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Abstract— We propose a self-organizing database for per-
ceptual experience capable of supporting autonomous goal-
directed planning. The main contributions are: (i) a formal
demonstration that the data-base is complex enough in principle
to represent the homotopy type of the sensed environment;
(ii) some initial steps toward a formal demonstration that
the data base offers a computationally effective, contractible
approximation suitable for motion planning that can be ac-
cumulated purely from autonomous sensory experience. The
provable properties of an effectively trained data-base exploit
certain notions of convexity that have been recently generalized
for application to a symbolic (discrete) representation of subset
nesting relations. We conclude by introducing a learning scheme
that we conjecture (but cannot yet prove) will be capable
of achieving the required training, assuming a rich enough
exposure to the environment.

I. INTRODUCTION

A. Motivation

Mapping and navigation of an environment by an au-
tonomous agent is a deep problem, long and well studied
by neuroscientists [1], cognitive scientists [2], AI researchers
[3], and, of course, the very earliest pioneers of robotics [4],
continuing through the present day [5], [6]. We are inter-
ested in designing physical agents endowed with prescribed
sensorimotor capabilities that can learn to negotiate useful
traversals through an initially poorly known environment, E,
in support of goals whose complexity grows in step with
its increasing familiarity as manifest by the accumulation of
sensorimotor experience.

It is generally accepted that contextual information re-
garding the state of the environment can be modelled as
(at least) a topological space X [7], which, from the point
of view of our agent, comes equipped with a position map
pos : X → E fixing the relation between any given state
of the environment and the unique position that might be
occupied by the agent given that state [8] (since the agent
interacts with the environment, we need to think of the
agent’s internal state, its position and posture as observables
in X).

To qualify as autonomous it seems essential that an agent
be able to: (1) maintain an evolving internal representation
of the environment and its possible states; (2) identify the
current state of the environment; and (3) plan its motion
through the environment towards designated targets – or,
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at least in support of some sensory designated goal condi-
tion. The traditional difficulty in building such autonomous
systems arises from the apparently contradictory need for
significant prior understanding by the designer of the specific
geometric and physical constraints associated with the given
task. This contradiction incurs a familiar tradeoff between
robust ”low level” vs. brittle ”high level” approaches to
autonomy. In particular, constraints of communication la-
tency, storage space and power requirements tend to push
”high level” solutions to any given instance of this problem
toward complex and dedicated architectures that typically
offer little in the way of formally guranteed properties and
result in systems that empirically operate properly only
under numerous (and poorly characterized) assumptions that
severely limit the practical applications of the design.

In this paper, we approach the traditional gap between
robustness and prior knowledge by interpreting the problem
of autonomy as requiring a self-organizing data base for
perceptual experience capable of supporting goal-directed
planning as well. More specifically, we presume that a
machine with adequate mechanical and sensory capabilities,
demands an ”episodic memory” capable of collecting obser-
vations of the state space and inferring information about
how its environment is organized in relation to its motor
abilities1. This memory mechanism must keep an efficient
record of the causal relations between the actions it is capable
of performing and the resulting state transitions; it must use
this record to plan its trajectory through the environment;
and it must be capable of revising this plan when faced
with unexpected input. The main contribution is our effort to
formalize (and aim for provable statements about) heretofore
poorly defined universality properties that allow an agent to
deal with arbitrary real-time input, thus obviating the need
to plan in advance for all possible circumstances it may
encounter in its environment.

What is a good representation of the state space X for
a physically embodied agent? From the point of view of
control theory, preference should be given to representations
capable of recovering the homotopy type of X: many en-
vironments E have a piecewise smooth cellular structure
(or are sufficiently well approximated by one for practical
purposes), in which case one expects X to have a similar

1Our construction is greatly impoverished relative to the hegemonic
notion of ”episodic memory” in psychology that requires: a sense of self;
a sense of subjective time; and the ability to distinguish memories of the
self at junctures of past and present subjective time [9]. Here, we are really
only interested in a mechanism for accumulating episodic experience and
organizing it into procedural knowledge for present or future use.



(though much more complicated) description.
As has long been understood within the field of mo-

tion planning [10], cellular structures are useful for spatial
navigation, as they afford a formally straightforward and
(sometimes) computationally tractable two stage approach:
first solve the discrete navigation problem of planning a path
in the dual graph of the cellular decomposition; then navigate
through each of the cells in the discrete solution by applying
an appropriate (depending on the problem) flow using local
coordinates.

More generally, a flow with sufficiently tame attractor
produces a strong deformation retraction of its domain onto
its attractor, demonstrating that faithful representation of
the homotopy type of X is a natural feature to require
from a ‘brain’ for our agent if we expect this agent to
exhibit complex and purposive patterns of interaction with
its environment.

B. Our Contributions

In view of the above we operate on the assumption
that, ultimately, our goal is to construct agents capable of
maintaining an evolving, ever more precise, discrete topo-
logical model of the space X – say in the form of a finite
cell complex – together with a set of computational tools
allowing the agent to construct paths between cells (or sets
of cells) of the model indexed by its available actions.

Our approach is based on [11], where it was proposed
to base the construction of a memory structure on Sageev-
Roller duality (see below, section III-B): it was pointed
out that maintaining a record P of the (Boolean) logical
implications among the elements of a finite set of binary
sensors on any space Z produces a contractible model
Cube(P) of Z, together with a tool for highly efficient
(discrete) path planning within the model.

In just a few words, the main idea of [11] is that, given
the ability to ask n fixed distinct binary questions about Z
(using n fixed binary sensors indexed by P), not all 2n

combinations of answers to these questions are realized by
sensory equivalence classes of points in Z: given known
implication relations among the sensors, some combinations
of questions are a priori nonsensical and should never be
considered by the agent; the complex Cube(P) is precisely
the result of discarding the corresponding vertices from the
n-cube (viewed as a cubical complex), together with all
adjacent faces. As luck would have it, complexes of this kind
(or, rather, their 1-dimensional skeleta) turn out to possess
a very strong convexity theory (see section III-C) enabling
very simple path-planning algorithms, as we prove in section
IV-B.

