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Visual Servoing for Nonholonomically Constrained
Three Degree of Freedom Kinematic Systems

Gabriel A. D. LopesStudent Member, IEEBnd Daniel E. Koditschelgellow, IEEE

Abstract— This paper addresses problems of robot naviga-
tion with nonholonomic motion constraints and perceptual ecies
arising from onboard visual servoing in partially engineered
environments. We propose a general hybrid procedure that
adapts to the constrained motion setting the standard feedick
controller arising from a navigation function in the fully a ctuated
case. This is accomplished by switching back and forth betvem
moving “down” and “across” the associated gradient field toward
the stable manifold it induces in the constrained dynamics.
Guaranteed to avoid obstacles in all cases, we provide conidins
under which the new procedure brings initial configurations to
within an arbitrarily small neighborhood of the goal.

We summarize simulation results on a sample of visual
servoing problems with a few different perceptual models. \&
document the empirical effectiveness of the proposed algithm
by reporting the results of its application to outdoor autonomous
visual registration experiments with the robot RHex guidedby
engineered beacons.

Index Terms— Visual servoing, level sets, robotics, nonholono-
mic, navigation.

I. INTRODUCTION

cial potential functions. For fully actuated systems, pttd-
dissipative force fields offer a natural and direct geneadibn

of linear proportional-derivative servo control for gealer
mechanical systems [1]. The wide popularity of such PD
controllers attests to their robustness against sensse ramid
imperfect models. However, for underactuated systems when
the number of independently actuated degrees of freedom
decreases relative to the dimension of the total configurati
space, there is no general method for applying PD contral. Fo
autonomous outdoor robots, it is crucial to develop pefoapt
driven controllers, yet in consequence of ubiquitous petoer
weight limitations, autonomous robots are intrinsicalhyder-
actuated. Hence, we draw the greatest practical motivédion
extending PD methods to underactuated settings precisely i
such contexts as visual servoing for a rugged and underactu-
ated outdoor vehicle like the hexapod, RHex [2].

This paper presents an extension of PD control to the class
of two-actuator, three-degree-of-freedom mechanicalesys
that includes the simple “unicycle” kinematics crudely dgs
tive of the horizontal plane behavior of RHex. By so modeling

N this paper we introduce a robust feedback controller féihe robot as a drift-free constrained kinematic system and b
outdoor navigation of a legged robot guided only by visudteating the perceptual limitations of a monocular camédra o
cues. Conceptually, there are three broad problems asstcigerving the robot’s horizontal plane pose as incurringaiies

with this task. First, the requirement for perceptuallyaiele

in the robot’'s configuration space, we arrive at the formal

landmarks is an instance of the long-standing “early visioproblem of set point regulation in the face of simultanepusl
problem that we explicitly avoid by engineering the visuatonholonomic motion constraints and holonomic perception

beacons that comprise the physical landmarks. Second,

transformation of discrepancies between perceived aricedes
visual landmark appearance into feedback forces. Thesé m

doastraints.

.S Relevant Literature

be capable of “safely” correcting the errors in pose tha

cause them, effected by a monocular camera via a slightlyA growing robotics literature treats visual sensory percep
generalized extension of prior work. Finally, the effeetivtual limitations as effectively introducing (holonomichsta-

application of these restoring forces in a manner that @specles in a robot's configuration space. Ostrowsky [4] uses a
both the constrained control authority over rigid body roti blimp equipped with a camera, maintaining a ball on the
afforded by a legged gait as well as the perceptual requigenter of the camera’s field of view (FOV). Chaumette [5]-

ments represents our central contribution.

[7], Hirzinger [8] and Chesi [9] position fully actuated cama

We pursue a solution linking the second and third problerd§ms in relation to a collection of features, always making
by encoding the perceived discrepancies in terms of artifiure that they stay in the FOV. In [5], [6] and [9] self-
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occlusions are dealt explicitly by the controller while iA] [
and [8] virtual 3D models are fitted to the image, allowing
for temporary self-occlusions. Cowan [10] and Chen [11] use
navigation functions [12] to position a 6dof arm, again kagp
the features in the FOV and accounting for self-occlusions.
Mansard [13] uses a sequence of tasks that constrain oseclea

INote that, in general, PD controllers lift very naturally ttee dynamical
setting as well. See reference [3] for a sketch of the thealesteps required
to lift the algorithm proposed in this paper to a second ordgsion of the
quasi-static model considered here.



particular degrees of freedom of an holonomically cons&di B. Contributions of this paper
arm, mixing together constraints arising from joint limits
occlusions and obstacle avoidance simultaneously. a
There is a considerably older literature focused on ttz
control of nonholonomically constrained mechanical syste
Brockett's classical result [14] establishes that nonhoio-

In this paper, we take a few steps toward a more general
proach to perception-based servoing that decouples the
pically holonomic) perceptual constraints from thepfty
ically nonholonomic) kinematic constraints by adapting an

: . - “arbitrary” navigation function [12] to an “arbitrary” nen
|(_:ally_ con;tra|ned systems cannot be stgbmzed by SMoo lonomically constrained first order mechanism operaiting
Flme-_lnvar|ant feedback. In general, applying a smoothetlmthe configuration space comprising the navigation funéion
invariant feedback control law to such a system producggmam_ The encoding of holonomic constraints via navigati

an attracting center manifold in the configuration spacgJnCtionS is a very effective mean of constructing “designe

