise 4n€ standard Euclidean metric around a set of generaf@rs
(local) split. All other trees are said to lbegenerateln this ~ k-partitionJ T {i}icw of the index set/ of a configuration
paper we will confine attention to nondegenerate hierasghie® < Conf (R, .7) is termed aVT induced partitionof .J if

a set of trees we denote@s, in a manner to be made preciselt Satisfies
'n sectionl-B.3. I =zl < i —zll, Vi€ L, j£ic k. ()

2 For completeness the parent of the coarsest cluster isrdeatampty,
Pr(J,7)=0. 3 Here, (.,.) denotes the inner product in a Euclidean space.



A centroidal voronoi tessellatio(CVT) is a special type of b . -
a voronoi decomposition whose generatarsoincide with ’

the centroid for each block, = z}, R . )
Al hCE AR ’
1 AN _ \\s _
Zf:—ZXz:C(XUi)v (8) T o
|Il| lel; ’ !

for the discrete case. A CVT can be computed via Lloyds Fig. 1. lllustration of (a) narrow and (b) standard configioras.
algorithm [10] or k-means clustering [11] (a special case of
Lloyds algorithm for a discrete set of data).

where the radius of a clusted C J, is defined to be

Definition 1 A CVT split of a finite label set/ ¢ N of

a set of pointsx = (x;);es in the Euclidean spac®? is ra(x) = r?e%f”XLAH% Xi,A = x; — ¢ (x]A4). (13)
a CVT induced binary partitior{ 7, .J \ I}, of J, which by
definition has the following property Say thatx € & (7) is a standardconfiguration relative to
the nondegenerate hierarchy,c 7 ;, if it is narrow relative
n(x;4,A) <0 Vie A, Ae{l,J\1}, (9 to each local splitCh (A, 7) of every clusterd € C (7).

A useful observation about a CVT split in a Eucliden
space is that the voronoi tessellation generated by celstroi
of the partial configuration|Z,and its complementary con- Proposition 1 If x € & () is a standard configuration then
figuration, x|J \ I, decomposes the space into two halfor each clusterd € € (7), any rigid rotation of the partial
spaces by a hyperplane passing through the midpoint 6@nfiguration,x|A, around its centroidc (x|A), preserves
centroids,m (x; I;J \ ), and perpendicular to the vectorthe supported hierarchy.
between thems (x; I; J \ I).

3) CVT Hierarchies and Their SupportWe adopt a proposition 2 Let / C N be a finite non-empty label set
divisive hierarchical clustering method based on cen#boid ang suppose- € T, be a non-degenerate tree. Then there
voronoi tessellations known as “bisecting k-means” [12]exists a strong deformation retraction
Briefly, this method splits each successive partial configu-
ration by applying 2-means, and successively continuds wit R, :6 (1) x[0,1] = & (1) (14)
each subsplit until reaching singletons. A hierarctiyy),
generated in this manner thus determines a unique no®ES (7) onto the subset of standard configurationsofr).
degenerate combinatorial tree= T 7, whereT; is the set of
all combinatorial trees with leaves injectively markednfro These two observations now yield the key insight reported
J. in [13].

Definition 2 A configurationx € Conf(R?,J) is said t0 Theorem 1 The set of configurations € Conf (R?,.J)

supporta non-degenerate hierarchye T if all of its splits  supporting a non-degenerate tree has the homotopy type of
in 7 satisfy (Sd71)|J|71.
) < ; . .
Mitr (X) S0 Vi€ LIEC(m)\J (10) Let us define open and closed strata of a nondegenerate
The stratumassociated with is the set of all configurations hierarchyr € 7 ; as follows
that support it,

60 (T) = 77;]1.7(_007 O)a (15)
& (1) = {x € Conf(R?, J) | x supportsr} . (11) Ieeg\{J}Q "
C. Homotopy Type of a Nondegenerate Hierarchical Stratum S (1) = & (1) = ﬂ ﬂ 1 1..(—00,0],  (16)
We now follow [13] in defining terminology and ex- reC(m\{J}iel

presssions leading to the characterization of the homotow,]eren 1+ (5) is the separation magnitude.

