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Abstract— This paper introduces and solves the problem of
cluster-hierarchy-invariant particle navigation in Conf

(

Rd, J
)

.
Namely, we are given a desired goal configuration,x∗ ∈
Conf

(

Rd, J
)

and τ , a specified cluster hierarchy that the goal
supports. We build a hybrid closed loop controller guaranteed
to bring any other configuration that supports τ to the desired
goal,x∗ ∈ Conf

(

Rd, J
)

, through a transient motion whose each
configuration along the way also supports that hierarchy.

I. I NTRODUCTION

Given an index set,J = [n] := {1, . . . , n} ⊂ N, a
configuration, x = (xi)i∈J , is a labeled placement of
|J | = n distinct Euclidean particles,xi. We find it convenient
to identify theconfiguration space[1] with the set of distinct
labelings, i.e., the injective mappings ofJ into Rd,

Conf
(

Rd, J
)

:=
{

x ∈ (Rd)
J
∣

∣

∣
‖xi − xj‖ 6= 0, ∀i 6= j ∈ J

}

.

A clustering is a partition ofJ , I ∈ Part [J ], induced
by the relative loci of a configuration’s particles,(xi)i∈J ∈
Conf

(

Rd, J
)

, in a manner we shall make precise below in
sectionII-B.3. A hierarchy, τ : = {Iℓ}0≤ℓ≤L ⊂ Part [J ],
is a list of partitions ofJ , ordered by refinement1: i.e. each
I ∈ Ij has a “parent”,I ⊆ Ĩ ∈ Ij−1, and we declare by
definition that alwaysI0 : = {J}. A cluster hierarchy is a
hierarchy,τ on J , induced by a nested family of clusterings
supported by the configuration — again in a manner made
precise in sectionII-B.3.

This paper introduces and solves the problem of cluster-
hierarchy-invariant particle navigation inConf

(

Rd, J
)

.
Namely, we are given a desired goal configuration,x∗ ∈
Conf

(

Rd, J
)

andτ , a specified cluster hierarchy that the goal
supports. We build a hybrid closed loop controller guaranteed
to bring any other configuration that supportsτ to the desired
goal,x∗ ∈ Conf

(

Rd, J
)

, through a transient motion whose
each configuration along the way also supports that hierarchy.

A. Motivation

It is of widespread interest in robotics and automation
applications to generate vector field planners [2] capable
of enforcing complex coordinated group tasks specified in
language such as: “you even-numbered agents stick together
near the goal box while the odd-numbered agents play small-
group zone defense organized around their numerically clos-
est prime-numbered agents.” Such tasks are often amenable
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1 It will become clear in sectionII-B that ℓ is the “level” andL ≤ lnn
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to specification using algebraic predicates involving relative
distances, but working out a few simple examples will
convince the reader that their complexity grows very quickly
in the number of agents and branchiness of the desired
hierarchy. Moreover, the generation of such predicates from
high level specification is not simple (it essentially requires
the kind of analysis we introduce in this paper), and, worse,
it is particularly tricky to express the precise but non-rigid
relationship implied by “stick together” in this manner. Of
course, the virtue of such precise yet flexible task formula-
tions is that they might likely be composable without (much)
interference with further “orthogonal” task specifications. For
example, perhaps the prime-numbered agents were given
that position of local forward leadership because they enjoy
the most acute sensory endowment and we might now like
separately to instruct them to track any spherical white
objects whizzing around their assigned zone.

Hierarchical motion planning represents an important open
problem domain in robotics as reviewed with some care
in [3]. In that work, a two layer hierarchy is maintained
by recourse to a fine grained cellular decomposition of the
configuration space permitting the systematic applicationof
multiple gradient-style vector fields one “preparing” the next
to form a “sequentially composed” [4] hybrid system using
constructions in the manner introduced by [5]. Here, we
address the problem of maintaining arbitrarily deep and
complex hierarchies and seek to substitute analytical insight
for computational effort, replacing the familiar fine-grained,
numerically determined (contractible) cellular decomposition
with a far coarser but topologically more intricate decompo-
sition into “strata.” We strongly believe (but do not explicitly
address beyond some speculative concluding remarks) that
the intrinsic properties of a hierarchy will make it possible to
replace our present centralized (full state information about
the entire group available instantaneously to each individual
agent) algorithm with a provably correct distributed version.

There is a dual task domain wherein we expect the ability
to “servo” around hierarchically specified configurations
may open up new robotic applications. A huge literature
of perceptual and learning algorithms is bound up in the
systematic decomposition of erstwhile homogeneous feature
vector clouds into clustered subgroups. Whereas fixed reso-
lution clusters are known to preclude reasonably axiomatized
foundations [6], cluster hierarchies similar (but, importantly,
not identical) to the kind we introduce here have been
shown to resolve such contradictions [7]. An early example
suggesting the virtues of perceptual servoing [8] entails
moving a robot around until the configuration of certain
perceptually worthy feature vectors is “properly” arranged.