Thedg:_oal lies c_)tn the Cef‘telrl rTlamfoId and att:ja_cts aI_I Nitigasins around specified goal points for fully actuated finst a
conditions on its (generically ransverse) co-dimensioe ©second order mechanisms. For example, in visual servoing

stable manifold (a leaf of the foliation [15] generated bYa plications, the navigation function takes into account e

theb con dSt:jath)' t;q Imolst fall Of. th||s literature d assufrpes 3Brnal constraints like limited field of view, obstacles asul
unbounded and obstacle-free (simply connected) con 19Wrat,, \We are most immediately motivated by the prospect of

space. In order to stabilize at a particular goal, Khennt6f [ - ; P T
and Luo [17] use invariant manifolds; Astlofi [18], makes thgxtendmg Cowan's [10] work on navigation with triple-beac

tom di " d stabili b " taekib andmarks to the robot RHex. However, we will introduce
system discontinuous and stabilizes 1t by continuous a more general framework for nonholonomically constrained
control; Tayebi [19] use back stepping design; Monaco [2

| lti-rate digital trol- Sordal 511 P 122 sual servoing via PD control and offer two other examples
apply multi-rate digital control; Sordalen [21], Pomet | of navigation functions arising from perceptual appardtus

and Samson [23] propose time varying feedback control law Ve some feeling for the virtue of the more general view.

Gans [24] uses hybrid controllers; Morl_n and Samson [2 The paper makes three specific contributions. First, wetadap
apply the concept of transverse vector fields and Bloch [Zélowan’s [10] construction of a navigation function for mogi

develops reduced-order state equations for feedbackatontr . )
o . Ii;mdmarks viewed by a stationary monocular camera to the
In prior literature on nonholonomic feedback control most_ . R : S
Inside out” case of a moving monocular camera viewing a

cIoser_reIated t(.) our approagh, lkeda et al. [27] i.erdU(fs(ed landmark. This entails generalizing the “camera map”
the notion of Variable Constraint Control (VCC) designed t%)or convex landmarks to the more general setting relevant to

achieve an invariant manifold that goes through the goal, In . . . .
effect, picking out a distinguished trajectory lying withihe outdoor mobile robotics with landmarks formed by any triple

. } . of beacons in general position (i.e., whose convex hullesed
goals stable manifold. The formulation results in a procedu ) o
. . . . .~ "a set with non-empty interior o8E(2)).
that achieves the point goal in two steps, but is not designe . .
) : . S econd, we construct a hybrid controller for arbitrary nav-
with the consideration of obstacles in mind. In our work,Feac

different class of obstacles, once encoded by the apptepriI ation functions applied _to arbltr_ary drift-free threm_’”'
sional control systems with two independent control inputs

gradient field, gives rse to_a d|fferent_stable manifoldd Mrhe resulting switching feedback law guarantees “praktica
we cannot assume that it will be easy find that surface (mU(S:

less any particular trajectory within it) leading us to stute ability” (in the sense of Morin and Samson [25]: conver-

: . o : gence to an arbitrarily small specified neighborhood of the
lterative apphc_atlon (.Jf a controller which repeatedlyg goal) with the added guarantee that no obstacle will ever
an approximation to it.

More recently Murrieri [28], Folio [29], Kantor [30] and be encountered along the way. We offer very general (and

. . . easily verified) sufficient conditions under which the basin
Bhattacharya [31] have combined both motion constraln((f[%e set of initial configurations brought into the goal'sadim

and perceptual limitations. However, in general, thesbast tﬁighborhood) includes a far larger “local surround” beeahd

. . . n
assume a p_art|cular set of constraints for V.Vhlch a feedbat(): the “highest” level set of the navigation function thastsl
control law is subsequently developed taking into accoun

? opological sphere. We present additional “global” ctinds

the special form. Murrieri et al. develops a collection o . o
specialized Lyapunov based controllers for a wheeled \ehic albeit much more narrowly adapted to the specific examples a
I?and) sufficient to guarantee that the basin includes dlaini

with perception limited by the monocular camera’s field o - .
. : o conditions except possibly a set of measure Zero

view. Folio et al. proposes switching between three colarsl Third ol ¢ inst ¢ this visual .

that either deal with the visual servoing task at hand, be]g;\— Ird, we implement an instance ot this visual servoing

con occlusion or obstacle avoidance. However their task | m_ewotrrlf on t::e robot RHIex [2] in gelnergl oult<door terrf';und
facilitated by a pan camera mechanism on a cart like cyfeWing through a monocular-camera fandmarks comprise

resulting in the problem of stabilization i6E(2) with 3 of three beacons in arbitrary general position. We provide

available inputs. Kantor et al. combine lkeda’s VCC with thgxtensive experimental data to document the robustnesof t

notion of sequential composition of controllers [32] toweri , . L
h bot RHex to a specified goal location. This approa In general, there is no guarantee that these conditions prébail,
the robo ) X o~ p ' ! g 1on. IS app %hd we can make no general statements about the global nersfothis
can result in optimized trajectories but can be hard to reugeblem. However, one of the central motivations for emimgmavigation
on systems with different motion models and/or differerdgnctions and their assoc_igted controlle(s is the podyitof deveIoPing sti_II

| traints. Bhattach t al tak . more abstracted compositions using suitably arrangedidgeents” of their
perceptua Con'f:’ ramls-_ attacharya €t al. take a gemmeHJmputable basins, such as the “back-chaining” sequeotiaiposition in
approach and find minimum length paths. [32].



