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Visual Servoing for Nonholonomically Constrained
Three Degree of Freedom Kinematic Systems

Gabriel A. D. Lopes,Student Member, IEEEand Daniel E. Koditschek,Fellow, IEEE

Abstract— This paper addresses problems of robot naviga-
tion with nonholonomic motion constraints and perceptual cues
arising from onboard visual servoing in partially engineered
environments. We propose a general hybrid procedure that
adapts to the constrained motion setting the standard feedback
controller arising from a navigation function in the fully a ctuated
case. This is accomplished by switching back and forth between
moving “down” and “across” the associated gradient field toward
the stable manifold it induces in the constrained dynamics.
Guaranteed to avoid obstacles in all cases, we provide conditions
under which the new procedure brings initial configurations to
within an arbitrarily small neighborhood of the goal.

We summarize simulation results on a sample of visual
servoing problems with a few different perceptual models. We
document the empirical effectiveness of the proposed algorithm
by reporting the results of its application to outdoor autonomous
visual registration experiments with the robot RHex guidedby
engineered beacons.

Index Terms— Visual servoing, level sets, robotics, nonholono-
mic, navigation.

I. I NTRODUCTION

I N this paper we introduce a robust feedback controller for
outdoor navigation of a legged robot guided only by visual

cues. Conceptually, there are three broad problems associated
with this task. First, the requirement for perceptually reliable
landmarks is an instance of the long-standing “early vision”
problem that we explicitly avoid by engineering the visual
beacons that comprise the physical landmarks. Second, the
transformation of discrepancies between perceived and desired
visual landmark appearance into feedback forces. These must
be capable of “safely” correcting the errors in pose that
cause them, effected by a monocular camera via a slightly
generalized extension of prior work. Finally, the effective
application of these restoring forces in a manner that respects
both the constrained control authority over rigid body motion
afforded by a legged gait as well as the perceptual require-
ments represents our central contribution.

We pursue a solution linking the second and third problems
by encoding the perceived discrepancies in terms of artifi-
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cial potential functions. For fully actuated systems, potential-
dissipative force fields offer a natural and direct generalization
of linear proportional-derivative servo control for general
mechanical systems [1]. The wide popularity of such PD
controllers attests to their robustness against sensor noise and
imperfect models. However, for underactuated systems when
the number of independently actuated degrees of freedom
decreases relative to the dimension of the total configuration
space, there is no general method for applying PD control. For
autonomous outdoor robots, it is crucial to develop perception-
driven controllers, yet in consequence of ubiquitous power-to-
weight limitations, autonomous robots are intrinsically under-
actuated. Hence, we draw the greatest practical motivationfor
extending PD methods to underactuated settings precisely in
such contexts as visual servoing for a rugged and underactu-
ated outdoor vehicle like the hexapod, RHex [2].

This paper presents an extension of PD control to the class
of two-actuator, three-degree-of-freedom mechanical systems
that includes the simple “unicycle” kinematics crudely descrip-
tive of the horizontal plane behavior of RHex. By so modeling
the robot as a drift-free constrained kinematic system and by
treating the perceptual limitations of a monocular camera ob-
serving the robot’s horizontal plane pose as incurring obstacles
in the robot’s configuration space, we arrive at the formal
problem of set point regulation in the face of simultaneously
nonholonomic motion constraints and holonomic perception
constraints.1

A. Relevant Literature

A growing robotics literature treats visual sensory percep-
tual limitations as effectively introducing (holonomic) obsta-
cles in a robot’s configuration space. Ostrowsky [4] uses a
blimp equipped with a camera, maintaining a ball on the
center of the camera’s field of view (FOV). Chaumette [5]–
[7], Hirzinger [8] and Chesi [9] position fully actuated camera
arms in relation to a collection of features, always making
sure that they stay in the FOV. In [5], [6] and [9] self-
occlusions are dealt explicitly by the controller while in [7]
and [8] virtual 3D models are fitted to the image, allowing
for temporary self-occlusions. Cowan [10] and Chen [11] use
navigation functions [12] to position a 6dof arm, again keeping
the features in the FOV and accounting for self-occlusions.
Mansard [13] uses a sequence of tasks that constrain or release

1Note that, in general, PD controllers lift very naturally tothe dynamical
setting as well. See reference [3] for a sketch of the theoretical steps required
to lift the algorithm proposed in this paper to a second orderversion of the
quasi-static model considered here.
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particular degrees of freedom of an holonomically constrained
arm, mixing together constraints arising from joint limits,
occlusions and obstacle avoidance simultaneously.

There is a considerably older literature focused on the
control of nonholonomically constrained mechanical systems.
Brockett’s classical result [14] establishes that nonholonom-
ically constrained systems cannot be stabilized by smooth,
time-invariant feedback. In general, applying a smooth time-
invariant feedback control law to such a system produces
an attracting center manifold in the configuration space.
The goal lies on the center manifold and attracts all initial
conditions on its (generically transverse) co-dimension one
stable manifold (a leaf of the foliation [15] generated by
the constraints). Almost all of this literature assumes an
unbounded and obstacle-free (simply connected) configuration
space. In order to stabilize at a particular goal, Khennouf [16]
and Luo [17] use invariant manifolds; Astlofi [18], makes the
system discontinuous and stabilizes it by continuous feedback
control; Tayebi [19] use back stepping design; Monaco [20]
apply multi-rate digital control; Sordalen [21], Pomet [22]
and Samson [23] propose time varying feedback control laws;
Gans [24] uses hybrid controllers; Morin and Samson [25]
apply the concept of transverse vector fields and Bloch [26]
develops reduced-order state equations for feedback control.

In prior literature on nonholonomic feedback control most
closely related to our approach, Ikeda et al. [27] introduce
the notion of Variable Constraint Control (VCC) designed to
achieve an invariant manifold that goes through the goal, in
effect, picking out a distinguished trajectory lying within the
goals stable manifold. The formulation results in a procedure
that achieves the point goal in two steps, but is not designed
with the consideration of obstacles in mind. In our work, each
different class of obstacles, once encoded by the appropriate
gradient field, gives rise to a different stable manifold, and
we cannot assume that it will be easy find that surface (much
less any particular trajectory within it) leading us to study the
iterative application of a controller which repeatedly targets
an approximation to it.

More recently Murrieri [28], Folio [29], Kantor [30] and
Bhattacharya [31] have combined both motion constraints
and perceptual limitations. However, in general, these authors
assume a particular set of constraints for which a feedback
control law is subsequently developed taking into account
the special form. Murrieri et al. develops a collection of
specialized Lyapunov based controllers for a wheeled vehicle,
with perception limited by the monocular camera’s field of
view. Folio et al. proposes switching between three controllers
that either deal with the visual servoing task at hand, bea-
con occlusion or obstacle avoidance. However their task is
facilitated by a pan camera mechanism on a cart like car,
resulting in the problem of stabilization inSE(2) with 3
available inputs. Kantor et al. combine Ikeda’s VCC with the
notion of sequential composition of controllers [32] to drive
the robot RHex to a specified goal location. This approach
can result in optimized trajectories but can be hard to reuse
on systems with different motion models and/or different
perceptual constraints. Bhattacharya et al. take a geometric
approach and find minimum length paths.

B. Contributions of this paper

In this paper, we take a few steps toward a more general
approach to perception-based servoing that decouples the
(typically holonomic) perceptual constraints from the (typ-
ically nonholonomic) kinematic constraints by adapting an
“arbitrary” navigation function [12] to an “arbitrary” non-
holonomically constrained first order mechanism operatingin
the configuration space comprising the navigation function’s
domain. The encoding of holonomic constraints via navigation
functions is a very effective mean of constructing “designer”
basins around specified goal points for fully actuated first and
second order mechanisms. For example, in visual servoing
applications, the navigation function takes into account ex-
ternal constraints like limited field of view, obstacles andso
on. We are most immediately motivated by the prospect of
extending Cowan’s [10] work on navigation with triple-beacon
landmarks to the robot RHex. However, we will introduce
a more general framework for nonholonomically constrained
visual servoing via PD control and offer two other examples
of navigation functions arising from perceptual apparatusto
give some feeling for the virtue of the more general view.

The paper makes three specific contributions. First, we adapt
Cowan’s [10] construction of a navigation function for moving
landmarks viewed by a stationary monocular camera to the
“inside out” case of a moving monocular camera viewing a
fixed landmark. This entails generalizing the “camera map”
for convex landmarks to the more general setting relevant to
outdoor mobile robotics with landmarks formed by any triple
of beacons in general position (i.e., whose convex hull encloses
a set with non-empty interior onSE(2)).

Second, we construct a hybrid controller for arbitrary nav-
igation functions applied to arbitrary drift-free three dimen-
sional control systems with two independent control inputs.
The resulting switching feedback law guarantees “practical
stability” (in the sense of Morin and Samson [25]: conver-
gence to an arbitrarily small specified neighborhood of the
goal) with the added guarantee that no obstacle will ever
be encountered along the way. We offer very general (and
easily verified) sufficient conditions under which the basin
(the set of initial configurations brought into the goal’s small
neighborhood) includes a far larger “local surround” bounded
by the “highest” level set of the navigation function that isstill
a topological sphere. We present additional “global” conditions
(albeit much more narrowly adapted to the specific examples at
hand) sufficient to guarantee that the basin includes all initial
conditions except possibly a set of measure zero2 .

Third, we implement an instance of this visual servoing
framework on the robot RHex [2] in general outdoor terrain
viewing through a monocular camera landmarks comprised
of three beacons in arbitrary general position. We provide
extensive experimental data to document the robustness of the

2In general, there is no guarantee that these conditions willprevail,
and we can make no general statements about the global versions of this
problem. However, one of the central motivations for embracing navigation
functions and their associated controllers is the possibility of developing still
more abstracted compositions using suitably arranged “deployments” of their
computable basins, such as the “back-chaining” sequentialcomposition in
[32].
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algorithm against the inaccuracies in the (very crude) control
model and the many practical sources of noise in the sensor
suite’s acquisition of the naturally illuminated outdoor scene.