We suspect there is far greater power and generality to be
explored in servoing feature vector configurations into the
sort of precise but flexible nested cluster relationships that
form the central object of study here.

B. Contributions

The central achievement in this preliminary study is the
construction of a centralized hybrid controller in sectionIII
that is shown to bring the entire “stratum” of configurations
supporting a specified hierarchy to a goal configuration while
preserving the hierarchy along the way. However, we are also
very enthusiastic about the method by which these results
obtain. Namely, the identification of a stratum’s homotopy
type (the generalized torus revealed in Theorem1) suggests
a change of coordinates into an appropriately “thickened”
homotopy model wherein the business of manuevering the
hierarchy (40b) can be nearly decoupled from the business
of preserving it (40c).

II. BACKGROUND, NOTATION AND PRELIMINARY

RESULTS

A. Hierarchies

1) Trees: A hierarchy,τ = {Iℓ}0≤ℓ≤L, uniquely deter-
mines (and henceforth will be conflated with) a tree —
a loop-free graph whose vertices are identified with the
constituent cells of the various partitions,C (τ) : =∪0≤ℓ≤LIℓ
and whose edges represent the set inclusion relation. We will
take the top cell,I0 = {J}, to be the root, and this induces
an orientation on the graph, allowing us to speak of “out-”
or “in-directed” edges as well as “levels” or “depth” down
the tree.

We adopt the following notation

Anc (I, τ) =
{

V ∈C (τ)
∣

∣I ( V
}

,

P r (I, τ) 2 ∈
{

V ∈C (τ)
∣

∣V ) I, 6 ∃Y ∈C (τ) s.t.I(Y (V
}

,

Ch (I, τ) =
{

V ∈C (τ)
∣

∣V ⊂ I, 6 ∃Y ∈C (τ) s.t.V (Y ( I
}

,

Des (I, τ) =
{

V ∈C (τ)
∣

∣V ( I
}

,

for the standard notions of, respectively, the set of ancestors,
parents, children and descendants of a vertex in the tree.
Because the children comprise a partition of each parent, we
find it convenient to define alocal complementarycluster,
ILC , of a clusterI ∈ C (τ) as

ILC ∈
{

V ∈ C (τ)
∣

∣ Pr (I, τ) = Pr (V, τ) , V 6= I
}

, (1)

not to be confused with the standard (global) complement,
IC = J − I, which is distinct (unlessPr (I, τ) = J).

2) Nondegeneracy:A binary partition is called a split,
and a tree is said to bebinary or, equivalently, non-
degenerateif the children of each parent node comprise a
(local) split. All other trees are said to bedegenerate. In this
paper we will confine attention to nondegenerate hierarchies,
a set of trees we denote asTJ , in a manner to be made precise
in sectionII-B.3.

2 For completeness the parent of the coarsest cluster is declared empty,
Pr (J, τ) = ∅.

A terminal vertex corresponds to a singleton cell (hence
having out-degree zero), as opposed to aninterior vertex
corresponding to a non-singleton cell. For later use, we note
the following fact, whose (omitted) proof can be established
by induction.

Lemma 1 Let τ ∈ TJ be a nondegenerate hierarchy over
J ∈ N. Thenτ has |J | − 1 interior vertices.

Proof: See Appendix-A.

B. Clusters

1) Cluster Functions:Given I ⊆ J , denote byx|I, the
partial configurationobtained from the restricted labeling,
x|I := (xi)i∈I , interpreted geometrically as a “cluster”
of |I| distinct points within the ambient space,Rd. Using
this notion, a configuration gives rise to a variety of useful
“cluster functions, ” including the centroid of any partial
configuration, and, given two proper subsets,A,B ( J , the
separation vector from the centroid of onex|A to that of
the otherx|B along with the midpoint of their centroids,
defined, respectively, as

c (x|I) : =
1

|I|
∑

i∈I

xi, (2)

s (x;A;B) : = c (x|B)− c (x|A) , (3)

m(x;A;B) : =
c (x|A) + c (x|B)

2
. (4)

For the latter two of these cluster functions, in the context
of a specified binary tree,τ , and specified split,A =
I, B = ILC , we will abuse notation via the shorthand, e.g.,
mI,τ (x) := m

(

x; I; ILC
)

, and sI,τ (x) := s
(

x; I; ILC
)

.
The scalar valuedseparation magnitudefunction 3

η (x; i, A) := 〈xi −m(x;A; J \A) , s (x;A; J \A)〉 (5)

and its associated local split variantηi,I,τ (x) := 〈xi −
mI,τ (x) , sI,τ (x)〉 will figure prominently throughout the
sequel.