The work [11] does not address the practical problem of
how to effectively obtain a record of implications among the
available sensors through sampling. Neither does it provide
any way to quantify the discrepancy between the model it
proposes and the observed space Z. This work is our initial
step in the direction of filling in these gaps.

Our first result is Theorem 3.1, providing sufficient con-
ditions for obtaining a homotopy model of Z by excising a

certain sub-complex of Cube(P). The contribution of such a
result in the context of our class of applications is twofold:

1) it provides an explicit criterion for a binary sensorium
to be rich enough to produce a homotopy model of the
observed state space;

2) it states that learning the state space X (or environment
E, etc.) up to homotopy using a sufficient binary
sensorium P is equivalent to learning to identify and
avoid a particular sub-complex of Cube(P).

Our second contribution is the proposal of an observation
model and associated database allowing for the effective
maintainance of a memory structure of the kind originally
proposed in [11] and capable of executing basic motion
planning under the assumption that the contractible world
model is correct.

Our agents are equipped with binary transition sensors
(section II), moving through an environment in discretely
experienced steps. The database structure we propose is de-
scribed in section IV-A. It allows the agent to effectively plan
its motion in quadratic time in the number of sensors –see
IV-B using a contractible model of X×X (constructed from
a sampled record – see IV-C – of approximate implication
relations among the sensors – see III-B.2). We prove that
each update step of the database is achieved in quadratic
time in the number of sensors (see IV-C). The database
itself is of quadratic size in the number of sensors – a vast
improvement over the generally exponentially sized space of
sensory equivalence classes.

In this preliminary work, we are unable to resolve the
inherent tension between computational effectiveness (practi-
cably efficient database management) and model fidelity (ac-
tually realizing the homotopy type in the evolving database).
We emphasize that these two goals are, indeed, contradic-
tory, since homotopy type is known both to be arbtrarily
complex and to provide lower bounds on the complexity
of membership problems (see [12], as well as [13] on the
complexity of motion planning). Work in progress addresses
the prospect for online introduction of new ”introspective”
sensors capable of representing ”obstacles” (i.e., sensations
that will never be experienced) and hence planning motions
that respect them. Whether it is possible much less desirable
to build computationally effective agents capable of actually
reasoning about such topological obstacles is an interesting
open question.

II. THE OBSERVATION MODEL

For the sake of simplicity we commit to a discrete time
model: the lifetime of an agent is described by a trajectory
ϕ : T → X , where T is the set of non-negative integers.
Any trajectory ϕ has a differential dϕ : T→ X ×X:

dϕ(t) := ϕ(t)× ϕ(t+ 1) , (1)

We shall also restrict attention to binary sensors. By a binary
sensor on a space Z we mean a {0, 1}-valued function on
Z. Equivalently, one could identify such a function p ∈ 2Z

with the subset p−1(1) ⊆ Z. In other words, a subset A of



Z is identified with its charachteristic function χA, where
χA(z) = 1 iff z ∈ A.

Let us recall some standard notation for 2Z :

• 〈p |z 〉 := p(z), (evaluation)
• 〈p+ q |z 〉 := 〈p |z 〉+ 〈q |z 〉, (addition modulo 2)
• 〈pc |z 〉 := 1 + 〈p |z 〉, (complementation)
• p ≤ q ⇔ p−1(1) ⊆ q−1(1). (ordering)

Note that the addition operation above is addition modulo 2.

The set 2Z is also standardly referred to as a |Z|-cube
(see [14]) when viewed as the vertex set of a graph in which
a pair of distinct vertices p, q ∈ 2Z are joined by an edge
if and only if there is exactly one point z ∈ Z in which
p(z) + q(z) = 1. Thus, the combinatorial distance in this
graph is precisely the Hamming distance.

The analogy to a cube deepens as we notice that 2Z may
be viewed as the vertex-set C0(Z) of a cubical complex
C(Z) by setting p, q ∈ 2Z to belong in the same k-
dimensional cube iff p and q are at Hamming distance at
most k from each other. The lattice of subsets of the set
U = (p + q)−1(1) is then in one-to-one correspondence
with the set of vertices of the smallest cubical face of C(Z)
containing the vertices p and q.

In what follows, we will refer to both C(Z) and its
geometric realization as the Z-cube.

A. Binary transition sensors

A binary transition sensor is a binary sensor on the space
X × X . We let P be a set of tags standing in one-to-one
correspondence with the sensors available to our agent. It
follows that an agent comes equipped with a realization
map r : P → 2X×X , deterministically defining the physical
capabilities of each individual sensor.

From the point of view of the agent, experiencing the
transition dϕ(t) is tantamount to recording the fact that the
following set of sensors was turned on (perhaps after already
being on):

Inpt = {a ∈ P |〈r(a) |dϕ(t) 〉 = 1} . (2)

It will be of technical convenience to assume henceforth that
sensors come in complementary pairs: formally speaking, P
is equipped (once and for all) with a fixpoint-free involution
a 7→ a∗ (henceforth referred to as the complementation
operator in P), satisfying r(a∗) = r(a)c for all a ∈ P.
Also, for any subset U ⊂ P we shall use the symbol U∗ to
denote the image of U under the complementation operator.

Note that some sensors do not really record transitions:
we say that r ∈ 2X×X is a state sensor, if

∀x,y∈X 〈r |x× y 〉 = 〈r |y × y 〉 . (3)

State sensors record properties of individual states, e.g: “the
sky is green” and “there is a wall right in front of me”.