C. Organization of this Paper

We present the ingredients of the specific RHex servoing
problem in Section II, introducing the camera map arising
from a monocular camera’s view of a three-beacon landmark,
the navigation function associated with it, and a very simple
(and only loosely accurate) motion control model for RHex’s
horizontal plane behavior. We introduce the hybrid controller
along with a number of preliminary technical developments
before presenting our general mathematical result in Section
III. Namely, we lay out the hybrid algorithm, state the suf-
ficient conditions for convergence from the “local surround”
and provide more specific sufficient conditions for essential
global convergence at the price of less general assumptions
appropriate to the particular case — necessarily so, because
a “general extension” would include a constructive solution
of the global navigation problem which we are far from
claiming to encompass within the scope of this work. Finally,
in Section IV we apply the foregoing constructions to the
central motivation for this paper: the specific case of a visual
servo algorithm for the robot RHex. We present statistics
documenting the successful outdoor implementation in the
final portion of Section IV, and close with brief concluding
remarks in Section V.

II. A V ISUAL SERVOING PROBLEM

There are three central ingredients to formulating the prob-
lem at hand. First, we introduce the perceptual model relating a
parametrized family of visual landmarks to the resulting family
of “camera maps” that associate an observer’s rigid body con-
figuration with the state of its visual sensor. Next, we construct
a potential function built upon that perceptual model whose
gradient field would be capable of guiding a fully actuated
robot to an arbitrarily specified visual sensor state (and hence
a unique rigid pose) without ever losing sight of the landmark
along the way. Finally, we review the simple “unicycle” motion
model — a familiar nonholonomically constrained mechanical
system that captures the essential limitations of our robot’s
control authority respecting its horizontal plane behavior —
limitations that preclude successful application of the proposed
gradient field. The visual servoing problem solved by this pa-
per requires a control law capable of adapting this perceptually
defined gradient vector field to the limited control authority of
the physical robot with no loss of convergence yet retaining
obstacle avoidance guarantees.

A. Beacon Landmarks and their Associated Camera Maps

We start by describing a visual sensor designed to observe
the position of three known artificial beacons that comprisea
landmark. We use the term “beacon” to denote any perceptu-
ally reliable marker that offers fixed bearing information.Our
beacons are “artificial” — brightly colored objects that easily
stand out against natural outdoor settings, depicted in figure 1

Beacons Goal

Fig. 1. The visual servoing problem: the robot RHex aims to reach the goal
navigating using the colored beacons for visual cues.

— because we seek to avoid the well known problems of early
vision that lie outside the intended scope of present work.
We use the term “landmark” to denote the composition of
three beacons into a source of sensory information sufficient to
extract and regulate full relative pose on the plane. This point
of view represents an adaptation and slight generalizationof
the fixed camera, moving beacon visual servoing algorithms
introduced by Cowanet al [10]. In contrast, we address the
“inside out” version of that problem arising from the task of
registering a mobile robot vehicle3 relative to some landmark
in the visual field. The resulting camera map incorporates (a
transformed copy of) the full relative pose and its gradientwill
be used to generate a servo controller that forces convergence
to (some arbitrarily small specified neighborhood of) any
desired visible pose along “safe” transients guaranteed to
maintain the view along the way.

For purposes of this paper, it is sufficient to identify a
beacon with the location of its centroid projected onto the
plane. Given three such centroids, without any loss of gen-
erality, we define their composed landmark parameter space
B ⊂ (R+)2 × S1 by fixing the world frame so that the second
beacon is at the origin and the remaining beacons lie along
lines going through the origin that define congruent angles:
B := {(ρ1, ρ2, α) ∈ (R+)2×S1 | ρ1 > 0, ρ2 > 0, 0 ≤ α < π}
(see figure 2(a)). The coordinates of each beaconbi in the
world frame are:

[
b1 b2 b3

]
=
[
ρ1Rαê2 0 ρ2RTα ê2

]
, (1)

whereRα = [cos(α) − sin(α); sin(α) cos(α)] is the standard
2×2 rotation matrix and̂e2 is the canonical base vector[0 1]T .
We define thecamera mapto be a transformation that relates
the pose (position and orientation) of the robot in the world
frame (SE(2)) to the pinhole projection of the beacons in the
camera’s image plane.

For convenience, we treat the camera image plane as (a
subset of) the unit sphere,S2, and drop the azimuthal com-
ponent, thereby projecting all pinhole camera readings onto

3We assume that the camera is fixed to the robot’s frame.
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Fig. 2. Simply connected configuration space introduced by Cowan et al. a) The beacons are represented by the gray circles named(b1, b2, b3). b)
Configuration space plotted in the Image projection space.

the great circle,S1 ⊂ S2, corresponding to bearing in the
horizontal plane. In this manner, a beacon’s pinhole image
is parameterized by the angle of the ray that connects it to
the camera center when projected onto the horizontal plane.
We denote byI this image projection space — the triple
of angles of each of the beacons in a landmark. Note that,
although a physical camera has a flat image plane, we prefer
to work with a ray’s angle computed by the transformation
ζi = arctan(ιi) + π/2, whereζi is the ith angle andιi is
the coordinate measured by the camera in meters (after pre-
processing using a lens calibration model), as illustratedin
figure 2(a).

Because subsequent computations involving robot pose as-
sociated with the camera map are most easily expressed in
polar coordinates, we find it expedient to introduce a new
space4, C ⊂ T2×R+, diffeomorphic to the robot configuration
space with coordinatesw = (φ, ψ, r) (see figure 2(a)), where
T2 is the 2-dimensional torus. To reconstruct the pose of the
robot in the world frame, with coordinates(xw, yw, θw), a
composition of changes of coordinates is implemented. We
denote the change of coordinates from the intermediate space
to the image projection space byintermediate camera map
cci : C → I,

cci(w) :=




arctan(̺1(w))
arctan(̺2(w))
arctan(̺3(w))



 , (2)

where the terms̺ i : C → R2, defined by

̺i(w) := RφRψbi + rRφê2, (3)

are vectors that go through beaconsbi for a given configuration
w and the functionarctan is assumed to take into account
which quadrant its argument is in. It can be shown that
cci defines a diffeomorphism inC almost everywhere5. (for

4The introduction of the intermediate spaceC distinguishes the present
construction [33] from the one implemented in [10].

5We use the term “almost everywhere” in its standard sense as denoting a
condition that holds true on all elements of a set except, possibly, for a zero
measure subset.

proof see [33]). The determinant of the Jacobian of the
intermediate camera map (|Dwc

ci| = ρ1ρ2Θ‖̺1‖−2‖̺3‖−2)
gives a measure of the quality of the pose reconstruction. Here,
the functionΘ : B × C → R defined byΘ(w) := ρ1 sin(α −
ψ) + ρ2 sin(α+ψ) + r sin(2α) parameterizes the obstacle set
O in which the intermediate camera mapcci is not a valid
change of coordinates. The setO is represented by a torus
in C and only disconnects the robot’s workspace for concave
beacon configurations [33]. This exemplifies the dependence
of the pose computation afforded by a given landmark upon
the particular physical configuration of its constituent beacons.
For convenience, in this paper, we maintain a linear beacon
configuration since it proves to result in the largest robot
workspace. The final camera map from world coordinates
SE(2) to image projectionI is:

c := cci ◦ cbc ◦ cwb, (4)

wherecbc : SE(2) → C maps the body frame, with coordinates
(xb, yb, θb), to the intermediate spaceC and cwb : SE(2) →
SE(2) maps the world frame to body frame. For their definition
please see Appendix I.

The use of the intermediate spaceC provides a simple closed
form expression for(cci)−1, the camera map inverse valid in
cci(C−O). To compute(cci)−1, let the angles of the rays that
connect the beacons to the camera center be(ζ1, ζ2, ζ3) ∈ I
(i.e. ζi = arctan(ιi) + π/2) and letY andY ′ be:

Y =

[
cos(ζ1) cos(ζ2) cos(ζ3)
sin(ζ1) sin(ζ2) sin(ζ3)

]
(5)

Y ′ =

[
ρ1 cos(ζ1 − α) 0 ρ2 cos(ζ3 + α)
ρ1 cos(ζ1 − α) 0 ρ2 cos(ζ3 + α)

]
(6)

The robot’s pose inC is computed by the following expres-
sions, whereY † := (Y Y T )−1Y is the pseudo-inverse of
Y T and Y⊥ is the orthogonal complement to the span of
Y †, computed by the cross product of the lines ofY †. The
inverse intermediate camera map, with detailed computation
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in Appendix II, is:

φ = ζ2 +
π

2
ψ = arctan(δRTφJY

′Y⊥) (7)

r =
‖Y †Y ′TJY ′Y⊥‖

‖Y ′Y⊥‖

whereδ = ±1 is chosen so that−π/2 < ψ < π/2, J is the
2 × 2 skew symmetric matrixJ := Rπ/2 and the function
arctan takes into account the quadrant of its argument. The
remainder mapscbc and cwb have simple inverse functions,
expressions for which are explicitly provided in Appendix
I. Using the previous closed form expression for the inverse
camera map allows an efficient implementation of the pose
computation algorithm on the robot.

B. Navigation Functions over the Visibility Set of a Landmark

The camera map previously defined introduces, in a
physical implementation, “obstacles” to the robot’s camera.
The camera has a finite field of view and beacons’ self-
occlusions disrupt the image processing algorithm detailed in
Section IV. Therefore a Navigation Function is introduced
to deal with such obstacles. LetQ be a smooth, piecewise
analytic, compact, connected manifold, with boundary∂Q
and letq, q∗ ∈ Q.