2) Central Voronoi Tesselations:We take the following
definitions from [9] to which the reader is referred for a more
careful presentation of these ideas. Avoronoi tessellation
(VT) is a decomposition of an open setΩ ⊆ Rd via a metric,
d : Rd × Rd → R+ into voronoi regions(cells) {Vi}i∈[k],

Vi =
{

x ∈ Ω | d(x, zi) < d(x, zj), ∀j ∈ [k]
}

, for all i ∈ [k],
(6)

around a finite set of generators (seeds),z = {zi}i∈[k],
contained inΩ [9]. Using the voronoi tessellation ofRd with
the standard Euclidean metric around a set of generatorsz, a
k-partition I = {Ii}i∈[k] of the index setJ of a configuration
x ∈ Conf

(

Rd, J
)

is termed aVT induced partitionof J if
it satisfies

‖xl − zi‖ ≤ ‖xl − zj‖, ∀ l ∈ Ii, j 6= i ∈ [k]. (7)

3 Here,〈., .〉 denotes the inner product in a Euclidean space.



A centroidal voronoi tessellation(CVT) is a special type of
a voronoi decomposition whose generatorsz coincide with
the centroid for each block,zi = z∗i ,

z∗i =
1

|Ii|
∑

l∈Ii

xl = c (x|Ii) , (8)

for the discrete case. A CVT can be computed via Lloyds
algorithm [10] or k-means clustering [11] (a special case of
Lloyds algorithm for a discrete set of data).

Definition 1 A CVT split of a finite label setJ ⊂ N of
a set of pointsx = (xi)i∈J in the Euclidean spaceRd is
a CVT induced binary partition,{I, J \ I}, of J , which by
definition has the following property

η (x; i, A) ≤ 0 ∀ i ∈ A, A ∈ {I, J r I}, (9)

A useful observation about a CVT split in a Eucliden
space is that the voronoi tessellation generated by centroids
of the partial configuration,x|I,and its complementary con-
figuration, x|J \ I, decomposes the space into two half
spaces by a hyperplane passing through the midpoint of
centroids,m(x; I; J \ I), and perpendicular to the vector
between them,s (x; I; J \ I).

3) CVT Hierarchies and Their Support:We adopt a
divisive hierarchical clustering method based on centroidal
voronoi tessellations known as “bisecting k-means” [12].
Briefly, this method splits each successive partial configu-
ration by applying 2-means, and successively continues with
each subsplit until reaching singletons. A hierarchy,C (τ),
generated in this manner thus determines a unique non-
degenerate combinatorial treeτ ∈ TJ , whereTJ is the set of
all combinatorial trees with leaves injectively marked from
J .

Definition 2 A configurationx ∈ Conf
(

Rd, J
)

is said to
supporta non-degenerate hierarchyτ ∈ TJ if all of its splits
in τ satisfy

ηi,I,τ (x) ≤ 0 ∀ i ∈ I, I ∈ C (τ) \ J. (10)

The stratumassociated withτ is the set of all configurations
that support it,

S (τ) =
{

x ∈ Conf
(

Rd, J
) ∣

∣ x supportsτ
}

. (11)

C. Homotopy Type of a Nondegenerate Hierarchical Stratum

We now follow [13] in defining terminology and ex-
presssions leading to the characterization of the homotopy
type of the stratum,S (τ) , associated with a nondegenerate
hierarchy. The proofs of our formal statements all follow the
same pattern as established in [13], and we omit them to
save space here.

Definition 3 A configurationx ∈ Conf
(

Rd, J
)

is narrow
relative to the split,{I, J \ I}, if

max
A∈{I,J\I}

rA(x) <
1

2
‖s (x, I, J \ I) ‖, (12)

II

c (x|I)c (x|I)

J \ IJ \ I

c (x|J \ I)
c (x|J \ I)

a b

ll

Fig. 1. Illustration of (a) narrow and (b) standard configurations.

where the radius of a cluster,A ⊂ J , is defined to be

rA(x) := max
i∈A

‖xi,A‖; xi,A := xi − c (x|A) . (13)

Say thatx ∈ S (τ) is a standardconfiguration relative to
the nondegenerate hierarchy,τ ∈ TJ , if it is narrow relative
to each local split,Ch (A, τ) of every cluster,A ∈ C (τ).

Proposition 1 If x ∈ S (τ) is a standard configuration then
for each cluster,A ∈ C (τ), any rigid rotation of the partial
configuration,x|A, around its centroid,c (x|A), preserves
the supported hierarchyτ .

Proposition 2 Let J ⊂ N be a finite non-empty label set
and supposeτ ∈ TJ be a non-degenerate tree. Then there
exists a strong deformation retraction

Rτ : S (τ)× [0, 1] → S (τ) (14)

of S (τ) onto the subset of standard configurations ofS (τ).

These two observations now yield the key insight reported
in [13].