algorithm against the inaccuracies in the (very crude) robnt Beacons Goal
model and the many practical sources of noise in the sensor
suite’s acquisition of the naturally illuminated outdoaese. :

C. Organization of this Paper

We present the ingredients of the specific RHex servoing
problem in Section I, introducing the camera map arising
from a monocular camera’s view of a three-beacon landmark,
the navigation function associated with it, and a very sempl
(and only loosely accurate) motion control model for RHex’s |
horizontal plane behavior. We introduce the hybrid coitrol
along with a number of preliminary technical developments
before presenting our general mathematical result in &ecti
lll. Namely, we lay out the hybrid algorithm, state the suf-
ficient co_ndltlons for Con\_/ergen_c_e from th(_a_“local SurroUanig. 1. The visual servoing problem: the robot RHex aims twhethe goal
and provide more specific sufficient conditions for esséntigavigating using the colored beacons for visual cues.
global convergence at the price of less general assumptions
appropriate to the particular case — necessarily so, becaus
a “general extension” would include a constructive solutio— because we seek to avoid the well known problems of early
of the global navigation problem which we are far fronvision that lie outside the intended scope of present work.
claiming to encompass within the scope of this work. FinallyVe use the term “landmark” to denote the composition of
in Section IV we apply the foregoing constructions to ththree beacons into a source of sensory information suffitien
central motivation for this paper: the specific case of aalisuextract and regulate full relative pose on the plane. Thiatpo
servo algorithm for the robot RHex. We present statistiasf view represents an adaptation and slight generalizaifon
documenting the successful outdoor implementation in tiiee fixed camera, moving beacon visual servoing algorithms
final portion of Section IV, and close with brief concludingntroduced by Cowaret al [10]. In contrast, we address the

remarks in Section V. “inside out” version of that problem arising from the task of
registering a mobile robot vehideelative to some landmark
Il. AV ISUAL SERVOING PROBLEM in the visual field. The resulting camera map incorporates (a

There are three central ingredients to formulating the prohransformed copy of) the full relative pose and its gradieiit

lem at hand. First, we introduce the perceptual model rejati e used to gef‘e"’?‘e a servo con_tr_oIIer th_at forces convezgen
. . . S to (some arbitrarily small specified neighborhood of) any
parametrized family of visual landmarks to the resultingifs N . ’ N -
. N . o desired visible pose along “safe” transients guaranteed to
of “camera maps” that associate an observer’s rigid body con". "~ .
. . . S maintain the view along the way.
figuration with the state of its visual sensor. Next, we carcdt . oo - . .
. ; . For purposes of this paper, it is sufficient to identify a
a potential function built upon that perceptual model whose : ; . : .
. . - eacon with the location of its centroid projected onto the
gradient field would be capable of guiding a fully actuate . . )
o o . plane. Given three such centroids, without any loss of gen-
robot to an arbitrarily specified visual sensor state (armtbe

a unique rigid pose) without ever losing sight of the Iandmareral'ty’ we define their composed landmark parameter space

+)2 1 i
along the way. Finally, we review the simple “unicycle” nuoti B (RT)"x§ Dby fixing the world frame s that the second

- . . . beacon is at the origin and the remaining beacons lie along
model — a familiar nonholonomically constrained mechalnic . - , -
system that captures the essential limitations of our tebotc> 90IN9 through the2 onglln that define congruent angles:

: o . : = + <

control authority respecting its horizontal plane behavie (sée Ei(p ulr7 ep 22’(02))6 '(I'R;e)c;of dil\g tlei gi‘pezai hO’bOeQQg'mT :;]}e
limitations that preclude successful application of thepgmsed 9 4

. . : . . world frame are:
gradient field. The visual servoing problem solved by this pa
per.requiresgcontrol Iavy capable of a_dapting this permlgtu [bi bo by | =[ piRaés O p2RTés |, (1)
defined gradient vector field to the limited control authoaf _
the physical robot with no loss of convergence yet retaininghere R, = [cos(a) —sin(a);sin(a) cos(a)] is the standard
obstacle avoidance guarantees. 2 x 2 rotation matrix and is the canonical base vectori]?.

We define thecamera mapo be a transformation that relates

. . the pose (position and orientation) of the robot in the world
A. Beacon Landmarks and their Associated Camera Mapsframe SE(2)) to the pinhole projection of the beacons in the

We start by describing a visual sensor designed to obsegenera’s image plane.
the position of three known artificial beacons that Compaise For convenience, we treat the camera image p|ane as (a
landmark. We use the term “beacon” to denote any percep8ihset of) the unit spher&2, and drop the azimuthal com-

aIIy reliable marker that offers fixed bearing informati@ur ponent' thereby projecting all pinho|e camera readings) ont
beacons are “artificial” — brightly colored objects thatigas

stand out against natural outdoor settings, depicted im€figu  3We assume that the camera is fixed to the robot’s frame.



image plane

1 —C3—Ca
(@ (b)

Fig. 2. Simply connected configuration space introduced bwdD et al. a) The beacons are represented by the gray circles ngieds, b3). b)
Configuration space plotted in the Image projection space.