Definition 1 (Koditschek [34]):A Navigation Function is
a C2 Morse function,ϕ : Q → [0, 1], having the additional
properties thatϕ−1[0] = q∗ is the unique minimum and the
boundary with the forbidden configurations is set uniformly
high,ϕ−1[1] = ∂Q.

Such functions are guaranteed to exist [12], and we assume
that one is available in the present setting. Consider the
following potential function¯̄ϕ : I → R

+,

¯̄ϕ :=

(
(ζ1 − ζ∗1 )2 + (ζ2 − ζ∗2 )2 + (ζ3 − ζ∗3 )2

)k

(ζM − ζ1)(ζ1 − ζ2)(ζ2 − ζ3)(ζ3 − ζm)(ζ1 − ζ3 − ζd)
,

For the previous potential function we consider the following:

• The vector (ζ∗1 , ζ
∗
2 , ζ

∗
3 ) defines the goal in the image

projection spaceI, normally measured by taking a “snap-
shot” of the beacons at the desired position.

• k is a positive constant scalar shaping. In both simulations
and experiments we takek = 1. For more information on
the shaping parameter see [35].

• ζm and ζM are the field of view obstacles. These are
computed based on the aperture of the camera’s lenses.

• The denominator encodes the obstacles by “exploding”
¯̄ϕ when the 1st beacon reaches the left FOV(ζM − ζ1);
the 1st and 2nd beacon intercept(ζ1 − ζ2) and so forth.
Notice that since the beacon angles are ordered in the
image projection space then the beacons 1 and 3 cannot
intercept unless 1 and 2 or 2 and 3 intercept first, allowing
this way to simplify the denominator of the navigation
function.

• The term(ζ1−ζ3−ζd) is introduced to limit the distance
away from the set of beacons, whereζd is a positive
scalar. Notice that the difference of the anglesζ1 − ζ3
will become smaller as the robot increases its distance
from the beacons. The following formula gives a rough
idea of how to approximately compute the parameterζd
given the distance between beacons 1 and 3, denoted by
db, and the robot’s maximum distance away from the
beacons, denoted bydmax, both with units in meters:

ζd = 2 arcsin

(
db

2dmax

)

By construction¯̄ϕ explodes at the obstacles and is zero at the
goal. The resulting navigation function̄ϕ : I → [0, 1] is the
squashed version of̄̄ϕ, with constant shaping scalarκ > 0:

ϕ̄ :=
¯̄ϕ

κ+ ¯̄ϕ
(8)

In the world frame the navigation functionϕ is the composi-
tion

ϕ(q) := ϕ̄ ◦ c(q) (9)

and the gradient is the pullback:∇ϕ(q) = DcT (q)∇ϕ̄ ◦ c(q).
Let QI be the convex hull generated by the planes defined by
the terms in the denominator of̄̄ϕ, i.e. ζM −ζ1 = 0, ζ1−ζ2 =
0, etc, illustrated in figure 2(b). The robot’s configuration space
is defined by:

Q := c−1(QI) (10)

C. The “Unicycle” Robot Motion Model

The physical implementation of the algorithms presented in
this paper are carried out on the hexapod robot RHex, whose
horizontal plane behavior is known from empirical experience
to be roughly modeled as a quasi-static unicycle. Therefore
we recall the equations of motion of the unicycle, extensively
studied in the literature [36], withq = (x, y, θ):

ẋ = − sin(θ)u1

ẏ = cos(θ)u1 (11)

θ̇ = u2

The nonholonomic constraint isA(q)q̇ = 0 , where

A(q) =
[

cos(θ) sin(θ) 0
]

(12)

Notice that the nonholonomic constraints of the unicycle
preclude the direct use of the navigation function gradient
vector field. We proceed by solving this problem in general
for systems defined inR3.

III. H YBRID CONTROLLER TO SOLVE THE VISUAL

SERVOING PROBLEM

Here we present a set of verifiable conditions that guarantee
stabilization for the successive application of a two step
controller: the first moves on level sets of the gradient function,
escaping the center manifold and if possible reaching the
goal’s stable manifold; the second uses the gradient control
law to reach the goal.
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Let q = (x1, x2, x3) ∈ Q ⊂ R3 and consider the class
of smooth and piecewise analytic, three degree of freedom,
drift-free control systems

q̇ = B(q)u, u ∈ R
2, (13)

whereB ∈ R3×2 and Q is a smooth and piecewise ana-
lytic, compact6, connected three dimensional manifold with a
boundary,∂Q (that separates the acceptable from the forbidden
configurations ofR3), possessing a distinguished interiorgoal
point, q∗ ∈ Q. In this section we will impose very general
assumptions onB and construct a hybrid controller that guar-
antees local convergence to an arbitrarily small neighborhood
of the goal state while avoiding any forbidden configurations
along the way.7

We find it convenient to rewrite (13) using thenonholonomic
projection matrix[37], H into the image ofB:

H(q) = B(q)B(q)† = B(q)
(
B(q)TB(q)

)−1
B(q)T (14)

q̇ = H(q)v, q ∈ Q ⊂ R
3; v ∈ R

3 (15)

Throughout this paper it is assumed thatB has rank two at
each point.

A. Two controllers and their associated closed loop dynamics

It is useful to compare the unconstrained systemq̇ = v with
the constrained version (15). Letϕ be a navigation function
defined inQ. For the inputv = −∇ϕ the unconstrained
system is globally asymptotically stable at the origin. Using
ϕ as a control Lyapunov function yieldṡϕ = −‖∇ϕ‖2. Given
this result, a naive approach to attempt stabilizing system(15)
is to use the same inputv = −∇ϕ.

Define the vector fieldf1 : Q → TQ such thatf1(q) :=
−H(q)∇ϕ(q) and the system

q̇ = f1(q) = −H(q)∇ϕ(q) (16)

SinceH has a 1-dimensional kernel andD2ϕ is full rank at
q∗ it follows that (16) has a 1 dimensional center manifold

Wc := {q ∈ Q : H(q)∇ϕ(q) = 0} , (17)

as corroborated by explicitly computing8 the Jacobian off1
at q∗:

Df1|q∗ = −DH ∇ϕ|q∗︸ ︷︷ ︸
=0

−HD2ϕ = − HD2ϕ
∣∣
q∗

(18)

Usingϕ as a Lyapunov function, and noting thatH is idempo-
tent and symmetric, La Salle’s invariance theorem states that
system (16) has its limit set inWc:

ϕ̇ = −∇ϕTH∇ϕ

= −‖H∇ϕ‖2

{
= 0 if q ∈ Wc

< 0 if q /∈ Wc (19)

6We consider the configuration spaceQ to be a compact set since this
requirement is built into the definition of a navigation function. The changes
of coordinates for the camera maps are mostly defined inSE(2) because they
are valid there. In general, as in the present application, due to the limitations
of the vision sensors, the workspace is always bounded, hence its closure is
compact.

7In the next section, we will introduce more specialized assumptions that
extend the basin of attraction to include almost every initial configuration in
Q.

8Note the abuse of notation in equation (18):DH is actually a tensor.

Figure 3 illustrates the topology associated with (16): thepro-
jectionH imposes a co-dimension 1 foliation complementary
to the center manifold. Thestable manifold,Ws, is the leaf
containing the goal,q∗. The input

u1 := −B(q)†∇ϕ(q) (20)

alone cannot stabilize system (16) at the origin, since no
smooth time invariant feedback controller has a closed loop
system with an asymptotically stable equilibrium point [14].
Nevertheless, for any initial condition outsideWc an infinitesi-
mal motion in the direction off1 reduces the energyϕ. If there
can be found a second controller that “escapes”Wc without
increasingϕ then it is reasonable to imagine that iterating the
successive application of these two controllers might welllead
eventually to the goal. We now pursue this idea by introducing
the following controller,

u2 := B(q)† [A(q) ×∇ϕ(q)] , (21)

leading to the closed loop vector field9

q̇ = H(q)f2(q) = f2(q) (22)

f2(q) := A(q) ×∇ϕ(q)

whereA(q) can be computed by the normalized cross product
of the columns ofB := [B1 B2]:

A(q) :=
B1 ×B2

‖B1 ×B2‖
(23)

Note that the nonholonomic constraint expressed in (13) can
be represented by the implicit equationAT (q)q̇ = 0. Since the
(Lie) derivative ofϕ in the direction off2 is

Lf2ϕ = ∇ϕ(q)T (A(q) ×∇ϕ(q)) = 0, (24)

it follows thatf2 isϕ-invariant — i.e. the energy,ϕ, is constant
along its motion. MoreoverHf2 = (I − AAT )(A × ∇ϕ) =
A×∇ϕ = f2, verifying thatf2 indeed satisfies the constraint
(13).

B. Assumptions, a Strategy, and Preliminary Analysis

Having introduced two vector fields — one which is energy
decreasing; the other energy conserving — we now sketch a
strategy that brings initial conditions of system (13) to within
an arbitrarily small neighborhoodǫ of the goal, by way of
motivating the subsequent definitions and claims that arisein
the formal proofs to follow. LetΦf1t andΦf2t denote the flows
of f1 and f2 respectively. The point stabilization strategy is
as follows:

1) If q0 ∈ Wc then follow a direction inim(H) for a
finite amount of timet0 such thatΦfat0 (q0) /∈ Wc and
ϕ ◦ Φfat0 (q0) < 1 for all t ∈ (0, t0).

2) If q0 6∈ Wc andϕ(q0) > ǫ

2.1) Use a scaled version off2 for time τ2 to escape
a δ-neighborhood ofWc, keeping the energyϕ
constant.

9Below we show that∀q : Hf2 = f2
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Ws

Wc

q∗

leaves

Fig. 3. Conceptual illustration of the flow associated with equation (16).
Each leaf is an invariant manifold with all trajectories collapsing intoWc.