Theorem 1 The set of configurationsx ∈ Conf
(

Rd, J
)

supporting a non-degenerate tree has the homotopy type of
(Sd−1)|J|−1.

Let us define open and closed strata of a nondegenerate
hierarchyτ ∈ TJ as follows

So (τ) =
⋂

I∈C(τ)\{J}

⋂

i∈I

η−1
i,I,τ (−∞, 0), (15)

Scl (τ) = S (τ) =
⋂

I∈C(τ)\{J}

⋂

i∈I

η−1
i,I,τ (−∞, 0], (16)

whereηi,I,τ (5) is the separation magnitude.
Moreover, from the continuity ofηi,I,τ , we haveSo (τ) ⊂

Scl (τ), and a super set of the boundary ofSo (τ) is

∂(So (τ)) ⊂ H4 := Scl (τ) \So (τ) . (17)

4 H contains all configurations with at least one agent on a separating
hyperplane between clusters ofτ , i.e.ηi,I,τ = 0 for some clusterI ∈ C (τ)
and somei ∈ I.



III. PRINCIPAL RESULTS

Although first order vector field planners readily lift to
second order [14] and a growing selection of under-actuated
[8] mechanical plants, in this preliminary study we assume
for ease of exposition a fully-actuated single-integratorpoint
agent model for each particle. We further assume that some
desired configuration,x∗ ∈ Conf

(

Rd, J
)

has been selected,
supporting some desired nondegenerate tree,τ . Our dynami-
cal planner takes the form of a centralized hybrid controller,
u : Scl (τ) → Rd, for hierarchical navigation inSo (τ)
towards a desired configurationx∗ ∈ So (τ) as follows:

ẋi = ui(x) =

{

uAi (x) , if x ∈ Scl (τ) \DE(τ),
uEi (x) , if x ∈ DE(τ).

(18)

Here uA : =
(

uAi
)

i∈J
: Scl (τ) → Rd is an alignment

field that moves its labeled particle so as to asymptotically
align the separating hyperplane normals of all nonsingleton
clusters in its ancestor set,Anc ({i} , τ), while preserving
the hierarchy. In contrast,uE : =

(

uEi
)

i∈J
: DE(τ) → Rd is

an expansion field guaranteed to drive asymptotically each
agent directly towards its desired location once the separat-
ing hyperplanes are “sufficiently aligned.” The criterion for
“sufficient alignment” is specified by its prescribed domain
as (see FigureIII )

DE(τ) =
{

x ∈ Scl (τ)
∣

∣

∣

(

xi −mI,τ (x)
)T

sI,τ (x
∗)

+
(

x∗i −mI,τ (x
∗)
)T

sI,τ (x) ≤ 0,

∀i ∈ I, I ∈ C (τ) \ {J}
}

. (19)

c (x|I)

c (x|J \ I)

m (x, I, J \ I)

c (x∗|I)

c (x∗|J \ I)

m (x∗, I, J \ I)

Fig. 2. An illustration of a configuration in the basin of attraction
DE(τ) of the expansion fielduE . Both of the current (left) and desired
(right) arrangements need to be linearly separable by each other’s separating
hyperplane, and this needs to be satisfied at each level of thehierarchy.

A. Alignment Field

1) Construction of the Controller:The alignment field,
uA : Scl (τ) → Rd, is a (linear) combination of translation,
rotation and scaling fields,{Tr,R, S}, associated with all
clusters inAnc ({i} , τ) — that is, all the nonsingleton partial
configurations ofτ containing particlei,

ui
A(x) = uTr(x) +

∑

I∈Anc({i},τ)

∑

m∈{R,S}

umi,I(x). (20)

The termuTr
i : Scl (τ) → Rd is a common translation

field asymptotically moving the centroid of the overall con-
figuration to that of the desired configuration,

uTr
i (x) = −2 (c (x|J)− c (x∗|J)) . (21)

Each term,uRi,I : Scl (τ) → Rd is a rotation field
associated with ancestorI, designed to rigidly re-orient the
entire partial configurationx|I into correspondence with
its “subgoal”x∗|I by asymptotically aligning its separating
hyperplane normal with the desired one,

uRi,I(x) = RIxi,I . (22)

Here,xi,I (13) is the centroidal displacement ofxi in cluster
I ∈ C (τ), andRI is a (weighted planar) rotation matrix in
the plane defined by present and desired normalsnI andn∗I ,

RI := [nI tI ]

[

0 −ωI

ωI 0

]

[nI tI ]
T
. (23)

These “normals” (the direction vectors of centroid differ-
ence),nI andn∗I , for the subsplits{I1, I2} = Ch (I, τ) for
the current and desired configurations, respectively, are

nI := v ◦ s (x; I1; I2) and n∗I := v ◦ s (x∗; I1; I2) , (24)

where the projection ofRd \ {0} onto Sd−1 is defined as

v(x) :=
x

‖x‖ . (25)

To complete the account of (22), the planar rotation is
specified by

ωI := 1− n∗I
TnI , (26)

tI := P (nI) n
∗
I = n∗I − nInI

Tn∗I , (27)

whereP (nI), the projection onto the tangent space ofSd−1

at pointnI ∈ Sd−1, TnI
Sd−1, is

P (nI) := Id − nInI
T, (28)

and Id is the d × d identity matrix. All in all, the rotation
rate and the direction of rotation areωI‖tI‖ and v ◦ tI (if
tI 6= 0, otherwise rotation rate is also zero), respectively.