B. Actions

In the context of our problem every agent will be equipped
with actions. For simplicity we assume X is deterministic
in the sense that any action α taken by our agent has a
well-defined outcome, which we denote by αx ∈ X , for any
given input state x ∈ X (note that this restricts the agent to
taking a single action at a time). We conclude that an action
defines a binary transition sensor, providing us with a way
to introduce actions into our observation model as follows:
• We designate a subset P

act
of P as a subset of action

tags and require P
act

to be closed under a 7→ a∗, that
is: P

act
is a sub-poc-set of P;

• For every α ∈ P
act

, exactly one of r(α), r(α∗) is a
function on X when viewed as a relation in X × X
(unless |X| = 2, but that is not an interesting case);

• At any time t ∈ T, the decision to apply an action
α ∈ P

act
is equivalent to setting

dϕ = ϕ(t)× (αϕ(t)) . (4)

In other words, taking an action results in determining the
observation Inpt which will take place during the transition
dϕ(t). However, since the agent does not necessarily have
precise knowledge of its current state, it still has a good
chance of being surprised by the results of the chosen action
if it happened to anticipate ‘landing’ in some state other
than ϕ(t + 1) = αϕ(t). Thus, actions should be thought of
as commands issued to the motors by the ‘brain’ and should
not be mistaken for their consequences.

III. REPRESENTING A SPACE

We step away from our observation model for a short
while. Once again let Z be an arbitrary topological space
and suppose r : P → 2Z is a map satisfying the identity
r(a∗) = r(a)c.

A. Constructing a Homotopy Model from Binary Questions

Since the map a 7→ a∗ defined on P is fixpoint-free, P
has an even number of elements, |P| = 2d. It is customary to
refer to a subset U ⊂ P as a ∗-selection, if, for any a ∈ P
only one of the elements a, a∗ belongs to U ; a complete
∗-selection is a ∗-selection of cardinality d.

We denote the set of all complete ∗-selections on P by
S0(P) to think of it as the set of vertices of a cubical
complex S(P), constructed by declaring U,U ′ ∈ S0(P)
to belong to the same k-dimensional cube if and only if
|U r U ′| ≤ k. Note that this condition is symmetric, as
(U rU ′)∗ = U ′rU . This also implies S(P) is isomorphic
to a d-dimensional cube, namely: if V ∈ S(P) is picked
arbitrarily, then it is easy to see that the mapping U 7→
χU +χV is an isomorphism of cubical complexes from S(P)
onto the V -cube C(V ).

We now turn to the study of realization maps r : P → 2Z

where Z is a an arbitrary topological space. Intuitively, the
map r defines d binary questions about Z, and therefore
partitions Z into at most 2d observational equivalence classes
[8] (call them r-classes for short). Formally, there is a map



r∗ : Z → S(P) defined by r∗(z) = {a ∈ P |z ∈ r(a)} and
partitioning Z into point-preimages of r∗. Thus, the r-classes
embed into S0(P), or, equivalently into the vertex set of a
d-cube. Vertices of S(P) appearing in the image of r∗ will
be called consistent ∗-selections on P, or simply r-consistent
vertices.

Let Dual(P, r) denote the sub-graph of S1(P) induced
by the set of r-consistent vertices. Further, let Cube(P, r)
denote the full sub-complex induced by this set in S(P).
In other words, Cube(P, r) is the smallest full sub-complex
of S(P) containing the r-consistent vertices. Under certain
tameness assumptions on r, it is possible to prove the
following:

Theorem 3.1 (Guralnik-Koditschek): Let Z be a topolog-
ical space. Suppose r : P → 2Z be a realization and
let C denote the collection of cubes in Cube(P, r). For
each C ∈ C let ZC denote the union of all r-classes
corresponding to the vertices of C. Suppose now that every
ZC , C ∈ C has an open neighbourhood NC ⊂ Z such that:

1) each NC is contractible;
2) {ZC}C∈C and {NC}C∈C have isomorphic nerves2.

Then Cube(P, r) is homotopy-equivalent to Z.
Proof: Let C denote the collection of cubes in

Cube(P, r). For any subset A ⊆ P, define r̂(A) =⋂
a∈A r(a). The crucial technical observation is that the

vertex set of any cube in C has the form

V (A) = {U ∈ S(P) |A ⊂ U } (5)

for some suitably chosen A ⊂ P. From here, the proof boils
down to applying the nerve lemma twice, noticing that:

1) Let U be the covering of Cube(P, r) with closed
cubes. Observing that (realizations of) cubes are con-
tractible subsets of Cube(P, r), we conclude that (the
realization of) Cube(P, r) is homotopy equivalent to
the realization of the nerve N(U ) of U .

2) Now consider the covering V of Z by sets of the form
r̂(A), with A bounding a cube in Cube(P, r). Note that
V is in one-to-one correspondence with {ZC}C∈C .
The tameness assumption on the ZC allows us to apply
the nerve lemma again to conclude Z is homotopy
equivalent to the realization of the nerve N(V ).

To finish the proof, it suffices to observe that U and V
have isomorphic nerves: for r̂(A), r̂(B) ∈ V we have that
r̂(A) ∩ r̂(B) is non-empty if and only if the cubes with 0-
skeleta V (A) and V (B) intersect in a common face.
Loosely speaking, theorem 3.1 says that if the binary senso-
rium realized by r is rich enough to fulfill the requirements
of the theorem, then Cube(P, r) is a precise homotopy
model for Z. It is an interesting question, whether there
exist verifiable conditions on the sensorium guaranteeing the
hypothesis of this theorem. Furthermore, in the context of
our application we must note that the map r (as well as the

2These conditions may be replaced by every ZC itself being contractible,
provided some topological tameness conditions on Z and the sets r(a),
a ∈ P

space Z = X ×X where the sensors are being realized) is
unknown, largely rendering the above theorem useless unless
we answer the following question:

Question 1: What information should an agent be extract-
ing from its sensory readings in order to efficiently maintain
increasingly useful approximations of Cube(P, r)?
Partially answering this question is the job of the next
section. Another question needing to be asked in the context
of an agent navigating a physical environment is:

Question 2: What are some reasonable sufficient (perhaps
geometric) conditions on a sensorium guaranteeing the as-
sumptions of theorem 3.1 in a given context?