2.2) Use controllerf1, for time τ1, to decrease the
energyϕ, stopping at aγ-neighborhood ofWc

such thatΦfaτ1 (q) /∈ Wc andγ < δ.

We now introduce a number of assumptions, definitions and
their consequences that will allow us to formalize each of the
previous steps. The reader less interested in the formal proof
can skip to the end of Section III-C.

A1 Q is a smooth compact connected manifold with bound-
ary.

A2 ϕ is a navigation function inQ.
A3 H has rank two, uniformly throughoutQ.

Assumption A1 gives the proper setting for the existence of
a navigation function in the configuration space. Assumption
A3 assures the foliation sketched in figure 3.

Define thelocal surroundof the goal, illustrated in figure
4, to be the closed “hollow sphere”,Qs := ϕ−1[Iǫs], with
Iǫs := [ǫ, ϕs] whose missing inner “core” is the arbitrarily
small open neighborhood,Qǫ := ϕ−1[I0ǫ]; I0ǫ := [0, ǫ), and
whose outer “shell”,Q1 := ϕ−1[Is1], with Is1 := (ϕs, 1],
includes the remainder of the free configuration space.ϕs is
defined to be the largest level such that all the smaller levels,
ϕ0 ∈ (0, ϕs) are homeomorphic to the sphere,S2, and are all
free of critical points,‖∇ϕ‖−1[0] ∩ ϕ−1[(0, ϕs)] = ∅.

The restriction toϕ-invariant topological spheres precludes
limit sets of f2 more complex than simple equilibria in the
local surround. In the examples of Sections III-F and III-H,we
provide more specialized conditions that allow us to guarantee
that the algorithm brings almost every initial condition inthe
“outer” levels, Q1 into the local surround,Qs and, thence,
into the goal setQǫ.

Lemma 1:Given the previous assumptions

f−1
1 [0] ∩Qs ≡ f−1

2 [0] ∩ Qs ≡ Wc ∩ Qs. (25)

Qs

Qǫ obstacle Q1

ǫ

ϕs

Fig. 4. Illustration of the local surroundQs of the goal in white. The thin
lines represent various levels ofϕ. This image is presented in the plane for
readability purpose. However it should be interpreted as a section ofQ ⊂ R

3

Proof: If q ∈ f−1
2 [0] then∇ϕ = αA, whereα is a non-

zero scalar, hence∇ϕ ∈ kerH and q ∈ Wc as defined by
(17).

To formally express the “δ-neighborhood” ofWc described
in the stabilization strategy we start by defining the function
ξ : Q− {q∗} → [0, 1]:

ξ(q) :=
‖H(q)∇ϕ(q)‖2

‖∇ϕ(q)‖2
(26)

The quantity‖H(q)∇ϕ(q)‖2 evaluates to zero only inWc −
{q∗}. Therefore in a small neighborhood ofWc the level
sets of ‖H(q)∇ϕ(q)‖2 define a “tube” aroundWc. The
denominator of (26) normalizesξ such that0 ≤ ξ ≤ 1.
Moreover it produces a “pinching” of the tube at the goal
q∗.

Lemma 2:For all ϕ0 ∈ Iǫs , ϕ−1[ϕ0] intersects the unit
level set ofξ, i.e., ξ−1[1] ∩ ϕ−1[ϕ0] 6= ∅.

Proof: Observe thatξ(q) = 1 is equivalent to the
condition∇ϕTQ∇ϕ = 0 whereQ := I −H . Now consider
the family of vector fields

hα(q) := −[Q(q) + αH(q)]∇ϕ(q), (27)

q̇ = hα(q), (28)

Note, forα > 0 the goal pointq∗ is globally asymptotically
stable over the domainQǫ∪Qs, sinceϕ is a Lyapunov function
for (28),

ϕ̇ = −∇ϕT (Q+ αH)∇ϕ =

= −∇ϕT (Q(1 − α) + αI)∇ϕ =

= −(1 − α)∇ϕTQ∇ϕ− α‖∇ϕ‖2 ≤ −α‖∇ϕ‖2

andϕ has no other critical points other thanq∗ in Qǫ ∪ Qs.
Next, observe thatξ−1[1] = W0

h is a center manifold for
h0. Hence, according to Fenichel’s Singular Perturbation The-
orem (see Appendix III for a careful statement and citation)
there persists a “slow stable manifold” ofhα, Wα

h , that is
arbitrarily close toξ−1[1] as the positive scalarα approaches
0. Configurationsq0 ∈ ϕ−1[ǫ] ∩ Wα

h , that are arbitrarily
close toq∗ on this invariant set are associated with reverse
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time trajectoriesΦhα

−t(q0) that pass through every level set
ϕ−1[ϕ0], for ϕ0 ∈ Iǫs sinceϕ̇ ◦Φhα

t (q0) < 0 according to the
previous paragraph. It follows thatWα

h intersects every level
set,ϕ−1[ϕ0], for ϕ0 ∈ Iǫs for α = 0 as well.

Corollary 1: For all ϕ0 ∈ Iǫs the level setϕ−1[ϕ0] inter-
sects every level set ofξ, i.e., ξ−1[α] ∩ ϕ−1[ϕ0] 6= ∅ for all
α ∈ [0, 1].

Proof: Chooseq1 ∈ ξ−1[1] ∩ ϕ−1[ϕ0] as guaranteed
to exist by Lemma 2. Chooseq0 ∈ ξ−1[0] ∩ ϕ−1[ϕ0] as
guaranteed to exist sinceξ−1[0] coincides withWc, the center
manifold off1, which intersects each level setϕ−1[ϕ0] twice.
Since for allϕ0 ∈ Iǫs the setϕ−1[ϕ0] is simply connected
then there can be found a continuous curve,c : [0, 1] →
ϕ−1[ϕ0] connectingq0 and q1. The functionξ ◦ c(α) must
vary continuously between0 and 1 and the result follows as
claimed.

Lemma 3:A sufficient condition for the Jacobian off2(q)
evaluated atWc−‖∇ϕ‖−1[0] to have at least one eigenvalue
with non-zero real part is that the control Lie algebra onB
spansR3.

Proof: Let J(A) be the3 × 3 skew symmetric matrix
associated withA. We will show that the rank condition
implies a nonvanishing trace by explicitly computing the
eigenvalues ofDf2|Wc :

Df2 = J(A)D2ϕ− J(∇ϕ)DA

Df2|Wc = J(A)[D2ϕ− ‖∇ϕ‖DA]

Now consider the change of coordinatesR = [A,A⊥], where
R defines a rotation matrix andA⊥ = [A2 A3] are orthogonal
to A. Find the eigenvalues ofDf2:

det(Df2 − λI3) = det(RTDf2R − λI3)

= det

([
0

AT⊥J(A)

]
[D2ϕ− ‖∇ϕ‖DA]R− λI3

)

Using Cramer’s rule we obtain:

= −λdet
(
AT⊥J(A)[D2ϕ− ‖∇ϕ‖DA]A⊥ − λI2

)

One zero eigenvalue can be immediately factored out from
the previous expression leaving as the second factor the
characteristic polynomial of a2 × 2 matrix whose trace we
compute as:

trace
(
AT⊥J(A)[D2ϕ− ‖∇ϕ‖DA]A⊥

)

= trace
(
AT⊥J(A)D2ϕA⊥

)
+ (29)

−‖∇ϕ‖trace
(
AT⊥J(A)DAA⊥

)

SinceD2ϕ is symmetric the first term in the sum just presented
can be shown to vanish by noting:

trace
(
AT⊥J(A)D2ϕA⊥

)
=

= trace

([
AT2
AT3

]
J(A)D2ϕ

[
A2 A3

])

= trace

([
AT3
−AT2

]
D2ϕ

[
A2 A3

])

= AT3 D
2ϕA2 −AT2 D

2ϕA3 = 0

Equation (29) becomes:

= −‖∇ϕ‖trace
(
AT⊥J(A)DAA⊥

)

= −‖∇ϕ‖AT3 (DA−DAT )A2 (30)

SinceATA2 ≡ 0 and ATA3 ≡ 0 we obtain the relations,
using the Lie derivative:

LA3
(ATA2) =

(
AT2 DA+ATDA2

)
A3 = 0

LA2
(ATA3) =

(
AT3 DA+ATDA3

)
A2 = 0

Replacing the previous relations into (30) we obtain:

−‖∇ϕ‖AT3 (DA−DAT )A2

= −‖∇ϕ‖
(
ATDA2A3 −ATDA3A2

)

= −‖∇ϕ‖AT [A2, A3] (31)

Since the span of{A2, A3} is equal to the span of{B1, B2}
then there exist continuous functionsαi(q), βi(q) such that
Ai = αiB1 + βiB2, and (31) becomes

= −‖∇ϕ‖AT ((α2β3 − α3β2)[B1, B2] +M1B1 +M2B2)

= γ(q)AT [B1, B2],

whereM1,M2 are matrix functions with left kernelA that
contain derivatives ofαi, βi andγ(q) 6= 0, ∀q /∈ ‖∇ϕ‖−1[0]
is a continuous function. If the matrix|B1 B2 [B1, B2]| is full
rank thenAT [B1, B2] 6= 0.

Lemma 4:The Jacobian off2(q) evaluated atWc∩Qs has
two non-zero real part eigenvalues with the same sign.

Proof: Let Lα = ϕ−1[α], α < ϕs. The functionf2|Lα

is a flow on a topological sphere. By lemma 1 and corollary
1 it only has two critical points with index+1 (Poincaré-
Hopf [38]). ThereforeDf2|Wc∩Qs

has two non-zero real part
eigenvalues with the same sign.