Finally, uSi,I(x) : Scl (τ) → Rd is a scaling field designed
to guarantee the positive invariance ofSo (τ) by suitably
“narrowing” any cluster as required along the way toward
the subspace of standard configurations,

uSi,I(x) = ξRI (ωI‖tI‖) xi,I . (29)

Here ξRI : [0,∞) → (−∞, 0] gives a proper scaling rate
using geometry of the clusters (see Figure3) to guarantee
the preservation of hierarchy while rotating with a rate ofω,

ξRI (ω):=

{

−
√

rI(x)2−γ2rWI
(x)2

γrWI
(x) ω , if rI(x)≥γrWI

(x),

0 , otherwise,
(30)

where γ ∈ (0, 1) is a constant specifying how well the
clusters of a standard configuration (see Definition3) are
separated, andrI : Scl (τ) → R+ (13) is the radius of partial
configurationx|I, and rWI

: Scl (τ) → R+ is the radius
of the largest closed ball centered atc (x|I) and satisfying
hierarchical constraints,

rWI
(x) = min

A∈(Anc(I,τ)\{J})∪{I}
−
(

c (x|I)−mA,τ (x)
)T(

v◦sA,τ (x)
)

,

= min
A∈(Anc(I,τ)\{J})∪{I}

∣

∣

∣

(

c (x|I)−mA,τ (x)
)T
nPr(A,τ)

∣

∣

∣
. (31)



Note thatrWI
is closely related to the notion of a standard

configuration as introduced in Definition3.

To gain an intuitive appreciation for how this scaling
field preserves the hierarchy, observe, if agent-i of cluster
I is on a separating hyperplane of any ancestor cluster
A ∈ (Anc (I, τ) \ {J}) ∪ {I}, i.e. ηi,A,τ (x) = 0, then we
have

(

uRi,I(x) + uSi,I(x)
)T

sA,τ (x) < 0, (32)

as can be visualized in Figure3 by simply drawing a tangent
line from a point on a separating hyperplane to the circle
with radiusγrWI

located atc (x|I), depicting the boundary
of desired standard configurations.

I0

I1

c (x|I0)

c (x|I1)

c (x|I)

rI
rWI

γrWI

Fig. 3. An illustration of the geometric relation between the rotation and
scaling fields in a planar environment. Their total effect isalways tangent
to the boundary of desired narrow configurations if a partialconfiguration
is not narrow.

2) A Useful Change of Coordinates:The lexicographic
order on the label setJ ( N (the standard order relation
over natural numbers) and depth-first traversal5 of τ ∈ TJ

in inorder induce a hierarchical order over the cluster set
C (τ), recursively defined for clusters,A,B ∈ C (τ), as:
(i)(base case) ifA = ∅ or A ∩B 6= ∅,

A ≤ B if







A = B or
A ⊆ Ch (B, τ)0 or
B ⊆ Ch (A, τ)1 ,

(33)

(ii)(induction) otherwise

A ≤ B if A ≤ Pr (B, τ) , (34)

where the subscripts label elements of the split,Ch (I, τ) =
{Ch (I, τ)i}

1
i=0 with min(Ch (I, τ)0) < min(Ch (I, τ)1).

Using the induced hierarchical order over the singleton
clusters, we have a hierarchical ordered label setJ̃ with

J̃i ≤ J̃j if {i} ≤ {j} ∀i, j ∈ J. (35)

5Depth-first (binary) tree traversal in inorder (symmetric)traverses the
left subsplit, visits the parent and traverses the right subsplit [15].

Moreover, the cluster setC (τ) satisfies

C (τ) = C (τ0) ∪ {J} ∪ C (τ1) (36)

where C (τ0) and C (τ1) are the cluster set of subsplits
{J0, J1} = Ch (J, τ), respectively,

C (τi) = {I ∩ Ji}I∈C(τ) (37)

for i = 1, 2. Note that the hierarchical orderedC (τ) is the
same as the concatenation ofC (τ0), {J}, C (τ1) in this order.
This affords a canonical order on the|J |−1 interior clusters
guaranteed by Lemma1 to be well defined and fixed over
the entirety ofS (τ).