B. Reviewing Poc Sets and their Duals

The following notion, due to Martin Roller, is introduced
in [15]: a partially ordered set (P,≤) with an order-reversing
involution a 7→ a∗ is called a poc set, if (1) it contains a
minimum element denoted 0, and (2) for any element a ∈ P
the relation a ≤ a∗ implies a = 0 (the 0 element corresponds
to the empty set when mapped into 2Z under a realization in
a space Z; 0∗ is realized as the whole of Z; elements a ∈ P
other than 0, 0∗ are called proper elements).

A poc-set P is said to be discrete, if it is discrete as a
poset, that is: for every a, b ∈ P, the set of elements x ∈ P
satisfying a < x < p is finite. A finite poc-set is, of course,
discrete.

Example 1: 2Z (for any set Z) is a poc set with respect
to the inclusion ordering and the complementation operator
defined by p∗ = pc.

If P,Q are poc sets, then a function f : P → Q is said
to be a poc morphism if f(0) = 0, f(a∗) = f(a)∗ for all
a ∈ P and f(a) ≤ f(b) holds whenever a, b ∈ P satisfy
a ≤ b. We say f is a poc embedding when the inequality
f(a) < f(b) holds in Q if and only if a < b holds in P. In
particular, a poc embedding is injective.

1) Coherent Selections: It is easily verified that a pair of
proper elements a, b ∈ P, a /∈ {b, b∗}, may only satisfy at
most one of the following nesting relations:

a ≤ b , a∗ ≤ b , a ≤ b∗ , a∗ ≤ b∗ . (6)

A set A ⊂ P where any pair of elements satisfies a nesting
relation is said to be nested. If no two elements of A are
nested, A is said to be transverse.

We say that a pair a, b ∈ P satisfying a ≤ b∗ is incoherent.
We say that a subset U ⊂ P is coherent if it contains no
incoherent pair.

Returning to our specific application, suppose our agent,
endowed with sensorium P and its complementation op-
erator, has (or thinks it has) prior knowledge of some
implication relations among its sensors. Such knowledge
corresponds to a poc-set structure on P (after the trivial
tags 0 and 0∗ are added to the sensorium, again as a
matter of technical convenience). If the agent’s record of
relations among its sensors is correct (though not necessarily
complete), then the realization map r : P → 2Z is a poc
morphism.



Extending the preceding definitions, we say that a subset
U ⊂ P is r-consistent, if the intersection of {r(a)}a∈U is
non-empty. Thus, every consistent subset of P is coherent
whenever r is a poc morphism (that is, r(a) ⊆ r(b) whenever
a ≤ b in P). Loosely speaking, we would like to view our
agent as working to maintain on its record an evolving poc-
set structure P with the aim to keep r as close to a poc
morphism as possible while attempting to learn the complete
set of implication relations among its sensors.

2) Another Model: Let Dual(P) be the subgraph of S(P)
induced by the coherent vertices and let Cube(P) be the
cubical sub-complex of S(P) induced by those vertices. In
particular, Dual(P) = Cube(P)

1.

When r is a poc morphism, we are guaranteed that
Cube(P) contains Cube(P, r), but has, potentially, much
fewer vertices than the original cube S(P). This fact may
be understood as follows: keeping a record of implication
relations among sensors allows for a significant reduction of
the amount of memory required for storing Cube(P, r). To
illustrate this idea, consider the two easily verified extremes:

1) P is transverse iff Cube(P) = S(P).
2) P is nested iff Cube(P) is a tree.

We see that
∣∣∣Cube(P)

0
∣∣∣ varies all the way between d+1 and

2d, where we recall that 2d = |P| is the number of sensors
in the sensorium.

Thus, seeking a finite graph/cell-complex representa-
tion for Z in Dual(P) we gain a serious advantage
over Cube(P, r): while in order to form (and maintain)
Cube(P, r) as a sub-complex of S(P) an agent will need
to attempt searching through the exponentially-many vertices
of the cube S(P) (some of which may never be reached, as
we know), holding complete information about Cube(P) is
tantamount to gradually obtaining a correct record of a ‘best
fit’ poc-set structure on P satisfying the requirement that the
realization map r be a poc morphism.

We imagine a process where an agent is introduced into
the environment at time t = 0 carrying a transverse poc-
set structure P0 (i.e., no relations whatsoever except the
trivial ones 0 < a and a < 0∗ hold for any a ∈ P) which
subsequently evolves (somehow) into a sequence of poc-set
structures Pt, each corresponding to the agent’s conjecture
at time t regarding the inclusion relations within the family
{r(a)}a∈P . At time t = 0 the agent ‘thinks’ the world
is a cube, but, possibly, after 13 ticks of the clock the
agent ‘notices’ (we will make that more precise later) some
relations and rejects P0 = P1 = . . . = P12 in favor of a
new structure P13 that now contains a non-trivial relation.
The result: a chunk of the original cube has just now been
chopped off.

As time passes and the agent collects additional relations
(perhaps discarding some on the way upon obtaining suffi-
cient contradicting evidence), the optimist expects this ex-
cavation process to recover the complete list of containment
relations among the sets {r(a)∩I}a∈P , where I is the image

of the agent’s trajectory in Z. If this trajectory is ‘dense
enough’ in Z, one could hope for a correct recovery of the
containment relations in the image of the realization map.

What one cannot hope for, however, is for this process
alone to ever recover Cube(P, r), unless Z was contractible
to begin with. The following result (essentially due to Sageev
[16], but proved by Roller [15] in this form) explains the
reason why:

Theorem 3.2 (Sageev-Roller duality): For every finite
poc-set P, the complex Cube(P) is a finite contractible non-
positively curved cubical complex. Every finite contractible
non-positively curved cubical complex arises in this way.

In other words, Cube(P) plays the role of a “minimal
contractible envelope” for all the possible Cube(P, r) satis-
fying the requirement that r is a poc morphism. At the same
time, each of the Cube(P, r) could be arbitrarily complex
homotopically, raising the question:

Question 3: What are we gaining by appealing to the
Sageev-Roller construction?