Now consider the implicit equation,

ξ(q) = ξ∗ ⇔ ‖H(q)∇ϕ(q)‖2 = ξ∗‖∇ϕ(q)‖2 (32)

At the goal anyξ∗ satisfies (32). Althoughξ is not defined
at q∗ all of its level sets intersect atq∗. Finally, define the
parameterized coneCγ aroundWc, and its complementCcγ :=
Q− Cγ − {q∗}, by:

Cγ = {q ∈ Q− {q∗} : ξ(q) ≤ γ} (33)

We follow by imposing conditions onH andA such that the
vector fieldf2 can afford the needed “escape” fromWc.

Lemma 5:Suppose system (13) satisfies assumptions A1-
A3 and, hence, the previous lemmas. Then, there exists a
functionσ : Q → R that renders the system

q̇ = σ(q)A(q) ×∇ϕ(q) = f̄2(q) (34)

unstable atWc ∩Qs.
Proof: Let Ξ : Q → C; Ξ(q) 7→ max(Re({λ1, λ2, λ3}))

return the eigenvalue with largest real part of the Jacobianof
f2 evaluated at the closest point toq that lives inWc. Consider
the functionσ : Qs → R such that

σ(q) =

{
1 if Re(Ξ(q)) > 0

−1 if Re(Ξ(q)) ≤ 0
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PartitionQs into its two pieces,Q+ = {q ∈ Qs : σ(q) = 1}
andQ− = {q ∈ Qs : σ(q) = −1} whereQ+ ∪Q− = Qs and
Q+ ∩ Q− = ∅.

In Wc ∩ Q+ two eigenvalues ofDf̄2 have positive real
part, rendering (34) unstable. InWc ∩Q− we get thatDf̄2 =
−Df2. Therefore the two nonzero real part eigenvalues ofDf̄2
have a positive sign, also rendering (34) unstable.

Corollary 2: Under the conditions of the previous lemma,
there can be found aτ ∈ (0,∞) such that for allq0 ∈ ξ−1[δ/2]
we haveξ ◦ Φf̄2τ (q0) ≥ δ.

Proof: SinceWc ∩ Qs is unstable, for every levelLα
with α < ϕs and qα ∈ Lα ∩ Wc there exists anκ+(α) > 0
and a neighborhoodBκ+(qα) := {q ∈ Qs|‖q − qα‖ ≤ κ+}
such that every trajectory of̄f2 with initial condition inside
Bκ+(qα) − Wc will eventually leaveBκ+(qα). Let δ be the
largest scalar such thatCδ ⊂ N+ :=

⋃
α Bκ+(qα). Letκ− > 0

be the largest scalar such thatN− :=
⋃
α Bκ−(qα) ⊂ Cγ , with

2γ = δ. The setN := N+ − int (N−) is compact. Therefore,
sinceN ∩ Wc = ∅, trajectories off1 and f̄2 traverseN in
finite time. Letτ0(q0) := min{t > 0 | ξ ◦Φf̄2t (q0) = δ}. Then
defineτ := max {τ0(q0)|q0 ∈ N}.

Figure 5 illustrates the steps used in the previous proof.
Trajectories starting insideN −Ccγ will traverse∂Cγ and∂Cδ
in finite time.

C. A Hybrid Controller and Proof of its Local Convergence

Given the previous results define the time variablesτ1, τ2
and the scalarsγ < δ such that:

τ1(q, γ) :=

{
min

{
t > 0 | ξ ◦ Φf1t (q) = γ

}
if q ∈ Ccγ

0 otherwise

τ2(q, δ) :=

{
min

{
t > 0 | ξ ◦ Φf̄2t (q) = δ

}
if q ∈ Cδ −Wc

0 otherwise

I.e., τ1 is the time to reach theγ neighborhood ofWc using
vector fieldf1 andτ2 is the time to reach the boundary ofCδ
using vector fieldf̄2, escaping this way theγ neighborhood
of Wc.This results in the following maps:

Φf1τ1 : Ccγ → ∂Cγ (35)

Φf̄2τ2 : Qs −Wc → Ccδ ⊂ Ccγ , (36)

where C is the closure ofC. With δ = 2γ define the map
P : Qs −Wc → ∂Cγ

P (q) = Φf1τ1(·,γ) ◦ Φf̄2τ2(q,2γ)(q) (37)

and consider the recursive equation:

qk+1 = P (qk). (38)

The set∂Cγ can be interpreted as a Poincaré section for the
discrete system (38). We are now ready to present the final
result:

Theorem 3:There exists an iteration number,N : Qs → N

such that the iterated hybrid dynamics,PN bringsQs to Qǫ.
Proof: Define

N := min {n ∈ N|0 ≤ N ≤ Nǫ|ϕ ◦ Pn(q0) ≤ ǫ} ,

∂N+

∂Cδ

∂Cγ

∂N−

ǫ

Wc

q0

f̄ τ2 (q0)

Fig. 5. Illustration of the construction used in the proof ofcorollary 2.

and ∆ϕ(q) := ϕ ◦ P (q) − ϕ(q). SinceQs is a compact set
it follows that |∆ϕ| achieves its minimum value,∆ǫ, on that
set, hence at mostNǫ := ceiling(ϕs − ǫ)/∆ǫ iterations are
required before reachingQǫ.

Note that all initial conditions in the pre-image of the “local
surround”,R :=

⋃
t>0 Φf1−t(Qs − Wc) are easily included

in the basin of the goal,Qs, by an initial application of the
controlleru1. While it is difficult to make any general formal
statements about the size ofR, we show in the next section
that for all the examples we have tried, the “missing” initial
conditions,Q − R = Z, comprise a set of empty interior
(in all but one caseZ is actually empty) because all ofWc,
excepting at most a set of measure zero, is included inQs. In
configuration spaces with more complicated topology, thereis
no reason to believe that this pleasant situation would prevail.
To summarize, we rewrite the strategy presented in Section
III-B using now the explicit input controls:

1) ∀q0 ∈ Wc use the input

u3 :=
[
α1 α2

]T
, (39)

for a small amount of timet3, whereα1, α2 are scalar
constants not both simultaneously zero, such thatϕ ◦
Φf3t3 (q0) < 1 andΦf3t3 (q0) /∈ Wc, with f3(q) := B(q)u3.

2) ∀q0 ∈ Qs−Wc, follow successive applications of (38),
i.e. use the inputs to equation (13):

u1(q) := −B†(q)∇ϕ(q) (40)

u2(q) := σ(q)B†(q)J(A(q))∇ϕ(q) (41)

3) ∀q0 ∈ R − Qs, use the inputu1 for time t until
Φf1t (q0) ∈ Qs.

Having discussed the volume of convergence, the next most
crucial question bearing on the practicality of this scheme,
speed of convergence, will also be addressed on a case by
case basis in Section III-H using two additional formal ideas
that we now present.

D. Limit cycles in the level sets ofϕ

In many practical applications switching between controllers
f1 andf2 using a smallδ-neighborhood is far too conservative.
It may be possible to escapeWc by more than just the small
collar ξ−1[δ]. In Section III-H we show an example where
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the trajectories off2 flow from Wc ∩ ϕ−1[ϕ0] with positive
real part eigenvalues, whereϕ0 < ϕs is some energy, to
Wc ∩ ϕ−1[ϕ0] with negative real part eigenvalues, crossing
in between the stable manifold at the goalWs. If we could
recognize the passage intoWs and switch off controlleru2

(i.e. turnWs into an attractor of a suitable modified form of
f2) then a final application of controlleru1 is guaranteed to
achieve the goal state,q∗. The hope of reworking the form
of u2 so that the resulting closed loop vector field,f2, has its
forward limit set solely inWs thus raises the question of when
there exists limit cycles in the level sets ofϕ for the flow of
f2. More importantly, we seek a condition that guarantees that
every trajectory off2 starting in a small neighborhood ofWc

can intersectWs either by forward or inverse time integration
of system (22). Note thatf2 generates a planar flow, making
the Bendixson’s criteria a natural candidate for such condi-
tion. Several authors [39]–[42] have developed extensionsto
Bendixson’s criteria for higher dimensional spaces, obtaining
in general conditions that preclude invariant sub-manifolds
on some set. For systems with first integrals, such as some
classes of systems that result from nonholonomic constraints,
the conditions simplify to a divergence style test. Fečkan’s
theorem (see Appendix IV and [39]) states that in open subsets
where divf2 6= 0 there can exist no invariant submanifolds
of any level precluding cyclic orbits. Note that the previous
result does not preclude quasi-periodic orbits. In SectionIII-
G we give an example that, by havingϕs < 1, results in
quasi-periodic orbits on a torus. Using Cauchy-Riemann the
divergence of the vector fieldf2 results in:

div(f2) = div (A(q) ×∇ϕ(q))

= (∇×A(q))
T ∇ϕ(q)

= AR(q)T∇ϕ(q) (42)

In the examples described here, the setD :={
q ∈ Q : AR(q)T∇ϕ(q) = 0

}
is a 2-manifold that contains

the goal. IfD ∩Wc = {q∗} andD is not itself invariant for
f2 then we are guaranteed that there exist no limit cycles on
the level sets ofϕ.

E. Computational heuristic substitutes forσ

The σ function introduced in lemma 5 modifies the flow
of f2 rendering the center manifold unstable. Having that
property is sufficient for stabilization, but more can be accom-
plished. By careful craft ofσ one can minimize the number
of switches between controllersf1 and f̄2 necessary to reach
the desired neighborhood of the goal. If the stable manifold
Ws matches the zero set ofσ and Ws is made attractive
by f̄2 for any point inQs then one getsΦf1∞ ◦ Φf̄2∞(Qs) =
q∗, i.e., only 2 steps are necessary to reach the goal. Note
however that if the zero set ofσ interceptsWc more than
one time then there exists the possibility that the system will
not progress to the goal. In this section we present practical
computational heuristic substitutes forσ with zero sets that
locally approximateWs.