the great circleS' ¢ S?, corresponding to bearing in theproof see [33]). The determinant of the Jacobian of the

horizontal plane. In this manner, a beacon’s pinhole imaggermediate camera mapd,c| = p1p20||o1| 72| 03] ~2)

is parameterized by the angle of the ray that connects it gives a measure of the quality of the pose reconstructiore,He

the camera center when projected onto the horizontal platiee function® : B x C — R defined by©®(w) := p; sin(a —

We denote byZ this image projection space — the tripley) + po sin(a + 1) + r sin(2a)) parameterizes the obstacle set

of angles of each of the beacons in a landmark. Note thé,in which the intermediate camera mafj is not a valid

although a physical camera has a flat image plane, we prefbange of coordinates. The sét is represented by a torus

to work with a ray’s angle computed by the transformatioim C and only disconnects the robot’s workspace for concave

¢; = arctan(y;) + 7/2, where(; is theith angle and;; is beacon configurations [33]. This exemplifies the dependence

the coordinate measured by the camera in meters (after ppéthe pose computation afforded by a given landmark upon

processing using a lens calibration model), as illustrated the particular physical configuration of its constituenadens.

figure 2(a). For convenience, in this paper, we maintain a linear beacon
Because subsequent computations involving robot pose esnfiguration since it proves to result in the largest robot

sociated with the camera map are most easily expressedviorkspace. The final camera map from world coordinates

polar coordinates, we find it expedient to introduce a ne$E(2) to image projectiort is:

spacé, C ¢ T? xR+, diffeomorphic to the robot configuration

space with coordinates = (¢,,r) (see figure 2(a)), where c:=c%oc"ocv?, (4)

T2 is the 2-dimensional torus. To reconstruct the pose of the

robot in the world frame, with coordinat€:.,,, yu, 0w), & wherec’ : SE(2) — C maps the body frame, with coordinates

composition of changes of coordinates is implemented. e, 1, 60;), to the intermediate space and ¢** : SE(2) —

denote the change of coordinates from the intermediateespg€ (2) maps the world frame to body frame. For their definition
to the image projection space liytermediate camera map please see Appendix I.

c*:C—1, The use of the intermediate spatprovides a simple closed

arctan(g1 (w)) form expression fokc<*)~!, the camera map inverse valid in

c“(w) := | arctan(g2(w)) |, (2) c(C—0). To computgc®)~1, let the angles of the rays that
arctan(gs(w)) connect the beacons to the camera centef(bgl>, (3) € Z

i R . 1 .
where the terms; : C — R?, defined by (i.e. ¢; = arctan(t;) + 7/2) and letY andY”’ be:

0i(w) := Ry Ryb; + rRyéz, (3) y - { cos(C1) cos(Cz) cos(Cs) ] (5)

)
are vectors that go through beacén$or a given configuration sin(Gr) - sin(Ga) - sin(Gs)
w and the functiomrctan is assumed to take into account y! — { preos(Gr —a) 0 pacos((z+a) ] (6)
which quadrant its argument is in. It can be shown that preos(Gr —a) 0 pacos(Gs + )

¢t defines a diffeomorphism i@ almost everywhefe (for L ,
The robot’s pose irC is computed by the following expres-
4The introduction of the intermediate spaCedistinguishes the present sions, whereY! .= (YYT)*lY is the pseudo-inverse of

construction [33] from the one implemented in [10]. YT and Y, is the orthogonal complement to the span of
5We use the term “almost everywhere” in its standard sensemastidg a

condition that holds true on all elements of a set exceptsiplys for a zero .YT! CompUted b)_/ the cross product f)f the ".neS}()T- The .
measure subset. inverse intermediate camera map, with detailed computatio



in Appendix Il, is: o The term({; — (53— () is introduced to limit the distance
away from the set of beacons, whefg is a positive

™
¢ = G+ B} scalar. Notice that the difference of the anglgs— (s
¢ = arctan(6RLJY'Y) @) will become smaller as the robot increases its distance
T ¢, from the beacons. The following formula gives a rough
r = w idea of how to approximately compute the parameter
Y'Y given the distance between beacons 1 and 3, denoted by
whered = +1 is chosen so that7/2 < ¢ < 7/2, J is the dp, and the robot's maximum d_|stanc_e away from the
2 x 2 skew symmetric matrix/ := R,/ and the function beacons, denoted by..., both with units in meters:
arctan takes into account the quadrant of its argument. The )
remainder mapg®® and ¢ have simple inverse functions, (4 = Zarcsin 2o

expressions for which are explicitly provided in Appendiéél tructions lod t the obstacl di t th
I. Using the previous closed form expression for the inver constructionp exploces at the o .S?C €s and Is zero at the
al. The resulting navigation functiop : Z — [0, 1] is the

camera map allows an efficient implementation of the pogé) hed . h tant shaoi | o:
computation algorithm on the robot. squashed version @#, with constant shaping scalar> 0:

_ '
= - 8
Pt s 8

B. Navigation Functions over the Visibility Set of a Landmar'n the world frame the navigation function is the composi-

tion
The camera map previously defined introduces, in a
physical implementation, “obstacles” to the robot's camer ©(q) == @oc(q) 9
The camera has a finite field of view and beacons’ self- Lo AT _
occlusions disrupt the image processing algorithm detaile and the gradient is the pullbackiip(q) = De™(q) Vg o e(q).