First and foremost, it turns out we gain effectiveness
of representation: maintaining an explicit representation of
Cube(P, r) as a subset of S(P) (that is, without keeping
record of the possible poc set structure on P) requires
exponential space and time (in the number of sensors),
while maintaining P as a poc-set together with a sufficiently
meaningful representation of Cube(P) only takes quadratic
space and time, as we prove in the next section.

Second, recalling that the realization map r is unknown
to the agent, we strive to work with a world model with
minimum possible redundancy (in terms of space). Being
the smallest subset of S(P) containing Cube(P, r) for all
possible realizations r of a given poc set structure on P –
remember this requires r to be a poc-morphism – makes
Cube(P) a natural candidate to work with.

Finally, in stark contrast to other representation techniques
known to us, where the model of the ambient space is
constructed by agglomeration (“here is my current map, let
us add this new chunk to it and glue those two other chunks
together”), our approach is based on excavation of material
from a contractible space (the complex Cube(P)) contain-
ing complete information about all possible connectivity
relations among observation classes. As far as navigation
and path-planning problems are concerned, the advantage of
such an approach to representation lies in its potential for
proposing unexplored paths between observation classes.

C. Convexity Theory in Dual(P)

Sageev-Roller duality is, in fact, a consequence of a very
strong and restrictive convexity theory satisfied by graphs of
the form Dual(P) (here P is an arbitrary finite poc set. We
will now recall some facts from [15].

In any simple graph G, the interval I(u, v) between two
vertices u and v is the set of all vertices x in G satisfying
d(u, x) + d(x, v) = d(u, v), where d is the combinatorial



metric, defining the distance between two vertices is the
minimum number of edges along a path joining them in G.

A graph G is said to be a median graph, if I(u, v) ∩
I(u,w) ∩ I(v, w) contains precisely one vertex – denoted
medG(u, v, w) – for any three vertices u, v, w in G. Figure
1 provides an example of a median graph.

Fig. 1. The integer grid: example of computing a median in a median graph.

Theorem 3.3 ([15]): For any finite poc set P, the graph
Dual(P) is a median graph. Conversely, every finite median
graph is isomorphic to Dual(P) for some poc set P.

This theorem is, essentially, a reformulation of theorem
3.2, and it “lives” on the substrate of special properties of
median graphs. Recall that a set C ⊂ V G of vertices of a
graph G is said to be convex, if I(u, v) ⊆ C holds for any
pair of vertices u, v ∈ C. A set of vertices C ⊂ G is a
half-space, if both C and V Gr C are convex in G.

Median graphs turn out to have many half-spaces, as the
following theorem and corollary show:

Theorem 3.4 (“Helly’s Theorem”, [15]): If C1, . . . , Cm

are all convex subspaces of a median graph G such that
Ci ∩ Cj 6= ∅ for all 1 ≤ i, j ≤ m, then

⋂m
i=1 Ci 6= ∅.

Corollary 3.5: Every convex subset of a median graph is
the intersection of a family of half-spaces.

Lemma 3.6: Suppose C is a convex subset in a finite
median graph G. Then for every vertex v ∈ G there exists
a unique vertex v′ =∈ C satisfying d(v, v′) ≤ d(v, w)
for every w ∈ C. This vertex is denoted by projCv.
Furthermore, one has

d(v,projCv) = |∆(v, C)| , (7)

where ∆(v, C) is the set of half-spaces containing v and
disjoint from C. The vertex projCv is called the closest point
projection of v to C.

It turns out that the half-spaces in Dual(P) are all of the
form:

V (a) = {A ∈ Dual(P) |a ∈ A} (8)

Thus a convex subset C ⊂ Dual(P) is necessarily of the
form

V (B) =
⋂
b∈B

V (b) (9)

for some suitably chosen subset B ⊆ P (actually, we have
used this fact in the proof of theorem 3.1). For example,
applying lemma 3.6 in this setting to C = V (a) produces
the following formula:

d(v, C) = |{b ∈ v |b < a∗ }| (10)

In particular, the projection projCv has the formula

projCv = (v r {b |b < a∗ }) ∪ {b∗ |b < a∗ } . (11)

It is this particular property of Dual(P) that is responsible
for the low maintenance cost of our database structure (see
IV-B).

D. Less Restrictive Language

It turns out that a poc set structure is a tricky thing
to maintain dynamically. In our application, the agent is
supposed to maintain an evolving poc-set structure (Pt)t∈T
in an attempt to recover inclusions of the form r(a) ⊂ r(b)
(a, b ∈ P) by accumulating sampled observations. Expecting
such a recovery process to be precise would constitute
naı̈ve wishful thinking. Still, hoping for a statistical “ε-
approximation” of the set of such relations may stand a
chance for success. This, however, requires a notion of neg-
ligibility to be introduced into the language of poc sets. We
make the formal arrangements right here, and demonstrate
their relevance to our application in the following section.

Definition 1: A partially ordered set (P,≤) with a
fixpoint-free order-reversing involution and a minimum el-
ement (denoted 0) is called a weak poc set. An order-
preserving and ∗-equivariant map between weak poc sets is
said to be a weak poc morphism.
What differentiates a weak poc set from a poc set is the
possibility that sets

0̂ = {a ∈ P |a ≤ a∗ } , 0̂∗ = {a ∈ P |a∗ ≤ a} (12)

may contain proper elements of P.
Definition 2: Let (P,≤, ∗, 0) be a weak poc set. An

element of 0̂ is said to be negligible.
Suppose P is a weak poc set. For each a ∈ P set â = 0̂
if a ∈ 0̂, â = 0̂∗ if a ∈ 0̂∗ and â = a otherwise. Denote
P̂ = {â |a ∈ P } and set â ≤ b̂ iff a ≤ b as well as â∗ = â∗.
The following lemma is an immediate consequence of the
definitions. We omit the proof to save space:

Lemma 3.7: Suppose (P,≤, ∗, 0) is a weak poc set. Then
(P̂,≤, ∗, 0̂) is a poc set with respect to the order and
complementation defined above and the map a 7→ â is a
weak poc morphism. Moreover, if Q is any poc set, and
f : P → Q is any weak poc morphism, then there exists a
unique poc morphism f̂ : P̂ → Q satisfying f̂(â) = f(a)
for all a ∈ P.
The notions of a complete ∗-selection, coherent subset and
Cube(P) remain the same – verbatim!! – for weak poc sets
as they were defined for poc sets. For vertices of Cube(P),
we have:

Lemma 3.8: Let P be a weak poc set. Suppose U ⊂ P
is a coherent complete ∗-selection. Then 0̂ ∩ U = ∅ and
0̂∗ ⊂ U .