1) Divergence: Following the results obtained in Section
III-D using the divergence operator seems natural. In the
neighborhood of the center manifold if the eigenvalues have

all negative real part, then the divergence will be negative,
reversing the flow off2. If the real part of the eigenvalues are
all positive the divergence operator will not reverse the flow.
Even in the event of the eigenvalues having simultaneously
positive and negative real parts, the sign of the divergencewill
not change the instability. Define the functionσ1 : Q → R by

σ1(q) := div(f2) = AR(q)T .∇ϕ(q). (43)

2) Maximizingξ: Another way of escapingWc is to follow
the direction that maximizesξ. By definition its maximum is
the unity. Let the functionσ2 : Q → R be defined by:

σ2(q) := ∇ξ(q)T f2(q). (44)

Using L(q) = ξ(q) ≥ 0 as a candidate control Lyapunov
function for the systeṁq = σ2(q)f2(q) we observe that

L̇ = ∇ξT
(
∇ξ(q)T f2(q)

)
f2(q) (45)

= ‖∇ξ(q)f2(q)‖
2 ≥ 0

The functionσ2(q) destabilizes (34) atWc if there exists a
ξ∗ > 0 such that the set{L̇(Cξ∗ −Wc) = 0} does not define
an invariant manifold (following La Salle’s).

3) Stable manifold approximation:The third heuristic com-
putation ofσ presented here, aims directly at approximating
the stable manifold10 so to minimize the number of switches
between controllersf1 and f̄2. Suppose there exists a smooth
functionG : Q → R whose pre-imageG−1[0] is Ws. Using
the same argumentation as in equations (44) and (45) and
replacingξ by G(q)2 we obtain:

σ3a(q) := −∇(G(q)2)T f2(q). (46)

Again, takingL(q) = G(q)2 ≥ 0 as a candidate control Lya-
punov function we observe that the systemq̇ = σ3a(q)f2(q)
will have its forward limit set inWs if ∀q ∈ Q − Ws :
L̇(q) = −‖2G(q)∇G(q)T f2(q)‖2 6= 0. Note that it is possible
for the zero set of∇(G(q)2)T f2(q) not to be contained in
Ws, breaking the desired result. In some cases however, it is
possible to use the function

σ3b(q) := sG(q) (47)

wheres ∈ {−1,+1}. The signs is chosen so thatWc can
be made unstable, i.e. in a neighborhood ofWc the signs of
div(f2) andG should match.

In general, finding an exact approximation ofWs by an
algebraic implicit equation is unattainable since that requires
solving a set of partial differential equations [15]. We proceed
by finding ak-order polynomial approximation toWs, denoted
by Ŵs

k. Without loss of generality, we assume that the goal is
at the origin,q∗ = 0, and the tangent ofWs evaluated at the
origin is the span of the first two canonical base vectors11. Let

10One can observe the difference between Ikeda’s proposed algorithm [27]
and the one presented here. In his scheme the first step aims only at a
specific, one-dimensional trajectory, instead of the entire goal’s co-dimension
one stable manifold, hence one worries about robustness in the presence of
inevitable model error and sensor noise. Moreover, it is notobvious how to
integrate perceptual limitations in the resulting controllaw. In the scheme
presented here, we aim at the full co-dimension one stable manifold.

11It is always possible to align the tangent ofWs at the goal with the span
of the first two canonical base vectors by means of a translation p = q − q∗

and a rotationR. The matrixR is obtained by applying the Gram-Schmidt
orthogonalization on the matrix of the eigenvectors ofDf1(q)|q=q∗ with
eigenvalues sorted by absolute magnitude.
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h be the “aligned” version off1. We seek to find a function12

g : R2 → R such that its graph isWs, i.e., x3 = g(x1, x2).
Define the implicit functionG as:

G(x1, x2, x3) := g(x1, x2) − x3 (48)

Let ĝk be a k-order polynomial approximation ofg at the
origin parameterized byγi,j :

ĝk(x1, x2) =
∑

i,j≥0

i+j≤k

xi1x
j
2

i!j!
γi,j (49)

and letĥk be thek-order Taylor expansion ofh at the origin:

ĥk(x1, x2, x3) =
∑

i,j,l≥0

i+j+l≤k

xi1x
j
2x
l
3

i!j!l!

(
∂i

∂xi1

∂j

∂xj2

∂l

∂xl3
h

)
(50)

For the systemq̇ = h(q) the manifoldG(q) = 0 is invariant.
Therefore for trajectories that start inG(q) = 0 we obtain

Ġ(q) = ∇G(q)Th(q) = 0. (51)

Replacingg by ĝk, h by ĥk andx3 by ĝk(x1, x2) we obtain
the following approximation equation:

([
∂ĝk
∂x1

∂ĝk
∂x2

−1

]
· ĥk

)
◦ (x1, x2, ĝk) = 0 (52)

Equation (52) is polynomial inγi,j and in xi. Since by
assumption the tangent space ofWs at the origin is the plane
x3 = 0, we immediately obtain:

h(0) =
∂h

∂x1

∣∣∣∣
q=0

=
∂h

∂x2

∣∣∣∣
q=0

= 0, and

γ0,0 = γ1,0 = γ0,1 = 0

The 2nd order terms ofγi,j are obtained by solving the
following equation evaluated at the origin, wherehi is the
i-th component ofh:




γ0,2

γ1,1

γ2,0



=




∂h2

∂x2

∂h1

∂x2
0

∂h2

∂x1

∂h1

∂x1
+
∂h2

∂x2

∂h1

∂x2

0
∂h2

∂x1

∂h1

∂x1




−1

·




1

2

∂2h3

∂x2
2

∂2h3

∂x1∂x2

1

2

∂2h3

∂x2
1




Note that a measure of the curvature ofWc at the origin is
given by γ2

1,1 − γ2,0γ0,2. The higher order terms ofγi,j are
obtained recursively by incrementally increasingk in equation
(52) and solving forγi,j with i+ j = k.

F. Illustrative simulations using a norm-like Navigation Func-
tion

We now present numerical results of simulations for a norm-
like navigation function in order to compare the performance
of the functionsσi defined in Section III-E. Consider the

12In general this function may not exist outside a neighborhood of the origin

following simply connected configuration space: letQ = {q ∈
R3 : ‖q‖ ≤ 1} and

ϕ(q) = x2
1 + x2

2 + x2
3 = ‖q‖2. (53)

Clearly,ϕ is a navigation function inQ sinceϕ(∂Q) = 1 and
ϕ has a unique minima at the origin. Note that all the level sets
of ϕ are spheres, henceϕs can be stretched to the boundary of
Q resulting inR ≡ Q. Below we present theσ3 function for
different approximation levelsk. Note that for this particular
configuration all theσi functions differ from each other.

σ3 =






x if k = 1

x+
yθ

2
if k = 2

x+
yθ

2
+
yθ3

48
if k = 4

x+
yθ

2
+
yθ3

48
+
yθ5

480
if k = 6

Table I compiles the simulation results. One can conclude,
as expected, that the number of iterations of (38) required to
reach a fixed neighborhood of the goal dramatically decreases
when δ increases. Moreover, althoughσ1 and σ2 do a good
job at escapingWc, they require more iterations in average
than the higher order approximation ofWs. The best results,
in terms of iteration number, are obtained forσ3 whenk ≥ 2,
where the approximation ofWs is very good.

TABLE I

SIMULATIONS FOR THE UNICYCLE WITH A NORM TYPE NAVIGATION

FUNCTION. EACH ENTRY CORRESPONDS TO THE AVERAGE NUMBER OF

SWITCHES“N” FROM A RANDOM INITIAL CONDITION 5 METERS AWAY

FROM THE GOAL FOR50 SIMULATIONS. WE USE THE PARAMETER

γ = 10−3

δ = 0.2 0.5 1

ǫ = 1 cm 1 mm 1 cm 1 mm 1 cm 1 mm

σ1 27.9 37.8 9.9 13.2 2.9 3.1

σ2 29.3 41.0 9.8 12.9 2.7 3.2

σ3, k = 1 28.7 38.5 10.3 12.5 2.7 3.0

σ3, k = 2 28.2 38.3 9.7 13.5 1.3 1.8

σ3, k = 4 29.9 37.8 10.6 13.4 1.3 1.5

σ3, k = 6 30.2 37.9 9.2 13.8 1.4 1.5

G. Simulations for a single beacon visual servoing problem

We present here a simulation of a different visual servoing
problem: positioning a robot in relation to a single engineered
beacon. This problem has been addressed by Kantor [30] and
Bhattacharya [31], as discussed in the introduction. Theiralter-
native solution approach can be readily compared to present
scheme. Since the visibility set (the complete configuration
space) is not a topological sphere, this example also provides
a simple illustration of the additional effort required to rea-
son about initial conditions outside the “surround”. Figure 4
illustrates how the level sets which are topological spheres
(the components ofQs) form a proper subset of the toroidal
visibility set in this case, as illustrated in figure 6(a).
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Top view. The visual beacon is represented by the large blackdot. The gray areas violate the visual constraints.c) andd) State variables and energy plots.

We applied the algorithm developed in this paper to
this problem, using again, the unicycle motion model
A =

[
cos(θ) sin(θ) 0

]
. The navigation function is de-

veloped in double polar coordinates and it is brought back to
SE(2) by the change of coordinatesc : SE(2) → S1×S1×R+:




η
µ
d



 = c(x, y, θ) :=




arctan(y/x)

θ − arctan(y/x)√
x2 + y2



 (54)

The navigation function reflects the following physical at-
tributes of the sensor:

1) The robot must be in an interval of distances away from
the beacon, so to not get too close or too far away from
it, specificallydm < d < dM .

2) The robot’s camera must face the beacon at all times,
encoded asµm < µ < µM , whereµm, µM are the field
of view boundaries of the camera in polar coordinates.