type of the stratum® (1), associated with a nondegenerate More(;\;er from the continuity of;, ; .., we haves, (7) C
hierarchy. The proofs of_our formal statements all f_ollow th S. (r), and a super set of the bodhdary@ﬁ () is
same pattern as established in [13], and we omit them to

save space here. (G, (1) CH* =6y (1) \ &, (7). (17)

Definition 3 A configurationx € Conf(R?,.J) is narrow
relative to the split{7, J\ I}, if
4 K contains all configurations with at least one agent on a aépgr

1 :
e hyperplane between clustersqfi.e.n; ; - = 0 for some clusted € C ()
AeI{I}?}(\I} ralx) < QHS(X’I’J\I) I (12) and somei € 1.



[1l. PRINCIPAL RESULTS Each term,uf, : G4(1) — R? is a rotation field

Although first order vector field planners readily lift to @ssociated with ancestdr designed to rigidly re-orient the
second order [14] and a growing selection of under-actuat&ftire partial configurationx|/ into correspondence with
[8] mechanical plants, in this preliminary study we assum#S “subgoal”x*|I by asymptotically aligning its separating
for ease of exposition a fully-actuated single-integraioint  hyPerplane normal with the desired one,
age_nt model_ for egch particle. We further assume that some uf (x) = Ryxi g (22)
desired configurations* € Conf(R?,.J) has been selected, ’ ’
supporting some desired nondegenerate tre@ur dynami- Here,x; ; (13) is the centroidal displacement ®f in cluster
cal planner takes the form of a centralized hybrid contrplle! € C (), andR; is a (weighted planar) rotation matrix in
u: &, (1) — RY, for hierarchical navigation irS, (r) the plane defined by present and desired normalsndn?,
towards a desired configuratiott € &, (1) as follows:

[ i x € (1) \ Dr(r)
X = i(x) = { wP(x) ,if x € Dp(r). " (18)

(2

R := [n[ t[]{ O?I _6‘)1 :|[n1 tI]T. (23)

These “normals” (the direction vectors of centroid differ-
Here u? : — (Uf‘)ig . Sy (r) — R?is an alignment ence),n; andnj, for the subsplits{1;, I,} = Ch (I, 7) for
field that moves its labeled particle so as to asymptoticalle current and desired configurations, respectively, are
align the separating hyperplane normals of all nonsingleto * *

clugsters in i?s ancgstoyrpsech({i},r), while preservigg npi=ves(xilih) and nyi=ves(xihik), (24)
the hierarchy. In contrast” : = (uiE)ieJ :Dp(r) - Ryis  where the projection oR? \ {0} ontoS?~! is defined as
an expansion field guaranteed to drive asymptotically each x

agent directly towards its desired location once the separa v(x) == T~ (25)
ing hyperplanes are “sufficiently aligned.” The criteriar f

“sufficient alignment” is specified by its prescribed domain© complete the account of2g), the planar rotation is

as (see Figurdl) specified by
T
De(r) = {x € 6y (T) ‘(xl —my , (X))TS[,T (x*) wry = l—nj I:Ia ) . (26)
t; = P(n7)nf =nj—nm; nj, (27)

+(x; = mpr (x9)) "srr (%) <0, -
. ’ ’ whereP (n;), the projection onto the tangent spaceSéf !
Viel,1eC(r)\{J} } (19)  at pointn; € S41, T, 8971, is

P (n]) = Id — nfan, (28)

andI,; is thed x d identity matrix. All in all, the rotation

cclgly rate and the direction of rotation aug||t;|| andv o t; (if
.y v t; # 0, otherwise rotation rate is also zero), respectively.
T

Finally, u? ;(x) : &, (1) — R% is a scaling field designed
to guarantee the positive invariance &, (7) by suitably
° “narrowing” any cluster as required along the way toward
the subspace of standard configurations,

- .C(XH\I) .