Proof: By definition of a complete ∗-selection, it
suffices to show 0̂ ∩ U = ∅. Suppose a ≤ a∗ and a ∈ U .

For any b ≥ a, if b /∈ U then b∗ ∈ U but then U contains
the incoherent pair {a, b∗} – a contradiction. Thus, for any
coherent complete ∗-selection we have that a ∈ U and b ≥ a
imply b ∈ U .

Back to our specific situation, we have a ∈ U and a ≤ a∗.
But then a∗ ∈ U causes a contradiction. Hence no element
of 0̂ is contained in U , as desired.
Thus every vertex U ∈ Cube(P) gives rise to a vertex Û =

{â |a ∈ U } in Cube
(
P̂
)

and this assignment is bijective.
This provides the following easy corollary, whose proof we
shall omit:

Corollary 3.9: Suppose P is a weak poc set. Then the
cubical map {

Cube(P) → Cube
(
P̂
)

U 7→ Û
(13)

is an isomorphism of cubical complexes.
In other words, a weak poc set and its “strict version”
produce identical geometric models. However, a weak poc
set structure in memory carries an additional benefit for
our agent: it is conceivable that some sensations may seem
negligible to the agent for a limited amount of time (due
to their initial rarity), but become more meaningful as the
become more frequent; other sensations may “fall out of
favor”. We want the agent’s memory to have sufficient
flexibility to allow it to treat the various sensations with a
measure of respect commensurable with their relevance to
the agent’s experience.

IV. ALL TOGETHER NOW: THE MEMORY STRUCTURE

It is time for us to provide a bird’s eye view description
of a family of memory structures employing our observation
model to construct ever-improving approximations of the
ground truth order structure on P, given a sufficiently dense
trajectory ϕ : T → X: clearly, if the agent does not get to
visit large chunks of E or if the agent dedicates unreasonable
amounts of time to tiny portions of X , then its observations
will become biased and could produce the wrong (weak)
poc-set structure.

A. The data structure: Snapshots

The core idea behind our database structure is that in order
to maintain a poc-set structure on the tag set P one needs
to maintain the following data structure:

Definition 3: A snapshot S is a graph carrying the fol-
lowing structure:
• Vertices: to each a ∈ P we associate a cell σa, to serve

as a vertex of S. Each cell carries a binary state variable
]a ∈ {0, 1}.
The set ]S = {a ∈ P |]a = 1} is called the state of the
snapshot S.

• Edges: exactly one edge marked ab is present for each
a, b ∈ P satisfying a /∈ {b, b∗}.

Each edge e = ab carries a non-negative integer counter
denoted ne.

Each edge e is either directed or undirected, subject to
the requirements:

1) e = 0a is always directed from σ0 to σa;
2) e = ab is directed and points to σb if and only

b∗a∗ is directed and points to a∗;
3) if e = ab is directed, then ab∗ is not directed.

The restriction of S to the subgraph induced by the cells
σa, σa∗ , σb and σb∗ will be denoted by S|ab and generally
referred to as a square.
The requirements regarding directions of edges are imposed
to partially ensure that a snapshot represents a weak poc-
set, as follows. For every snapshot S, let us denote by

−→
S

the directed subgraph (containing all vertices and all directed
edges) of the snapshot, discarding the weights. Define a ≤ b
for a, b ∈ P whenever there is a directed vertex path in

−→
S

of the form (σa0
, . . . , σam

) with a0 = a and am = b. It is
clear that the map a 7→ a∗ is order-reversing, and that (≤) is
a partial ordering on P if and only if

−→
S is acyclic (contains

no directed cycles). We call (≤) the snapshot order.
Definition 4: We say that a snapshot S on a tag set P is

acyclic, if
−→
S is acyclic. The weak poc-set structure induced

on P by the snapshot order will be denoted by Poc(S).
Given what we have seen so far, the idea behind the notion

of snapshot can be summarized by saying that we want an
agent with trajectory ϕ to maintain a sequence (St)t∈T of
snapshots satisfying the following (somewhat loosely stated)
conditions:
• St is acyclic for all t (then

−→
S t represents the conjecture

of the agent regarding the correct contractible world
model);

• St+1 is obtained from St by an updating procedure
whose only additional input is Inpt;

• ]St is coherent for all t, and represents the conjecture
of the agent regarding the current state.

An agent could be initialized by setting S0 to be the trivial
snapshot: the (acyclic) snapshot with ]a = 0 and nab = 0
for all a, b ∈ P and all edges unoriented, signifying that ‘the
agent knows nothing’. Later snapshots (St with t > 0) will
represent the progressing state of the agent’s ‘knowledge of
the world’.

The reason for the first two requirements is explained in
the next paragraph, where applications of acyclic snapshots
with coherent state are discussed. Note that the first require-
ment allows snapshots to represent weak poc-set structures
– a necessary relaxation for inferring approximate inclusions
between unknown sets through sampling – but will not allow
the snapshot order to deteriorate into a meaningless structure
where the order stops being anti-symmetric.

The second requirement relates to the overall goal of our
construction: we want the updating operation on the space of
relevant snapshots to give rise to a (topological) dynamical
system; we expect that provable results on successful learn-
ing of an environment by an agent endowed with a memory



of the proposed architecture are inextricably linked with the
structure of basins of attraction of this system. One such
transition map on a preferred subspace of the space of acyclic
snapshots with coherent state is introduced in IV-C.