Define a linear transformationfτ : (Rd)|J| → (Rd)|J|

that factors a configuration into its centroid and the|J | − 1
centroid difference vectors associated with the nonsingleton
partial configurations,

y = fτ (x), (38)

=

(

c (x|J) ,
(

s (x; J0; J1)
)

A∈C(τ), |A|>1
{J0,J1}=Ch(A,τ)

)

.

Using the matrix representation of this transformation
with respect to the canonical basis over the domain and its
permutation (arising from the induced hierarchical order of
interior clusters) over the codomain one proves by induction
the following result.

Proposition 3 The linear coordinate transformationfτ :
(Rd)|J| → (Rd)|J| in (38) is bijective.

Proof: See Appendix-B.

Due to the convexity of k-means, the separation vectors of
each nonsingleton cluster inScl (τ) are nonzero, hence the
(nonlinear) restriction mapfτ |Scl(τ) is a continuous bijection
into its image inRd × (Rd \ {0})|J|−1. By recourse to the
sphere map,v (25), we endow the punctured component
of the imagefτ |S(τ) with spherical coordinates via the
diffeomorphism

z = gτ (y), (39)

=

(

y1,
(

v(yA)
)

A∈C(τ)
|A|>1

,
(

‖yA‖
)

A∈C(τ)
|A|>1

)

.

Because the restriction offτ |O to any open subspace
O ⊂ Scl (τ) is a diffeomorphism, we can push forward
the restricted alignment vector fielduAi |O (20) via the
diffeomorphismgτ ◦ fτ |O to reveal the simple form

ż1 = −2(z1 − z∗1) , (40a)

ṅI =
∑

A∈Anc(I,τ)∪{I}

RAnI , (40b)

ρ̇I = ρI
∑

A∈Anc(I,τ)∪{I}

ξA(ωA‖tA‖), (40c)

permitting the following key observation.



Remark 1 Since the (weighted planar) rotation matrix,RI

(23), is only a function ofnI andn∗I , (40b) is an independent
dynamical system describing the evolution of separating
hyperplane normals,nI .

3) Invariance and Stability Properties:In this section we
sketch the proof that: (i) a stratum,S (τ), is positive invariant
under the flow of the alignment field,uAi ; and (ii) it is
included in the basin of attraction of a goal-aligned region
of the standard configurations under that flow.6

Proposition 4 ([16]) For a desired configurationx∗ ∈
So (τ) supporting a nondegenerate hierarchyτ ∈ TJ , the
open pseudo-strataSo (τ) is positive invariant under the
alignment field,uA (20).

Proof: A sketch of the proof is as follows.H (17) is a
super set of∂So (τ) and it contains all configurations with
ηi,I,τ (x) = 0 for someI ∈ C (τ) \ {J} and somei ∈ I.
Using (32), one can show thatddtηi,I,τ (x) < 0 on η−1

i,I,τ [0]
for any I ∈ C (τ) \ {J} and anyi ∈ I, which completes the
proof.

Proposition 5 ([16]) The target separating hyperplane nor-
mal n∗

τ := (n∗I)I∈C(τ),|I|>1 associated with the goal config-
uration x∗ ∈ So (τ), via the mapgτ ◦ fτ is an essentially
globally asymptotically stable equilibrium state of the spheri-
cal dynamics (40b) whose basin excludes only the “antipodal
fragments”,7
{

(

diag
[

(−1)j1 , (−1)j2 , . . . , (−1)j|J|−1

]

⊗ Id

)

n
∗
τ

∣

∣

∣

∣

∣

(j1, j2, . . . , j|J|−1) ∈
(

{0, 1}|J|−1 − {(0, 0, . . . , 0)}
)

}

Proof: A sketch of the proof as follows. Consider a
Lyapunov functionV : (Sd−1)|J|−1 → R+

V
(

nτ

)

=
∑

I∈C(τ)
|I|>1

αIUI(nI), (41)

where
(

αI

)

I∈C(τ)
|I|>1

are positive constants defined in (41) as a

function of a height function,UI : Sd−1 → [0, 1], defined as

UI(nI) =
1

2
(1− nI

Tn∗I)
2, (42)

Using the hierarchyτ , one can find proper constantsαI ’s
such thatV̇ (n̂τ ) = 0 for all n̂τ ∈ N(τ) which also contains
n∗
τ , and V̇ (nτ ) < 0 for all nτ ∈ (Sd−1)|J|−1 \N(τ),

N(τ) =
{

nτ ∈ (Sd−1)|J|−1
∣

∣

∣
nI =±n∗I , ∀I ∈C (τ) , |I|>1

}

.

(43)

6 Unfortunately,uAi |O will generally not be complete onO so that we
cannot work directly with the simple conjugate dynamics revealed just
above.

7Here ⊗ is the standard Kronecker product,Id is the d × d identity
matrix, anddiag [v] is the diagonal matrix whose diagonal is given by the
vector whose entries are specified by the stringv.