Fig. 2. An illustration of a configuration in the basin of atttion g R

Dg () of the expansion fieldi”. Both of the current (left) and desired u“(x) =& (w1||t1||) Xq,I- (29)
(right) arrangements need to be linearly separable by ethenr'® separating

hyperplane, and this needs to be satisfied at each level dfi¢gharchy. Here ¢& 1 [0,00) — (—00,0] gives a proper scaling rate

using geometry of the clusters (see Fig@)eto guarantee
A. Alignment Field the preservation of hierarchy while rotating with a rate.of

1) Construction of the Controller:;The alignment field, . /()2 =Prw, (%)?
u? : &, (1) — R?, is a (linear) combination of translation, &7 (w):= . 7w, (%)

w, if rr(x)>yrw, (x),

rotation and scaling fields{Tr, R, S}, associated with all , Otherwise, (30)
cIust_ersin_Anc({z'},T)—_that is, aI_I thg nonsingleton partial wherey € (0,1) is a constant specifying how well the
configurations ofr containing particle;, clusters of a standard configuration (see DefinitB)nare
Aoy _ T m separated, and; : &, (7) — R (13) is the radius of partial
whx) =u’"(x) + > (). (20) configurationx|I, andry, : &, (1) — Ry is the radius
IeAnc({i},7) me{R,S} of the largest closed ball centered@x|I) and satisfying

The termu?™ : &, (7) — R? is a common translation hierarchical constraints,

field asymptotically moving the centroid of the overall con- ryy, (x)
figuration to that of the desired configuration,

Tr * A min
u; "(x) = =2 (c(x|J) —c(x*|])). (21) A(Ane(I,m\{THU{T}

K2

. T
= - I)— T T 5
Ae(Anc(Ilj{gr\l{J})U{Igc (x|T) —ma, (x)) (VOSA' (X))

. (31)

‘(c (x[I)—ma,r (x))TnP’I‘(A,T)



Note thatry, is closely related to the notion of a standardVioreover, the cluster seét (7) satisfies
configuration as introduced in Definitidh
C(r)y=C(r)U{JuUC(m) (36)

To gain an intuitive appreciation for how this scalingwhere C(7y) and C(r;) are the cluster set of subsplits
field preserves the hierarchy, observe, if ageof-cluster {Jo, i} = Ch(J, 1), respectively,
I is on a separating hyperplane of any ancestor cluster

A € (Ane (I, )\ {J}) U {I}, i.e. n;ar (x) = 0, then we C(n) ={INJi}reer) (37)
have . for i = 1,2. Note that the hierarchical orderédr) is the
(ufl(x) + uf;l(x)) sar(x) <0, (32) same as the concatenation®fr), {J/}, € (1) in this order.

) ] o . ) This affords a canonical order on thé — 1 interior clusters
as can be visualized in Figugeby simply drawing a tangent g aranteed by Lemma to be well defined and fixed over
line from a point on a separating hyperplane to the circlgye entirety of& (7).

with rgdiusvrw, located ate (x|_I), depicting the boundary  pefine a linear transformatiorf, : (R%)17I — (Rl
of desired standard configurations. that factors a configuration into its centroid and thié— 1
centroid difference vectors associated with the nonsingle

. partial configurations,
‘¥ . y = fr(x), (38)
= (C (x[J), (s (x5 Jo; J1) ) aee(r), |aj>1 ) :
- {Jo,J1 }=Ch(A,T)

Using the matrix representation of this transformation
with respect to the canonical basis over the domain and its
permutation (arising from the induced hierarchical order o
interior clusters) over the codomain one proves by inductio
the following result.

Proposition 3 The linear coordinate transformatiorf, :
RHIMI = (R in (38) is bijective.