The last requirement is debatable. A coherent state defines
a convex subset V (]St) of Cube(Pt) representing the con-
jectural region where the agent believes its last experienced
transition has taken place. This also implies knowledge of the
current state. Coherence of the state vector also allows for
an easy interpretation of signal propagation in the snapshot
in terms of the world model (as we demonstrate in the next
paragraph). Yet these are but technical excuses to back a
significant restriction of scope, and we intend to address this
issue in forthcoming work.

B. Computing with Snapshots

Snapshots furnish us with a very efficient computational
tool which can be used for planning purposes.

Definition 5 (Propagation): Let S be an acyclic snapshot
and let a ∈ P. A new snapshot a · S is obtained from S as
follows:
• Leave all edge markings unchanged;
• For all a, b ∈ P, if a ≤ b in Poc(S), then set ]b := 1;
• For all a, b ∈ P, if a ≤ b∗ in Poc(S), then set ]b := 0.

Propagation can be implemented using the graph
−→
S : switch

cell σa on into an excited state while sending a signal along
edges emanating from it to turn on every cell dominated by
σa in

−→
S . Additionally, since sensors are paired with their

complements, any cell σb being switched on must immedi-
ately result in its twin σb∗ turning off. Clearly, propagation
is achieved in a time at most linear in the diameter of

−→
S

when physically implemented in this way.

We now consider some provable applications of the propa-
gation computational mechanism. Suppose our agent froze in
time, having a snapshot S = St, and needs to decide which
action to take in order to solve a problem. Of course, the
agent has no choice but to assume his contractible model of
the world is correct – that is, that the realization map r is a
weak poc-morphism of Poc(S) into 2X×X .

Let us explore a couple of planning problems. The sim-
plest planning problem in our context sounds like this: “given
my current state and a sensation a ∈ P, what should I do to
reach a position where I can sense a?”. The answer is given
by the following lemma:

Lemma 4.1: Suppose S is an acyclic snapshot with ]S ∈
Dual(S), and let a ∈ P. Then ]a · S is the image of the
closest point projection of the vertex ]S ∈ Dual(S) to the
half-space V (a) ⊂ Dual(S).

Proof: This is an immediate application of equation 11
and the definition of propagation.

The lemma tells us that the result of propagating a through−→
S is combinatorially the closest vertex of Dual(S), the
contractible world model. By (10), the total number of cells
turned on by the propagation process is greater than or equal
to the distance of ]S to the half-space V (a). Thus, choosing

the first action sensor to have switched on during the prop-
agation procedure and updating S with the consequences of
that action is guaranteed to reduce the combinatorial distance
of the current state to the half-space V (a). At the same
time, the computational complexity of finding the appropriate
action is no more than linear in the number of sensors. These
guarantees hold so long as r : Poc(S)→ 2X×X remains an
order-preserving map, and the projection path from ]S to
V (a) avoids any r-inconsistent vertices.

If no such sensor was switched on, the agent will conclude
there is no action it can take in order to start feeling a, and
will need to set out on a different quest (interestingly, in
the case that r : Poc(S) → 2X×X is a poc-embedding –
meaning that the contractible model is as precise as possible
and has little chance of changing in the future – this situation
truly implies there is nothing the agent can do at the moment
in order to leave the half-space V (a∗); it might as well just
sit and wait for a miracle).

Finally, reaching a prescribed destination is equivalent to
planning to reach a vertex U ∈ Dual(S). If the required
destination is incoherent, the agent refuses the task (as being
an impossible task). If U is coherent, the following lemma
proves that writing out U = {a1, . . . , ad} and applying the
preceding algorithm successively for any ordering of the ai
produces the required result.

Lemma 4.2: Suppose S is an acyclic snapshot with co-
herent state, and let U = {a1, . . . , am} be a coherent subset
of Poc(S). Then U · S := am · · · (a1 · S) is a well-defined
acyclic snapshot with coherent state.

Proof: It is easy to verify that, for any coherent pair
{a, b} ⊆ P one has

projV (a) ◦ projV (b) = projV (a,b) . (14)

This implies that projV (a) and projV (b) commute, and the
assertion of the lemma follows.

We observe that this procedure has at most quadratic
complexity in the number of sensors (being the composition
of a linear number of linear complexity algorithms).

C. Dynamics for Snapshots

Given a sensorioum (P, ∗), we would like to restrict
attention to a special collection of snapshots:

Definition 6: Let ε > 0 and let P be a finite set endowed
with a fixpoint-free involution a 7→ a∗. A simple ε-Hebbian
snapshot on P is a snapshot S satisfying the following
requirements:
• nab is a non-negative integer for every edge ab of S;
• There exists t ∈ T such that every edge ab in S satisfies

nab + nab∗ + na∗b + na∗b∗ = t (15)

• For every edge ab in S, the edges of the square S|ab are
oriented according to figure 2 if and only if condition
(†) holds:

(†) nab < tε , nab∗ , na∗b, na∗b∗ > 2tε



Fig. 2. determining edge orientations in a snapshot by restricting attention
to S|ab . Note the symmetry of condition (†) with respect to substituting
a∗ for a and/or b∗ for b.

By a simple Hebbian snapshot we mean a simple ε-Hebbian
snapshot for some suitable ε > 0.

The reference to Hebb [17] in this definition is motivated by
the way an ε-Hebbian snapshot S decides on an implication
relation a ≤ b∗ (for a, b ∈ P): we think of t as the
‘age’ of the snapshot, so that condition (†) amounts to a
statement about the observation “a and b” being decisively
more rare (as quantified by the value ε) than any of the other
three combined observations labeling the edges of the square
S|ab . Thus, the (equivalent) statements “a implies b∗” and
“b implies a∗” are put on record provided the corresponding
synchronous observations have been made sufficiently many
times over the agent’s lifetime.