A simple computation shows that each point in the cardinal-
ity 2|J|−1 totally isolated setV̇ −1[0] = N(τ) is repelling
except for the atttractor,n∗

τ . It follows from LaSalle’s
Invariance Principle [17] that the basin of this attractor is
the complement ofN(τ) − {n∗

τ} as claimed.

Now consider the pre-image of the target separating hy-
perplane normal,

GA(τ) : =
(

(gτ ◦ fτ )−1{c (x∗|J)}×{n∗
τ}×R+

|J|−1
)

∩Scl (τ)

(44)

=
{

x ∈ Scl (τ)
∣

∣

∣
c (x|J) = c (x∗|J) ,

nI = n∗I ∀I ∈ C (τ) , |I| > 1
}

,

and recall thatDE(τ) (19) contains configurations whose
separating hyperplanes are nearly aligned with the desired
one, and soGA(τ) ⊂ int(DE(τ)). Pulling back a Lyapunov
function for the attractorn∗

τ of the spherical dynamics(40b)
through the change of coordinatesgτ◦fτ now yields a Lasalle
function for GA(τ) ⊂ Conf

(

Rd, J
)

, resulting in the desired
conclusion.

Corollary 1 The system in (20) converges from all con-
figurations that supportτ to a configuration inGA(τ) ⊂
int(DE(τ)). Therefore, the alignment field,uA (20), pre-
pares the expansion field,uE (45), in finite time.

B. Expansion Field

1) General Form: The expansion field,uE : DE(τ) →
Rd, is simply designed as a negated gradient field of the
sum of squared distances,V (x) = ‖x− x∗‖2,

uEi (x) = −∇xi
V (x) = −2(xi − x∗i ), (45)

such that it moves each agent directly towards to desired
location and, looking ahead toward the proof of Proposition
6, we find it write out explicitly the exact trajectory followed
by solutions of (45) as

xt = x∗ + e−2t(x0 − x∗) = e−2tx0 + (1− e−2t)x∗, (46)

wherex0 ∈ DE(τ) denotes an initial configuration.
2) Invariance and Stability Properties:

Proposition 6 For a desired configurationx∗ ∈ So (τ)
supporting a nondegenerate hierarchyτ ∈ TJ , the basin
of attraction,DE(τ) (19), of the expansion field,uE (45), is
positive invariant.

Proof: One can simply verify that the domain condition
holds along the trajectory (46) of expansion fielduE . In other
words, for a CVT split{I, J \ I}, we have
(

xt
i −m

(

x
t;A; J \ A

))T
s (x∗;A; J \ A)

+
(

x∗
i −m(x∗;A; J \ A)

)T
, s

(

x
t;A; J \ A

)

≤ 0. (47)

for all i ∈ A andA ∈ {I, J \ I} andt ≥ 0.



Proposition 7 Any x∗ ∈ So (τ) is an asymptotically stable
equilibrium point of the expansion field,uE (45), whose
basin of attraction includesDE(τ).

Proof: It is obvious from the trajectory (46) of expan-
sion field,uE .

Corollary 2 The hierarchy,τ , of a group of agents along
the trajectory (46) of the expansion field (45) is preserved
while reaching a desired configurationx∗ ∈ So (τ) from
any initial configurationx0 ∈ Scl (τ).

Proof: One can easily check the CVT splits (Definition
1) along the trajectory of (46) of expansion field,uE , and
verify ηi,I,τ (x

t) ≤ 0 for all I ∈ C (τ) \ {J} and i ∈ I.

IV. CONCLUSION

In this paper, we introduce a novel application of cluster-
ing to the problem of precise yet flexible group coordination.
We study a CVT based clustering scheme and reveal its
homotopy model, affording a complete understanding of our
navigation problem’s topological complexity [18]. Based on
this careful characterization of the underlying space, we
introduce a centralized hybrid controller with provable global
invariance and stability properties, which generalizes toan
arbitrary number of particles and ambient space dimension.

These methods suggest a promising, broad domain of new
hierarchical formation (motion) planning and hierarchical
perceptual servoing problems.

In the near term, work in progress extends these ideas
to navigation in the space of hierarchies to enable control-
lable switching between different hierarchies, i.e. hierarchical
transitions to enable global coverage ofConf

(

Rd, J
)

. At the
same time, a crucial requirement of practicable multi-agent
systems is a distributed implementation of any coordination
algorithm that drives a different slant of work in progress.
Finally, we are exploring a number of application settings
for hierarchical formation specification and control includ-
ing problems of perception, perceptual servoing, anomaly
detection and automated exploration and various problems
of multi-agent coordination.

APPENDIX

PROOFS

A. Proof of Lemma1

Proof:
The claim is trivially true forn = 2 (the root is the only

interior vertex). Forn = 3 there is only one binary tree: the
root and its non-singleton child are the two interior vertices.