, _ _ _ , _ Proof: See AppendixB. [ ]
Fig. 3. An illustration of the geometric relation betweer tlotation and
scaling fields in a planar environment. Their total effectliways tangent . .
to the boundary of desired narrow configurations if a pa@ifiguration Due to the convexity of k-means, the separation vectors of
IS not narrow. each nonsingleton cluster i&. () are nonzero, hence the

. _ _ (nonlinear) restriction may, |, (- is a continuous bijection
2) A Useful Change of Coordinatesthe lexicographic jnto its image inR¢ x (R4 \ {0})/I=1. By recourse to the
order on the label sef C N (the standard order relation sphere mapy (25), we endow the punctured component

over natural numbers) and depth-first travefsaf 7 € T;  of the image f-|s(-y with spherical coordinates via the
in inorder induce a hierarchical order over the cluster sgfiffeomorphism

C (1), recursively defined for clusters, B € € (7), as:

(i)(base case) ifA = () or AN B # 0, z = g-(y), (39)

A=DBor —

. - y Y \4 y T)» y T N
A<BIif { ACCh(B.7), or (33) < L) ace. (I A”)Aii(l’)
C -

BCCh(4,m), Because the restriction of|¢ to any open subspace
(i))(induction) otherwise O C &.(r) is a diffeomorphism, we can push forward

. the restricted alignment vector field?|s (20) via the

A<Bit A<Pr(B,7), (34)  diffeomorphismg. o .| to reveal the simple form

where the subscripts label elements of the splft,(I, 7) = 7 = —2(z1 —27), (40a)

{Ch(I,7),},_, with min(Ch (I,7),) < min(Ch(I,7),).

7
Using the induced hierarchical order over the singleton
clusters, we have a hierarchical ordered label se&tith

ny = > Rany, (40b)
AcAnc(I,m)U{I}

S pr=pr Y,  Ealwaltal),  (40c)
Ji S J_] |f {Z} S {j} VZM] e J. (35) A€Anc(I,7)U{I}

5Depth-first (binary) tree traversal in inorder (symmetrigverses the permitting the foIIowmg key observation.

left subsplit, visits the parent and traverses the rightsplit[15].



Remark 1 Since the (weighted planar) rotation matrik,; A simple computation shows that each point in the cardinal-
(23), is only a function ofi; andn¥, (40b) is an independent ity 21711 totally isolated setV~'[0] = 9%(7) is repelling
dynamical system describing the evolution of separatingxcept for the atttractorn®. It follows from LaSalle’s

hyperplane normalsy;. Invariance Principle [17] that the basin of this attracter i
] . ) ] ] the complement oft(7) — {n%} as claimed.
3) Invariance and Stability Propertiedn this section we -
sketch the proof that: (i) a stratui®, (), is positive invariant
) Y oy
under the flow of the alignment field;*; and (ii) it is Now consider the pre-image of the target separating hy-

included in the basin of attraction of a goal-aligned regio'&erplane normal,
of the standard configurations under that fl§w.

Ga(r): = ((9- o ) e (1) e xR 1) N1 @ (7)
Proposition 4 ([16]) For a desired configurationx* € (44)
S, (1) supporting a nondegenerate hierarchye T, the
open pseudo-strat&, (7) is positive invariant under the = {X €6 (r) ‘C (x|J) =c(x*]]),
alignment fieldu” (20). np =i VI € C(r), 1] > 1}’

Proof: A sketch of the proof is as followsi (17) is a
super set 0DS, (1) and it contains all configurations with
ni.1,+(x) = 0 for somel € C(r)\ {J} and somei € I.
Using 32), one can show thaa";m,“(x) < 0on 77;}77[0]

foranyl € C(7)\{J} and anyi € I, which completes the
proof.

and recall thatDg(7) (19) contains configurations whose
separating hyperplanes are nearly aligned with the desired
one, and s@4(7) C int(Dg(7)). Pulling back a Lyapunov
function for the attracton® of the spherical dynamic4Qhb)
through the change of coordinatgs f, now yields a Lasalle
function for G4 () C Conf(R?,J), resulting in the desired

Proposition 5 ([16]) The target separating hyperplane nor-onclusion.

maln? := (n});ce(r r>1 @ssociated with the goal config- .

uration x* € &, (7), via the mapg, o f, is an essentially Corollary 1 The system in20) converges from all con-
globally asymptotically stable equilibrium state of théiep-  figurations that support- to a configuration inG(r) C
cal dynamics40b) whose basin excludes only the “antipodalint(@E(T)), Therefore, the alignment field;* (20), pre-
fragments”’ pares the expansion field,” (45), in finite time.