Definition 7: Let ε > 0 and suppose S is a simple ε-
Hebbian snapshot on P. If A ⊂ P is a complete ∗-selection,
we define a new snapshot denoted A ∗ S as follows:

• For every pair of proper elements a, b ∈ A, add 1 to the
counter nab and recalculate

−→
S according to condition

(†) to obtain the directed structure of A ∗ S;
• If A is coherent with respect to the new directed

structure, update ]S to become ]A ∗ S = A;
• Otherwise, keep the previous state.

Observe that A ∗ S can be obtained from S in a time that
is quadratic in |P| (the number of times we need to access
a data element of the structure being commensurable with
the number of edges in the complete graph on P). This
updating procedure leaves much to be desired. For the time
being though, we will satisfied with the limited result below,
demonstrating the feasibility of our approach:

Proposition 4.3: Let 0 < ε < 1 and S0 be the zero
snapshot on P. Then for any sequence (At)∞t=0 of complete
∗-selections on P, the rule St+1 = At ∗ St produces a
sequence (St)∞t=1 of acyclic simple ε-Hebbian snapshots.

Remark 1: throughout this proof, the time parameter will
appear as a superscript in all variables, so that ]at and ntab
will denote the state of cell a and the weight on the edge
ab, respectively, given by the snapshot St.

Proof: For any B ⊂ P and any t ≥ 1 let ntB denote
the number of indices 0 ≤ j ≤ t − 1 for which B ⊂ Aj .
Note that nt{a,b} = ntab, by construction. In particular, this

guarantees the identity

ntab + nta∗b + ntab∗ + nta∗b∗ = t (16)

for every edge ab (a, b ∈ P) and every t ≥ 1, as desired.
Note that no directed edges appear in St before time t = 4,
so that the first few snapshots (S0...3) are coherent regardless
of the choice of input sets (A0...4).

We now turn to proving
−→
S t is acyclic for all t ≥ 1. It is

straightforward to verify the following identity, holding for
any t ≥ 1 and any a, b, c ∈ P forming a ∗-selection:

ntab∗ + ntbc∗ + ntca∗ + ntabc + nta∗b∗c∗ = t (17)

Let us suppress the superscript t until the moment it is
required. Substituting x∗ for each x ∈ {a, b, c} we obtain

na∗b + nb∗c + nc∗a + na∗b∗c∗ + nabc = t (18)

Subtracting (18) from (17) and denoting ∆(a, b) = na∗b −
nab∗ we obtain:

∆(a, b) + ∆(b, c) + ∆(c, a) = 0 (19)

Observing ∆(a, b) = −∆(b, a) we finally arrive at

∆(c, a) = ∆(c, b) + ∆(b, a) (20)

Moreover, using the identities ∆(a, a) = 0 and ∆(a, a∗) =
na∗ −na, it is straightforward to verify that this last identity
holds even if the restriction that {a, b, c} be a ∗-selection
is dropped. Finally, we also observe ∆(ab) > εt whenever
ab ∈

−→
S t: by (‡t):

∆(ab) = na∗b − nab∗ > 2εt− εt , (21)

as ntab∗ < εt while nta∗b > 2εt.

Thus, if (σa0
, . . . , σam

) is a directed vertex path in
−→
S t,

then

∆a0am = ∆(a0a1) + . . .+ ∆(am−1am) > mεt (22)

Now, if am = a0 we immediately arrive at a contradiction,
as ∆(a0, a0) = 0. We conclude that S is an acyclic snapshot,
as desired.

V. CONCLUSION

The result of the last section provides us with a soft
guarantee of approximate (up to the arbitrary prescribed
tolerance 0 < ε < 1) learning of the order structure in the
sensorium with sufficient exposure to the environment, given
observations are repeated at more or less regular intervals,
that is – if the trajectory of the agent is uniformly distributed
in the sense that

lim
t→∞

ntB
t

= Pr

[⋂
b∈B

r(b)

]
(23)

holds for every B ⊂ P. Due to the very nature of the
problem of trying to infer an inclusion among (possibly
infinite) sets from a finite number of samples, the notion
of a poc set structure becomes too restrictive to fit our
needs: while a sequence of ε-approximate inclusions cannot



end up producing a directed cycle (proposition 4.3), it is
easily conceivable that the sets at the extremities of such
a sequence could be complementary. However, by extending
the Sageev-Roller construction of Cube(P) to weak poc sets,
we have shown that giving up the ban on negligible elements
allows us to maintain a data structure capable of learning
approximate inclusions without diminishing the descriptive
power of the dual complexes as “world models” (see, e.g.
corollary 3.9).

We would like to draw the reader’s attention to the almost
complete separation of the learning process (updating of

−→
S t)

that we propose from the process of tracking the current
state (updating of ]St) by the agent. This seems to be too
simplistic, and we believe that deeper, more insightful update
procedures of the state must exist, perhaps requiring a more
sophisticated observation/action model. In particular, the
necessity to maintain coherence of state at all times remains
debatable: since one may at best hope to recover the correct
poc set structure asymptotically, maintaining coherence every
step of the way seems a redundant luxury costing the system
extra computational effort. This thought motivates further
study of the computational applications of propagation in
the context of incoherent subsets of P. Getting the model
rid of the “stop the clock, let me think” assumption which
currently allows our planning mechanism to run in between
physical transitions is also a priority for future research.

Finally, the fact that our algorithm requires the agent
to reject nonsensical observations without any further pro-
cessing calls for a good dose of healthy skepticism re-
garding “asymptotical coherence”, yet the fact that, under
our algorithm, sufficient repetition of seemingly incoherent
observations forces the agent to acknowledge their validity
seems to provide grounds for guardedly stating a conjecture:

Conjecture 5.1: With a given probability measure on X×
X , sufficient topological tameness conditions on the realiza-
tion map r, At = Inpt for all t ∈ T and a fixed trajectory
ϕ : T → X , if ϕ is uniformly distributed in the sense of
(23), then ]St remains coherent for t >> 0.
If proven true, the meaning of this conjecture is that, given
enough time and sufficient exposure, an agent employing our
learning algorithm will be able to apply the motion planning
algorithm from section IV-B meaningfully (with its success
depending only on the topology of Cube(Pt, r)).
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