We proceed to the inductive step by considering an arbi-
trary binary tree,τ , now with more than2 leaves and erase
the root and its two outgoing edges to produce either: (i) a
pair of binary trees,τ0, τ1 with n0 andn1 leaves each; or
(ii) a binary tree,τ0, and a one-vertex “tree.”

In the first case, the inductive hypothesis affords the
assumption that there arenj − 1 interior vertice for treeτj ,
j = 0, 1, and their union, together with the original root,

comprises the interior vertex set ofτ which thus numbers
1+(n0−1)+(n1−1) = (1+n0+n1)−2 = (1+n)−2 = n−1.
In the second case, all interior vertices ofτ except the root
lie in τ0. Sinceτ0 hasn− 1 leaves, the inductive hypothesis
yields the assumption thatτ0 has n − 2 interior vertices.
Hence, adding in the root,τ hasn− 1 interior vertices.

B. Proof of Proposition3

Definition 4 Associated with everyn-leaf binary tree,τ , is
a hierarchy matrixthat we define inductively as follows. For
n = 1, the one-vertex tree,τ , with no interior (root) vertex
— define

Fτ := [1] .

For n ≥ 2 the hierarchy matrix is built using those
associated with the subtrees,τ0, τ1 (possessing, respectively,
n0 andn1 leaves), that arise when the root and its outgoing
edges are removed fromτ as follows:8

Fτ := diag [n0/n,1n−1]Eτ ,

Eτ :=

[

Fτ0 E01

−E10 Fτ1

]

, Eij :=
1

n0
eni

1T
nj
.

Lemma 2 The hierarchy matrix associated according to
Definition 4 with ann-leaf tree,τ , has the two properties

|Fτ | = 1; 1T
nFτ

−1en = n.

for all n ∈ N.

Proof: The claim follows immediately forn = 1 where
Fτ = 1. If τ hasn ≥ 2 leaves with first childrenτ0, τ1 then
its associated hierarchy matrix has block determinant [19]

|Fτ | =
n0

n
|Fτ0 +E01F

−1
τ1

E10| · |Fτ1 |

=
n0

n
|Fτ0 +

1

n2
0

en01
T
n1
F−1

τ1
en11

T
n0
| · |Fτ1 |

=
n0

n
|Fτ0 +

1T
n1
F−1

τ1
en1

n2
0

en01
T
n0
| · |Fτ1 |

=
n0

n
|Fτ0 | · |1 +

1T
n1
F−1

τ1
en1

n2
0

1T
n0
F−1

τ0
en0 | · |Fτ1 |

=
n0

n
|Fτ0 | · |1 +

n1

n0
| · |Fτ1 |

= 1

as claimed.
Moreover, we have

Fτ
−1 = Eτ

−1diag [n/n0,1n−1]

Eτ
−1 =

[

Q−1 −Q−1E01Fτ1
−1

Fτ1
−1E10Q

−1 Fτ1
−1(I −E10Q

−1E01Fτ1
−1)

]

8 Here1k is theRk column vector of all ones (hence10 is defined to be
the empty array) andek is the first canonical unit vector of Euclideank-
space (i.e. the column array whose first entry is unity and whose remaining
k − 1 entries are zeros).



where the Schur complement of the blockFτ1 of the matrix
Eτ is

Q := Fτ0 +E01Fτ1
−1E10

= Fτ0 +
1

n2
0

en01
T
n1
Fτ1

−1en11
T
n0

= Fτ0 +
n1

n2
0

en01
T
n0

hence the matrix inversion lemma yields [19]

Q−1 = Fτ0
−1 − n1

n2
0

Fτ0
−1en01

T
n0
Fτ0

−1

1 + n1

n2
0
1T
n0
Fτ0

−1en0

= Fτ0
−1 − n1

n0n
Fτ0

−1en01
T
n0
Fτ0

−1

and we can compute

1T
nF

−1
τ en =

n

n0
1T
nE

−1
τ en =

n

n0

[

1T
n0
,1T

n1

]

E−1
τ

[

en0

0n1

]

=
n

n0

(

1T
n0
Q−1en0 +

1

n0
1T
n1
Fτ1

−1en11n0Q
−1en0

)

=
n2

n2
0

1T
n0
Q−1en0

=
n2

n2
0

1T
n0

(

Fτ0
−1 − n1

n0n
Fτ0

−1en01
T
n0
Fτ0

−1

)

en0

=
n2

n2
0

(

n0 −
n1n0

n

)

= n,

which completes the proof.

Corollary 3 The mapfτ (38) has the nonsingular matrix
representationFτP⊗ Id, whereP is a permutation matrix
defined by the hierarchical ordered label setJ̃ (35),

Pij =

{

1 , if J̃i = j
0 , otherwise.

(48)
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