Consider the potential function:

¯̄ϕ :=

(
2 − cos(η − η∗) − cos(µ− µ∗) + (d− d∗)2

)k

(1 − cos(µ− µm))(1 − cos(µ− µM ))(dM − d)(d − dm)

For the previous potential function we have:

• The goal location inSE(2), denoted by(x∗, y∗, θ∗), is
mapped byc to (η∗, µ∗, d∗). We assume this way that
the final orientation of the robot is important.

• The cosine functions are used here, e.g.(1−cos(µ−µm)),
since the state variablesη andµ live in S1. The desired
goal is actually(η∗ +2k1π, µ

∗ +2k2π, d
∗) with k1, k2 ∈

N.
• k is a shaping term.

The resulting navigation function follows the same “squash-
ing” and change of coordinates as in equations (8) and (9).
Note that by imposing a minimum distance to the beacondm,
the configuration space is not simply connected. It is in fact
homeomorphic to a solid torus as illustrated in figure 6. This
results inϕs < 1. Here, some level sets are topological torus
and others topological spheres. However, it is observed that the
center manifoldWc is a circle, every level set homeomorphic
to the sphere intersectsWc and every level set homeomorphic
to the torus does not intersectWc. Since for all points in the
domainQ by following the flow of functionf1 have its limit
set inWc then one can argue that the domain of attraction for
the hybrid stabilization algorithm presented here is the entire
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Q up to a zero measure set. In fact, experience shows that
better trajectories (in the sense of minimum number of “back
and forward” parallel parking motion for the vector fieldf2)
are obtained if the energy levelϕ is kept very high, i.e., in the
torus level sets. There, the trajectories define quasi-periodic
orbits that intersect the stable manifoldWs indefinitely.

For the simulations and experiments we consider the inter-
esting parameters to be themean error positiondefined by:

mean error position:= Meani
[
‖qif − q∗‖

]
, (55)

where qif is the final position reached on theith run; and
the mean arc-length ratiothat gives an idea of how much
worse the robot performs against a fully actuated robot that
can always follow a straight line to the goal. For continuous
time it is defined by:

mean arc-length ratio:= Meani




∫ tif
0 ‖q′(qi0, t)‖dt

‖qi0 − q∗‖



 , (56)

where tif is the final time andq′(qi0, t) the derivative of the
trajectory starting at the initial positionqi0 for the ith run. For

the 383 simulations run of a single beacon visual servoing
problem we obtained a mean error position of 4.3 cm and a
mean arc-length ratio of 4.1. Note that in figure 6 the robot
executes a parallel parking maneuver in the plane. Although
it is well known that for the unicycle the parallel parking
motion is required to move sideways, the trajectory obtained
on the plane is a natural consequence of moving on a level set
of the navigation function. Moreover, the navigation function
enforces that the robot does not hit the obstacles, since doing
that would require puncturing the level sets away from the
goal.

H. Simulations for the visual servoing problem

A representative numerical simulation for the visual serving
problem described in Section II is illustrated in figure 7. Since
the navigation functionϕ, presented in equation (9), is defined
in a convex set and has a unique critical point atq∗, all of its
level sets are topological spheres. The inputs (40), (41) and
(39) are computed using the nonholonomic constraint (12) and
the navigation function (9). Table II compiles the simulation
results.
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IV. EXPERIMENTAL IMPLEMENTATION

We now present the results of our implementation of the
visual servoing algorithm using the robot RHex [2] in three
steps. In Section IV-A, we outline the hardware and software
components that comprise the image processing pipeline. Itis
important to keep in mind that this perceptual apparatus must
be quite simple since it is located entirely onboard the robot
and runs in real time as we detail below. In Section IV-B we
describe the controller implementation, emphasizing the two
extensions to the simple version of the algorithm presented
above in Section III that compensate for the significant sensor
noise and limitations in control authority inherent in this
physical setting. We explain why the resulting closed loop
(hybrid) behavior is still governed by the correctness results
of Section III, notwithstanding these real world adjustments.
Finally, we present tables and figures of data summarizing
our extensive experimental results for both indoor and outdoor
implementations of the complete system.

A. The Perceptual Hardware and Software

The entire visual sensor suite is implemented on a second,
dedicated, onboard 300MHz PC104 stack, running Linux,
connected by local ethernet to the (QNX based) motor control
stack documented in [2]. We implement the following com-
putational pipeline on this second stack at a 10 Hz update
rate:

1) Video acquisition: is accomplished by a Sony DFW300
camera via a firewire connection.

2) Image processing library: Early vision is accomplished
using our in-house SVision library inspired by Hager’s XVi-
sion [43] albeit considerably stripped down in comparison.We
implement the following image processing methodology:

• color calibration (this step is executed only at startup): A
lookup table is used for color classification in the YUV
color space (the standard TV NTSC color space) with
size256×256×256. Different color classes are acquired
by selecting different objects in the GUI’s camera view.
After a color class is acquired its size is increased13 by
a pre-defined amount in the luminance direction of the
HLS color space (Hue, Luminance and Saturation) so as
to maximize robustness to daylight changes, specifically
switching from shade to direct sun exposure.

• blob extraction: the standard 4-neighbor connected com-
ponents algorithm is used as presented in [44]. A vector
of mass, centroid and labeling class is returned per blob
found.

• lens correction: the standard Heikkilä [45] lens model is
used. The lens correction map includes all the intrinsic
camera parameters, including focal length, and returns
“normalized” points, with units in meters, projected into
a plane 1 meter away from the robot’s camera. Calibration
is performed at startup using a flat checkerboard surface.

3) Image stabilization: The centroid information provided
by the image processing library follows a post-processing roll

13The color’s acquired simply-connected volume is projectedinto the Hue
and Saturation plane and then spread over an interval in the Luminance axis.

correction. Since it assumed that the beacons project into a
line, following figure 2(a), roll correction is accomplished by
fitting a line to the 2D centroid of the 3 blobs (chosen by size
and class) and attaching a frame to it. The beacon coordinates
are defined in relation to that frame. The following simplified
expression is used in the experimental implementation, where
(Xi, Yi) are the centroids of the three beacons in the image
plane after Heikkilä’s lens correction map:

ιi =
Xi + δYi
1 + δ2

(57)

ζi = arctan(ιi) + π/2 (58)

with,

δ :=

∑
Xi

∑
Yi − 3

∑
XiYi

(
∑
Xi)2 − 3

∑
X2
i

, (59)

In the simulations developed in Section III-H the robot is
assumed to live in the plane. Therefore, no obstacles relating to
pitch are encoded in the navigation function. However, in the
experimental implementation there can be large disturbances
that pitch the robot enough for the beacons to leave the field
of view either from the bottom or from the top of the image.
We coded a state machine that in case of “emergency” will
stop and rotate the robot in place until it relocates the beacons.
This simple procedure corrected for all the temporary failures
that occurred due to excessive pitching.

4) Supervisory state machine: The transitions between the
controllersf1 and f̄2 are implemented using a standard state
machine formulation. The robot is initiated with controller f̄2.
A transition occurs if the robot crosses the stable manifoldap-
proximation switching to controllerf1. If f1 fails to bring the
robot to a pre-defined neighborhood of the goal location, i.e.
reaches the center manifold outside the goal’s neighborhood
and a fixed amount of time as passed, then another transition
occurs, switching back to controller̄f2. The robot stops when
it reaches the goal’s neighborhood. As mentioned before,
the state machine will also deal with particular emergency
situations.

B. Controller Implementation.

The control algorithms use the camera map exactly as
defined above in Section II. However the substantial perceptual
noise and limitations in control authority associated withour
physical RHex environment require two additional complica-
tions in the controller implementation.

First, although the horizontal plane behavior of the robot
RHex is reasonably well approximated by the unicycle me-
chanics presented in Section II-C, the limited number of gaits
available for any given terrain [46] typically dictate thatthe
available fore-aft speed control be limited to a few discrete
velocity magnitudes. Thus, a more accurate model of control
authority would replaceu1 in equation (11) with a variable
taking its values in a discrete set. Fortunately, gradient vector
fields can be scaled in an arbitrary (albeit sign definite) manner
with no change in steady state behavior. Namely, for any
gradient field,f(x) = −∇ϕ and any positive scalar valued
function, σ(x), observe thatϕ remains a Lyapunov function
for the scaled fieldσ(x)f(x). Our implementation using a
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discrete magnitude field can now be modeled byσ(x) :=
σ0/||f(x)||.

Second, in systems where noise is introduced via im-
perfect perception or actuation the vector fieldf2 loses its
ϕ-invariance. Although a thorough-going treatment of the
stochastic version of our problem lies well beyond the scope
of this paper, the reliance on gradient vector fields once again
affords an intuitively simple “regulator” against these undesir-
able (and, ultimately, dangerous) fluctuations in proximity to
the obstacles. Namely, suppose that the noise is additive and
zero mean. Rewrite equation (34) as:

q̇ = f̄2(q) + v(t) (60)

Define the new input̂f2 as:

f̂2 := f̄2(q) + β (ϕ∗ − ϕ(q)) f1(q) (61)

= σJ(A)∇ϕ + β (ϕ∗ − ϕ)H∇ϕ,

whereβ is a positive scalar andϕ∗ is the desiredtarget level
set, normally chosen to be slightly less then 1. The dynamics
of ϕ for q̇ = f̂2(q) + v(t) are:

ϕ̇ = ∇ϕT f̄2︸ ︷︷ ︸
=0

+β(ϕ∗ − ϕ)∇ϕTH∇ϕ︸ ︷︷ ︸
γ

+∇ϕT v︸ ︷︷ ︸
w

= βγ(ϕ∗ − ϕ) + w (62)

As q(t) evolves over time,ϕ(q(t)) converges to a neighbor-
hood ofϕ∗ if γ > 0 andw is small in proportion. In practice
this means that the robot will stay in the proximity of the target
level setϕ∗ while it is in motion, escaping the center manifold.
The experiments performed on RHex, described next, revealed
that adding the second term to the vector field (61) is indeed
necessary. The robot was not able at all to follow a particular
level set whenf̄2 was solely used. In contrast, note thatf1 is
energy dissipative, hence standard arguments from Lyapunov
theory establish its robustness against these sorts of perturba-
tions without the requirement of any further modification.14

Although formal robustness analysis is generally not available
for nonlinear systems, the nondegenerate gradient systems
of the kind introduced in this paper are structurally stable,
hence “small” perturbations away from the nominal model are
guaranteed to result in only “small” perturbations in the limit
set.