Section V. Therefore a Navigation Function is introducelg_let < be the convex hull generated by the planes defined by

to deal with such obstacles. L@ be a smooth, piecewise eetfrirlrl]jsltr; atthe %?ﬁgoumrggtg) @ir:;ee.rggo;sctlz():r]f?'&a_ti@ :e
analytic, compact, connected manifold, with bounda® .’ " 9 ' 9 P

and letg, ¢* € Q. is defined by:

Q:=c Q) (10)
Definition 1 (Koditschek [34]):A Navigation Function is
a C* Morse function,p : Q — [0, 1], having the additional - The
properties thatp=1[0] = ¢* is the uniqgue minimum and the
boundary with the forbidden configurations is set uniformIYhi

high, o~ 1[1] = 0Q.

“Unicycle” Robot Motion Model

The physical implementation of the algorithms presented in
s paper are carried out on the hexapod robot RHex, whose
horizontal plane behavior is known from empirical expecien

Such functions are guaranteed to exist [12], and we assumebe roughly mod_eled as a qua5|-stat|c u_mcycle. Ther_efore
recall the equations of motion of the unicycle, extergive

that one is available in the present setting. Consider the '¢c& ) )
following potential functiong : Ip_} R+ g studied in the literature [36], with = (x, y, 0):

& = —sin(0)uy
= _ (G =)+ (=) + (G- §§)2)’“ SN
YT - )G - @) (G- )G — ) (G — G —Ca) y = cos(f)uy (11)

For the previous potential function we consider the follogvi

« The vector((f,(5,¢5) defines the goal in the image
projection spacé&, normally measured by taking a “snap- A(q) = [ cos(#) sin(d) 0 | (12)
shot” of the beacons at the desired position.

« kis a positive constant scalar shaping. In both simulatiohtice that the_ nonholonomic Con_stra_lnts of the unlcy_cle
and experiments we take— 1. For more information on preclude the direct use of the navigation function gradient
the shaping parameter see [35] vector field. We proceed by solving this problem in general

« ¢, and ¢y are the field of view obstacles. These arfP" Systems defined iR,
computed based on the aperture of the camera’s lenses.

« The denominator encodes the obstacles by “exploding” !ll- HYBRID CONTROLLER TO SOLVE THE VISUAL
@ when the 1st beacon reaches the left F@QY; — ¢;); SERVOING PROBLEM
the 1st and 2nd beacon intercégt — () and so forth.  Here we present a set of verifiable conditions that guarantee
Notice that since the beacon angles are ordered in tstabilization for the successive application of a two step
image projection space then the beacons 1 and 3 cancoitroller: the first moves on level sets of the gradient fiomg
intercept unless 1 and 2 or 2 and 3 intercept first, allowirgscaping the center manifold and if possible reaching the
this way to simplify the denominator of the navigatiorgoal’s stable manifold; the second uses the gradient dontro
function. law to reach the goal.

éZ’UQ

The nonholonomic constraint id(g)¢ = 0 , where



Let ¢ = (z1,722,23) € @ C R3 and consider the classFigure 3 illustrates the topology associated with (16):ghz
of smooth and piecewise analytic, three degree of freedojction H imposes a co-dimension 1 foliation complementary

drift-free control systems to the center manifold. Thetable manifold W?, is the leaf
i=B(Qu, ucR? (13) containing the goalg*. The input
where B ¢ R3*2 and Q is a smooth and piecewise ana- u1 = —B(q) Ve(g) (20)

lytic, compact, connected three dimensional manifold with Blone cannot stabilize system (16) at the origin, since no
boquaryQQ (that separates the aCC(.ap.tabIeffrom_thef_orbiddgpnooth time invariant feedback controller has a closed loop
conﬁgurauons ORB)’, possessing a dl_stmgulshed intergmal system with an asymptotically stable equilibrium point][14
point ¢* € Q. In this section we will impose very generalyeyertheless, for any initial condition outsitfe® an infinitesi-
assumptions o3 and construct a hybrid controller that guarmal motion in the direction of, reduces the energy. If there
antees local convergence t_o an arbitrarily small neigm)xmui_h can be found a second controller that “escapé” without

of the goal state while avoiding any forbidden configurasioncreasing, then it is reasonable to imagine that iterating the
along the way. successive application of these two controllers might Vesit

We find it canvenient to rewrrl;te (13) usm%'Fhenholonomm eventually to the goal. We now pursue this idea by introdgicin
projection matrix[37], H into the image ofB: the following controller,

H(q) = Blq)B(q)! = B(q) (B(¢)"B(q))” ' B(q)” (14
(4) = Blg)B(q)" = B(4) (3 (a) (qg) (0)" (14) s = B() [A(Q) x Veo(q)] (21)
Gg=H(qv, g€ QCR’ veR (15)
. i leading to the closed loop vector fiéld
Throughout this paper it is assumed thathas rank two at
each point. G =H(q)f2(q) = f2(q) (22)

= A(q) x V
A. Two controllers and their associated closed loop dynamic J2(9) (@) #(a)
It is useful to compare the unconstrained systes v with whereA(q) can be computed by the normalized cross product
the constrained version (15). Let be a navigation function ©f the columns ofB := [B; B|:

defined in Q. For the inputv = —V the unconstrained By x B
system is globally asymptotically stable at the origin. ndsi A(q) = B Bl (23)
¢ as a control Lyapunov function yields = —||V||%. Given 1By > Bl
this result, a naive approach to attempt stabilizing systesy Note that the nonholonomic constraint expressed in (13) can
is to use the same input= —V. be represented by the implicit equatidd (¢)¢ = 0. Since the
Define the vector fieldf; : Q — T'Q such thatf,(q) := (Lie) derivative ofy in the direction off, is
H(@Vilq) andthe system Live = V(o) (A(@) x Vio(a)) = 0. (24)
¢ = filq) = —H(q)Ve(q) (16)