{(diag [(—1)j1,(—1)j2, e (—1)7'\‘”71} ®Id) n’ B. Expansion Field
1) General Form: The expansion fieldu” : Dg(r) —
(j1, g2 jisi-1) € ({0 1=t fo,0,. .. 0)}) } R?, is simply designed as a negated gradient field of the

sum of squared distanceg|x) = ||x — x*||?,

u?(x) = -V, V(x) = —2(x; — x}), (45)

Proof: A sketch of the proof as follows. Consider a

Lyapunov function’” : (S%-1)/1-1 — & such that it moves each agent directly towards to desired

location and, looking ahead toward the proof of Proposition

V(n,) = Z arUr(ng), (41) 6, we find it write out explicitly the exact trajectory followte
ree(r) by solutions of 45) as
[1]>1

N . . xt=x"+e?(x" —x*) = e Hx" 4+ (1 — e ?)x*, (46)
where () ree(-) are positive constants defined ilf as a o ) ]
[1]>1 wherex® € Dg(7) denotes an initial configuration.

function of a height function(/; : S~! — [0, 1], defined as 2) Invariance and Stability Properties:

Ur(ng) = %(1 —n;'np)?, (42)  Proposition 6 For a desired configurationc* € &, (1)
supporting a nondegenerate hierarchy € T, the basin
of attraction,Dg(7) (19), of the expansion fieldy” (45), is
positive invariant.

Using the hierarchy, one can find proper constants’s
such thatV’ (i, ) = 0 for all i, € 9(7) which also contains
n*, andV(n,) < 0 for all n, € (S*H)I=1\ 9(7),

Proof: One can simply verify that the domain condition
N(r) = {nT e (ST YT ny =4nj, vIeC(r), [I|> 1} . holds along the trajectory}) of expansion fieldi”. In other
(43) words, for a CVT split{/, J \ I}, we have

t t T *
6 Unfortunately,u/* |0 will generally not be complete ofd so that we (Xi —m (X A\ A)) s(x7;A; T\ A)

cannot work directly with the simple conjugate dynamicsesded just +(X»f —m (x"; A; J\A))T S (xt~A'J\A) <0. (47)
above T ’ ? ) ) ) - -
"Here ® is the standard Kronecker produdi, is the d x d identity forallic AandA e {I J \ I} andt > 0 m
, > 0.

matrix, anddiag [v] is the diagonal matrix whose diagonal is given by the
vector whose entries are specified by the string



Proposition 7 Any x* € &, (1) is an asymptotically stable comprises the interior vertex set efwhich thus numbers
equilibrium point of the expansion fieldy® (45), whose 1+ (ng—1)+(ni1—1) = (1+no+n1)—2 = (14+n)—2 = n—1.
basin of attraction include® g (7). In the second case, all interior verticestoexcept the root
lie in 7. Sincery hasn — 1 leaves, the inductive hypothesis
yields the assumption thaty hasn — 2 interior vertices.
Hence, adding in the root; hasn — 1 interior vertices. |

Proof: It is obvious from the trajectory4g) of expan-
sion field, u”. [ ]

Corollary 2 The hierarchy,r, of a group of agents along g poof of Propositior3

the trajectory 46) of the expansion field4f) is preserved o ) . ) )
while reaching a desired configuration® € &, () from Definition 4 Associated with every-leaf binary tree,r, is
any initial configurationx? € &, (7). a hierarchy matrixhat we define inductively as follows. For

n = 1, the one-vertex treey;, with no interior (root) vertex
Proof: One can easily check the CVT splits (Definition— define
1) along the trajectory of46) of expansion fieldu?, and F,:=[1].
verify n; 1. (x') <0 forall I € C(r)\ {J} andi € I.
| For n > 2 the hierarchy matrix is built using those
associated with the subtrees,, 7, (possessing, respectively,