The resulting modified input of (41) used in the experiments,
before applying the scaling required for RHex’s discrete actu-
ation presented in the beginning of this section, is:

up := B† [σJ(A) + β (ϕ∗ − ϕ) I]∇ϕ (63)

As a final note we would like to remind the reader that
throughout the paper we consider only the problem of point
stabilization and avoid the tracking problem. In the experimen-
tal implementation the robot eventually “tracks” a level set of
the navigation function but still does not track any particular
fixed trajectory. Tracking changes completely the structure of
the problem since in general time-invariant vector fields can
no longer be used for control.

14Specifically, the Lie derivative ofϕ along f̂1 := f1 + v is “usually”
negative — except possibly in a small neighborhood of the center manifold
whose size is regulated by the relative magnitude off1 and the variance of
v. It follows that this neighborhood remains an attractor “onaverage”.

C. Experimental results

The first data set, a trace of the visually perceived pose
and energy level resulting from application of controllerf2,
illustrated in figure 8, gives a feeling for the robustness of
these gradient style controllers as the robot roughly but reliably
traces out the desired trajectory in the face of notable sensor
noise, the inevitable perturbations from uneven ground, as
well as the very severe parametric uncertainty arising from
the crudeness of the unicycle model as a description of the
horizontal plane behavior of RHex. Far away from the beacons
the pose estimation performs poorly, as seen in the high
variance of the data. This experiment is conducted outdoors
using RHex’s onboard camera only, according to the procedure
documented above in Section IV-A, for two different target
levels, as defined before equation (62).

The second data set — a graphical and tabular summary
of convergence from several different initial configurations
— portrays the nature of “practical stability” [25] assuring
convergence to a small neighborhood of the goal pose with
the guarantee of maintaining visibility (never losing sight of
the triple-beacon landmark) along the way. This experiment
was conducted indoors with the ground truth data acquired
by an overhead camera running at 30Hz. Quantitatively, the
interesting parameter to measure is themean arc-length ratio
of the path, defined in discrete time by:

mean arc-length ratio:= Meani

[ ∑
k ‖q

i
k − qik−1‖

‖qi0 − q∗‖

]
, (64)

wherek spans the indexes of the samples for theith experi-
ment. Table II compiles the experimental results and figure
9 illustrates three representative runs. No chattering effect
was observed in both the experiments. This is due to the
state machine formulation (that preventf1 and f̄2 to switch
in an “incoherent” fashion) and RHex’s actuation model,
realizing discrete steps. Note however that in wheeled vehicles
chattering may occur when controller̄f2 is used very close to
the goal, i.e. with a very small energy. Sincef̄2 will live on a
very small level set of the navigation function, this results in
very small oscillations around the goal.

TABLE II

EXPERIMENTS EXECUTED USING THE ROBOTRHEX IN COMPARISON TO

SIMULATIONS OF A UNICYCLE ON THE SIMPLY CONNECTED

CONFIGURATION SPACE DEFINED IN EQUATION(10)

# mean error position mean arc-length ratio

Simulations: 368 5.3 cm 2.9

Experiments: 1 5 17.6 cm 9.3

2 5 17.8 cm 6.2

3 5 17.6 cm 6.5

4 5 26.1 cm 5.2

5 5 11.5 cm 5.5

6 5 27.9 cm 4.9
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Fig. 9. RHex’s ground truth measurement experiments. Different goal locationsq∗ are represented by the thick line white triangles. The initial configurations
q0 are represented by the thin line gray triangles and the final configurationsqf by the solid black triangles.

V. CONCLUSIONS AND FUTURE DIRECTIONS

We present a robust visual servo suitable for registering a
legged robot with limited perception relative to engineered
landmarks over rugged outdoor terrain. At the heart of our
algorithm is a provably correct hybrid controller that reuses
navigation functions developed for fully actuated bodies on
kinematically constrained systems. It is straightforwardto
extend the guarantee of obstacle avoidance. Verifiable as-
sumptions are given for convergence to an arbitrarily small
neighborhood of the goal. We present various simulations for
different perceptual models and summarize the results of an
extensive empirical implementation on the legged robot RHex.
We are presently exploring generalizations to robots with
higher degrees of freedom and alternative motion constraints
as well as a variety of alternative landmark schemes.
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APPENDIX I
CAMERA MAPS

Define cbc : SE(2) → C as the map from local body
coordinates to the intermediate spaceC by:

cbc(xb, yb, θb) :=




arctan(−xb/yb)

θb − arctan(−xb/yb)√
x2
b + y2

b





with inverse:

(cbc)−1(φ, ψ, r) :=




−r sin(φ)
r cos(φ)
φ+ ψ





Define cwb : SE(2) → SE(2) as the map from world
coordinates to body coordinates:

cwb(xw, yw, θw) := −

[
RTθw

0

0 1

]


xw
yw
θw





with equal inverse sincecwb is an involution.



17

APPENDIX II
COMPUTATION OF INVERSE CAMERA MAP

Let Yi =
[

cos(ζi) sin(ζi)
]

where ζi are the angles
defined in Section II-A. Knowing thatY TJY = 0 we have:

Y Ti JRφ(ρiRαi
Rψ + rI)ê2 = 0 (65)

in particular, sinceα1 = −α3 = α; ρ2 = 0

rY T2 JRφê2 = 0 ⇔ Rφ = δ1
[
JY2 −Y2

]
(66)

The constantδ1 = ±1 is chosen so that−π
2 < φ < π

2 resulting
in:

φ = ζ2 +
π

2
(67)

Let Y ′ andY be obtained by expressions (5) and (6). Then:

ρiY
T
i Rαi

JRψRφê2 + rY Ti JRφê2 = 0

⇔
[
Y ′T Y T

] [ JRφRψ ê2
rJRφê2

]
= 0 (68)

Let Y T⊥ be the orthogonal complement of the subspace
generated by the lines ofY †, i.e. Y⊥ lives in the null space
of Y †, with Y † = (Y Y T )−1Y the pseudo-inverse ofY T .
Since

[
Y †T Y⊥

]
is full rank then the previous expression

is equivalent to:
[
Y †

Y T⊥

] [
Y ′T Y T

] [ JRφRψ ê2
rJRφê2

]
= 0

⇔

[
Y †Y ′T I
Y T⊥ Y

′T 0

] [
JRφRψ ê2
rJRφê2

]
= 0 (69)

Solving forRψ we get:

x = δ2
Y ′Y⊥
‖Y ′Y⊥‖

(70)

Rψ = RTφ
[
Jx −x

]
(71)

Simplifying we obtainψ:

ψ = arctan(δ2R
T
φJY

′Y⊥) (72)

Again δ2 = ±1 is chosen so that−π
2 < ψ < π

2 . Finally
solving for r in (69) we get:

Y †Y ′TJ
[
Jx −x

]
ê2 + rJRφê2 = 0

⇔ r‖JRφê2‖ = ‖Y †Y ′TJ
[
Jx −x

]
ê2‖

⇔ r =
‖Y †Y ′TJY ′Y⊥‖

‖Y ′Y⊥‖
(73)

APPENDIX III
FENICHEL’ S SINGULAR PERTURBATION THEOREM

Theorem 4 (Fenichel [47]):Consider the system (28) with
0 ≤ α ≪ 1. Suppose that forα = 0, (28) admits an
equilibrium manifold of dimensionm, 0 < m < n, denoted
by W0

h and for allq∗ ∈ W0
h, the Jacobian matrix,Dqhα|(q∗,0)

admitsn − m eigenvalues with a strictly negative real part.
Then, for every open and bounded subsetΩ0 of W0

h, there
exists an open neighborhoodV0 of Ω0 in Rn, such that, forα
positive and small enough, the perturbed system (28) admits
an attractive invariant sub-manifoldWα

h contained inV0 and
close toW0

h.

The previous theorem establish that under appropriate con-
ditions the “slow” dynamics ofhα, defined in equation (27) ,
approaches the center manifold ofh0 asα goes to zero. For
a tutorial treatment of Singular Perturbations please see [48]
or [49].

APPENDIX IV
FEČKAN ’ S EXTENSION OF THEBENDIXSON’ S CRITERIA

Definition 2 (Fěckan [39]): Let M ⊂ Rl be an m-
dimensional compact smooth orientable submanifold with a
nonempty border∂M . Hence∂M is anm − 1-dimensional
compact smooth orientable sub-manifold. Assume thatm ≥ 2.
Let V ⊂ Rn be ak-dimensional smooth submanifold ofRn

with empty border∂V = ∅. Let β ∈ Lip(∂M,Rn) be such
thatβ(M) ⊂ V andτ = β/∂M satisfy:

I τ is injective on∂M .
II The inverseτ−1 : τ(∂M) → R

l is Lipschitz on the set
τ(∂M) ⊂ Rn.

We call the setS = τ(∂M) anm− 1-V -L-boundaryof V . It
is a generalization of smooth submanifolds ofV .

Theorem 5 (Fěckan [39]): Let g1, g2, · · · , gp ∈ C2(Rn,R)
be first integral of (22). IfV = G−1[0] is a nondegenerate
level set of the mappingG = (g1, g2, · · · , gp) and in addition
divf2 6= 0 on V , then there is non− p− 1-V -L-boundaryS
of V which is invariant for (22).
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