) _ _ ) it follows that f5 is g-invariant — i.e. the energy, is constant
Since H has a 1-dimensional kernel ard@f¢ is full rank at along its motion. Moreovef! f, = (I — AAT)(A x Vi) =

q* it follows that (16) has a 1 dimensional center manifold 4 » v, = f,, verifying that f, indeed satisfies the constraint

W= {q € Q: H(q)Vi(q) = 0}, (17) (13
as corroborated by explicitly computifighe Jacobian off; . o .
at ¢*: B. Assumptions, a Strategy, and Preliminary Analysis
Dfil .= —DHVo| . —HD%» = — HD? 18 Having introduced two vector fields — one which is energy
fily :ﬁ/ 4 Plg- (18) decreasing; the other energy conserving — we now sketch a

=0 strategy that brings initial conditions of system (13) tahin
Using ¢ as a Lyapunov function, and noting thitis idempo- an arbitrarily small neighborhood of the goal, by way of
tent and symmetric, La Salle’s invariance theorem statat tinotivating the subsequent definitions and claims that anise

system (16) has its limit set ine: the formal proofs to follow. Le®/* and®;> denote the flows
o= -VoTHV of f; and f> respectively. The point stabilization strategy is
. as follows:
of =0 if qgewse o
=—lHVI"Y —o i ¢ We (19) 1) If ¢ € We then follow a direction inim(H) for a
finite amount of timet, such that@{OG(qo) ¢ We and
SWe consider the configuration spag® to be a compact set since this po (I)tfoa(QO) < 1forallte (()7150)_

requirement is built into the definition of a navigation ftino. The changes
of coordinates for the camera maps are mostly definegEif2) because they .
are valid there. In general, as in the present applicatiar,td the limitations 2) If g0 ¢ W¢e and ga(qo) > €

of the vision sensors, the workspace is always bounded,ehighclosure is 2 1) Use a scaled version (fﬁ for time 7, to escape

compact. . .

“In the next section, we will introduce more specialized egstions that a 6—ne|ghborhood of W, keeD'ng the energy
extend the basin of attraction to include almost everyahitionfiguration in constant.
Q

8Note the abuse of notation in equation (18)H is actually a tensor. 9Below we show thavq : Hfs = fa



\Q6 obstacle Q1

[~
S

Fig. 4. lllustration of the local surroun@; of the goal in white. The thin
lines represent various levels gf This image is presented in the plane for
readability purpose. However it should be interpreted asctian of Q C R3

©

leaves

Proof: If ¢ € f,[0] thenVy = A, wherea is a non-

Fig. 3. Conceptual illustration of the flow associated witjuation (16). zero scalar, henc¥ ¢ € kerH and ¢ € W¢° as defined by
Each leaf is an invariant manifold with all trajectories lapking intoyve. 7). ]

To formally express thed-neighborhood” ofV¢ described

) in the stabilization strategy we start by defining the fuorcti
2.2) Use controllerf;, for time 71, to decrease theg : Q- {¢*} = [0,1]

energy ¢, stopping at ay-neighborhood of\y¢ )
such that®/*(q) ¢ W* and~y < 4. £lg) = I H () Ve(q) (26)
We now introduce a number of assumptions, definitions and IVe(q)l?

their consequences that will allow us to formalize each ef thrpe quantity||H (q)Ve(q)||? evaluates to zero only inve —
previous steps. The reader less interested in the formalf Pr@4*1. Therefore in a small neighborhood oF° the level
can skip to the end of Section IlI-C. sets of || H(q)Vy(q)||?> define a “tube” aroundWe. The
Al Qis a smooth compact connected manifold with boundienominator of (26) normalize$ such that0 < ¢ < 1.
ary. Moreover it produces a “pinching” of the tube at the goal
A2 ¢ is a navigation function irQ. q*.
A3 H has rank two, uniformly througho@. Lemma 2:For all g9 € I, , ¢ [po] intersects the unit

Assumption Al gives the proper setting for the existence l§vel set of¢, i.e., N o] # @_- _
a navigation function in the configuration space. Assunmptio ~ Proof: ;)bserve that{(q) = 1 is equivalent to the
A3 assures the foliation sketched in figure 3. condition Vo' QVy = 0 where@ := I — H. Now consider
Define thelocal surroundof the goal, illustrated in figure the family of vector fields
4, to be the closed “hollow sphereQ, := o~ ![I], with h — H(V 27
I.s := [e,s] whose missing inner “core” is the arbitrarily a(q). ' (Qla) + aH(@)[Ve(a). (27)
small open neighborhood. := ¢~ [Io]; Io. := [0,¢€), and ¢ = ha(q), (28)
whose outer “shell”,Q; := ¢~![La], with L1 = (¢s,1], Note, fora > 0 the goal pointg* is globally asymptotically

includes the remainder of the free configuration spaceis  staple over the domai@.UQ,, sincey is a Lyapunov function
defined to be the largest level such that all the smaller sevely, (28),