IV. CONCLUSION . . .
. . o no andn, leaves), that arise when the root and its outgoing
In this paper, we introduce a novel application of clusteragges are removed fromas follows:®

ing to the problem of precise yet flexible group coordination

We study a CVT based clustering scheme and reveal its F. :=diag[no/n,1,-1] E;,
homotopy model, affording a complete understanding of our

navigation problem’s topological complexity [18]. Based o F Eo 1

this careful characterization of the underlying space, we E. = [ _é‘io F,, ] o Biji= n—oenilzj.

introduce a centralized hybrid controller with provablelggl

invariance and stability properties, which generalizesro . . . .
Y prop 9 Lemma 2 The hierarchy matrix associated according to

arbitrary number of particles and ambient space dimensio efinition 4 with an n-leaf tree.+ has the two properties
These methods suggest a promising, broad domain of new K T prop

hierarchical formation (motion) planning and hierarchica F,| =1 17F, ‘e, =n.
perceptual servoing problems.

In the near term, work in progress extends these ide&sr all n € N.
to navigation in the space of hierarchies to enable control-
lable switching between different hierarchies, i.e. hiehical Proof: The claim follows immediately fon = 1 where
transitions to enable global coverage(@fnf(R?, ). Atthe F- =1.1f 7 hasn > 2 leaves with first childrer, 7, then
same time, a crucial requirement of practicable multi-agefts associated hierarchy matrix has block determinant [19]
systems is a distributed implementation of any coordimatio
algorithm that drives a different slant of work in progress. |F|
Finally, we are exploring a number of application settings

n —
= |Fr, + EoF, il [Fr|

n 1 _
= WO|FT0 + _enolleﬁlenllzJ ’ |FT1|

for hierarchical formation specification and control irdiu n2
ing pr_oblems of perception, percgptual servoing, anomaly no 151]5‘;1%1 .
detection and automated exploration and various problems = —|F;, + —“—F—ey1, | |[Fq]|
of multi-agent coordination. " ;Lg o
o €n T o —
APPENDIX = Frl 1+ %ﬁllnoFTolean - [Fo |

0

PROOFS n
0 ni

= —|Fp| - [14+—|[Fq,]
n no

A. Proof of Lemmadl

Proof: =1
The claim is trivially true forn = 2 (the root is the only
interior vertex). Fom = 3 there is only one binary tree: the
root and its non-singleton child are the two interior vesic

We proceed to the mdgctlve step by considering an aerTq — E, diag [n/n0, 1n_1]
trary binary tree;r, now with more thar2 leaves and erase . . .
the root and its two outgoing edges to produce either: (i) g_—! — _? . . -Q EOlEﬁ .
pair of binary treesyy, 1 with ny andn; leaves each; or F. " E Q" Fr, (I -EwwQ 'EnF, )
(ii) a binary tree,7p, and a one-vertex “tree.”

In the first case. the inductive hypothesis affords th 8 Here1y, is theR* column vector of all ones (hendg is defined to be
' %e empty array) ane, is the first canonical unit vector of Euclidean

assumption that tr_\ere ar% -1 'nter'or.vert'ce fO.I’ _treerj’ space (i.e. the column array whose first entry is unity andsehremaining
j = 0,1, and their union, together with the original root,x — 1 entries are zeros).

as claimed.
Moreover, we have



where the Schur complement of the bldgk, of the matrix

E. is 1]

Q :=F, +EquF, 'Ej [2]
1 _
=F,, + 2en01 F, ey 1]

ngy [3]
=F, + 1en01£0
O

hence the matrix inversion lemma yields [19] ]

-1 T -1
E FTo €n0 ]_n0 FTo

Q' =F, '~
1T BILF, e, 5]
— s 1
=F %FTO €no 1ZOF [6]
and we can compute (71
Tp—-1, _ "1 T 4T 1] ©no
]-nFT €n = n_olnET Cn = nO []‘no’ 1 ] E |: 0n1 :| [8]
n 1 _ _
= <1T Q €n, + _151 FTI lem lnoQ 1eno)
no o

[0

[10]
ni _ _
—nFTo leﬂolngTo 1) €no  [11]

[12]
= ’[’L7
which completes the proof. m [13
[14]
Corollary 3 The mapf, (38) has the nonsingular matrix
representationt', P @ I;, whereP is a permutation matrix [15]
defined by the hierarchical ordered label s&{(35),
- [16]
D B | R A
Pij = { 0 , otherwise. (48)
[17]
(18]
ACKNOWLEDGMENT [19]

This work was funded in part by the Air Force Office of
Science Research under the MURI FA9550-10-1-0567.