©o € (0,p,) are homeomorphic to the sphe&2, and are all

free of critical points,|Ve|| =1 [0] N o~ [(0, vs)] = 0. ¢ =—-Ve' (Q+aH)Vep =
The restriction tap-invariant topological spheres precludes = -V (Q(l —a) +al)Vyp =
limit sets of fo more complex than simple equilibria in the = —(1-a)VeTQVy — a||Vy|? < —al|Vyl?

local surround. In the examples of Sections IlI-F and vk

provide more specialized conditions that allow us to gu@n and ¢ has no other critical points other thah in Q. U Q..

that the algorithm brings almost every initial conditiontire Next, observe that~'[1] = W) is a center manifold for
“outer” levels, Q; into the local surround@; and, thence, hq. Hence, according to Fenichel's Singular Perturbation-The

into the goal seQ.. orem (see Appendix Il for a careful statement and citation)
Lemma 1:Given the previous assumptions there persists a “slow stable manifold” af,, Wy, that is
. . . arbitrarily close to¢~1[1] as the positive scalar approaches
fi 0N =f7 0[N Qs =W N Q.. (25) 0. configurationsg, € ¢[e] N W, that are arbitrarily

close tog* on this invariant set are associated with reverse



time trajectories(I)’}; (qo) that pass through every level seEquation (29) becomes:
—1 . . ha .

© o), for oo € I sincep o @y (qo) < 0 according to the B T

previous paragraph. It follows thayg intersects every level = —lIVelitrace (ALJ(A)DAAL)

set, o1 [po], for pg € I, for a = 0 as well. [ | = —||Vp|AZ (DA - DAT)A, (30)
Corollary 1: For all g € I, the level setp=![po] inter-

i T A, — T A, — : .
sects every level set af, i.e., £-1[a] N o—[p0] % 0 for all Since A A; = 0 and A" A3 = 0 we obtain the relations,

using the Lie derivative:

a € [0,1].
Proof: Chooseq; € ¢71[1] N ¢~ ![ypo] as guaranteed La,(ATAy) = (ATDA+ ATDAy) A3 =0
to exist by Lemma 2. Choosgy, € £71[0] N ¢~ [po] as La,(ATA3) = (ATDA + ATDAz) Ay = 0

guaranteed to exist singe 1[0] coincides withv¢, the center
manifold of f;, which intersects each level set [¢g] twice. Replacing the previous relations into (30) we obtain:
Since for allpy € I., the setp~![po] is simply connected

T T
then there can be found a continuous curve, [0,1] — —IVellA; (DA - DAT)A,

¢ [po] connectinggy and ¢;. The function o ¢(a) must = —| Vel (ATDAsA; — ATDA3A,)
vary continuously betweef and 1 and the result follows as = —| V|| AT [As, A5 (31)
claimed. [ |

Lemma 3:A sufficient condition for the Jacobian gh(q) Since the span ofAs, A} is equal to the span of By, B}
evaluated atV° — || V|| ~[0] to have at least one eigenvaludhen there exist continuous functions(q), 8:(¢) such that
with non-zero real part is that the control Lie algebra®n Ai = aiB1 + (B2, and (31) becomes
spansR3. T

. . = —||Vyp|A — B, B MBy + MsB
Proof: Let J(A) be the3 x 3 skew symmetric matrix | @ﬂ (2 = s32)[B1, Bol + MiBy + M Ba)
associated withA. We will show that the rank condition Y(@)A”[B1, B,

implies a nonvanishing trace by explicitly computing thgnere A7, M, are matrix functions with left kernel that

eigenvalues oD f|yye: contain derivatives ofy;, 5; and~y(q) # 0, Yq ¢ || V| ~1[0]
B 2 is a continuous function. If the matr{B; Bz [B1, Bs]| is full

Df: = J(AD f J(Ve) DA rank thenA”[B;, By] # 0. [

Dfaolwe = J(A)[D%¢ — ||[Vep| DA] Lemma 4: The Jacobian of,(q) evaluated alV° N Q, has

two non-zero real part eigenvalues with the same sign.
Proof: Let £, = ¢ ![a], a < ¢s. The functionfs|.,,

is a flow on a topological sphere. By lemma 1 and corollary

1 it only has two critical points with index-1 (Poincaré-

Now consider the change of coordinat®s= [A4, A, |, where
R defines a rotation matrix and, = [A, As] are orthogonal
to A. Find the eigenvalues ab f5:

det(Dfs — AI3) = det(RTDfo R — M) H_opf [38]). Th_ereforeDf2|Wcr)Qs has two non-zero real part
0 eigenvalues with the same sign. ]
= det <[ AT ] [D%¢ — ||Vo||DAIR — /\Ig) Now consider the implicit equation,
1J(4)

At the goal anyé* satisfies (32). Althouglf is not defined
at ¢* all of its level sets intersect at*. Finally, define the
Jhgrameterized cong, aroundV¢, and its complemerd :=

= —Adet (ATJ(A)[D*¢ — | V| DAJA, — A)