REFERENCES

E. R. Fadell and S. Y. HusseinGeometry and Topology of Configu-
ration Spaces Springer, 20011

E. Rimon and D. E. Koditschek, “Robot navigation funaio on
manifolds with boundary,Advances in Applied Mathematjogol. 11,
p. 412442, 19901

N. Ayanian, V. Kumar, and D. Koditschek, “Synthesis ofntmllers
to create, maintain, and reconfigure robot formations widmmu-
nication constraints,” inRobotics Researchser. Springer Tracts in
Advanced Robotics, C. Pradalier, R. Siegwart, and G. HjainEds.
Springer Berlin / Heidelberg, 2011, vol. 70, pp. 625-642.

R. R. Burridge, A. A. Rizzi, and D. E. Koditschek, “Seqtiah com-
position of dynamically dexterous robot behaviorEtie International
Journal of Robotics Researchiol. 18, no. 6, p. 534555, 19994

S. R. Lindemann and S. M. LaValle, “Simple and efficiergaithms
for computing smooth, collision-free feedback lawsiternational
Journal of Robotics ResearcR006. 1

J. Kleinberg, “An impossibility theorem for clusterifigAdvances in
Neural Information Processing Systenps 463470, 20031

G. Carlsson and F. Memoli, “Persistent clustering ancheotem of
j. kleinberg,” stat vol. 1050, no. http://arxiv.org/abs/0808.2241, p. 16,
2008. 1

G. A. D. Lopes and D. E. Koditschek, “Visual servoing fasnholo-
nomically constrained three degree of freedom kinematitesys,”
The International Journal of Robotics Researehl. 26, no. 7, p. 715
V 736, 2007.1, 4

Q. Du, V. Faber, and M. Gunzburger, “Centroidal vororesgellations:
Applications and algorithms,SIAM Reviewvol. 41, no. 4, pp. 637—
676, 1999.2

S. Lloyd, “Least squares quantization in pcnirjfformation Theory,
IEEE Transactions gnvol. 28, no. 2, pp. 129 — 137, March 1982.
J. B. MacQueen, “Some methods for classification andyaisaof
multivariate observations,” iRroc. of the Fifth Berkeley Symposium on
Mathematical Statistics and Probabiljtiz. M. L. Cam and J. Neyman,
Eds., vol. 1. University of California Press, 1967, pp. 289% 3

S. M. Savaresi and D. L. Boley, “On the performance ofebiig
k-means and pddp,” ifProceedings of the First SIAM International
Conference on Data Mining (ICDM-2002001, pp. 1-143

Y. Baryshnikov and D. Guralnik, “Hierarchical clusiteg and config-
uration spaces,(in preparation) 3

D. E. Koditschek, “The control of natural motion in meuatical
systems,”Journal of Dynamic Systems, Measurement, and Cantrol
vol. 113, p. 547V551, 19914

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stkitroduction
to Algorithms, Third Edition3rd ed. The MIT Press, 200%

O. Arslan, D. Guralnik, Y. Baryshnikov, and D. E. Koditek,
“Hierarchical navigation of distinct euclidean partigtegniversity Of
Pennsylvania, Tech. Rep., 201@&.

J. P. LaSalle,The Stability of Dynamical Systems Society for
Industrial Mathematics, 1976

M. Farber, “Topological complexity of motion plannifidiscrete and
Computational Geometryol. 29, no. 2, p. 211221, 2003.

C. D. Meyer,Matrix analysis and applied linear algebra Philadel-
phia, PA, USA: Society for Industrial and Applied Mathenaafi2000.
7,8