One zero eigenvalue can be immediately factored out fr N _
the previous expression leaving as the second factor fHe Cv —{g"}, by:

charactenstl.c polynomial of & x 2 matrix whose trace we C,={qeQ—{¢"}: &(q) <~} (33)
compute as:
T ) We follow by imposing conditions o/ and A such that the
trace (AT J(A)[D*p — [[Vp[| DAJAL) vector field f, can afford the needed “escape” fromic.
= trace (AT J(A)D?*pA, ) + (29) Lemma 5:Suppose system (13) satisfies assumption; Al-
[ V|trace (AfJ(A)DAAL) A3 and, hence, the previous lemmas. Then, there exists a

functiono : @ — R that renders the system
SinceD?¢ is symmetric the first term in the sum just presented

can be shown to vanish by noting: 4= 0o(9)Alg) x Velg) = f2(9) (34)
T ) unstable atvc N Q.
trace (ALJ;A)D pAL) = Proof: Let=: Q — C; =(q) — max(Re({\1, Ao, As}))
A return the eigenvalue with largest real part of the Jacobfan
=t 2 | J(A)D%* ] 4, A g g P
race ([ A3 } (D% 42 As ]) f2 evaluated at the closest point¢ahat lives inWw¢. Consider

the functiono : 9, — R such that

{1 if Re(E(q) >0
U(Q)—{ ~1 :f Re(E(g))SO

A7 ] pe
trace AT D cp[ Ay Az ]
2

A§D2(pA2 - A§D2(pA3 =0



Partition Q; into its two piecesQt = {¢ € Qs : o(q) = 1}
andQ~ ={q€ Qs:0(q) = —1} whereQtUQ~ = 9, and
QtNQ~ =0.

In Wen Q*t two eigenvalues ofDf, have positive real
part, rendering (34) unstable. W°N Q~ we get thatD f, =
—Df,. Therefore the two nonzero real part eigenvalueb ¢f
have a positive sign, also rendering (34) unstable. [ ]

Corollary 2: Under the conditions of the previous lemma,

there can be founda € (0, co) such that for alyy € £71[6/2]
we have¢ o ®72(qo) > 6.

Proof: Since W< n Q; is unstable, for every level,
with o < s andg, € L, N W€ there exists am™(a) > 0
and a neighborhoo®, + (¢.) := {¢ € Qslllg — ¢ull < T}
such that every trajectory of, with initial condition inside
B+ (qa) — W€ will eventually leaveB,.+ (¢, ). Let § be the
largest scalar such thés c Nt :=J,, B.+(¢a)- Lets™ >0
be the largest scalar such thiet™ := |J,_, B.- (¢a) C C4, With

[e3

2y = 4. The setNW := Nt —int (N ™) is compact. Therefore,

since N N We = (), trajectories off; and f, traverse\ in
finite time. Letro(go) := min{t > 0 | £0®/*(go) = 6}. Then
definer := max {70(qo0)|q0 € N'}. [

Fig. 5. lllustration of the construction used in the proofcofollary 2.

and Ap(q) := ¢ o P(q) — ¢(q). Since Q, is a compact set
it follows that |Ay| achieves its minimum valu&)., on that
set, hence at mos\, := ceiling(ys —€)/A. iterations are
required before reaching.. [ ]
Note that all initial conditions in the pre-image of the “&c
surround”, R := U~ &, (Q, — W*) are easily included

Figure 5 illustrates the steps used in the previous prodf. the basin of the goalQ,, by an initial application of the

Trajectories starting insid&” — CS will traversedC., anddCs
in finite time.

C. A Hybrid Controller and Proof of its Local Convergenc

Given the previous results define the time variabtgsr
and the scalarsy < § such that:

g | min{r>0lgoal @) =} ifgecs
’ 0 otherwise
(@, = min {t >0 | €0 @f*(q) =8} if g€ Cs— e
2(q,0) = .
0 otherwise

l.e., 1 is the time to reach the neighborhood o#/V¢ using

vector field f; and; is the time to reach the boundary Gf

using vector fieldf,, escaping this way the neighborhood
of W¢.This results in the following maps:

ce — ac,
QS_WCHCTECC_»%

af
o/

(35)
(36)

where C is the closure ofC. With § = 2y define the map
P:Q,—-W¢— 0C,

controlleru;. While it is difficult to make any general formal
statements about the size &f, we show in the next section
that for all the examples we have tried, the “missing” initia
conditions,Q — R = Z, comprise a set of empty interior

e(in all but one caseZ is actually empty) because all ¥,

excepting at most a set of measure zero, is include@,nin
configuration spaces with more complicated topology, tiere
no reason to believe that this pleasant situation wouldgiev

To summarize, we rewrite the strategy presented in Section

[1I-B using now the explicit input controls:
1) Vg9 € W* use the input

ug = [ a1 Q2 ]T7

(39)

for a small amount of times, wherea;, oo are scalar
constants not both simultaneously zero, such that
®f* (q0) < 1 and®{* (o) ¢ W, with f3(q) := B(q)us.

2) Vqo € Q, — W, follow successive applications of (38),
i.e. use the inputs to equation (13):

—B(q)Ve(q)
o(q)B1(q)J(A(q))Ve(q)

3) Vgo € R — Qs, use the inputu; for time ¢ until
q)tfl (C]o) € Qs-

ui(q) :
uz(q) :

(40)
(41)

P(q) =0l o®f , (g (37)
. 1(_’7) 2(?’27) Having discussed the volume of convergence, the next most
and consider the recursive equation: crucial question bearing on the practicality of this scheme
speed of convergence, will also be addressed on a case b
qe+1 = P(qr). (38) P g y

case basis in Section IlI-H using two additional formal islea
The setdC, can be interpreted as a Poincaré section for titeat we now present.
discrete system (38). We are now ready to present the final
result:
Theorem 3:There exists an iteration numbeéy,: 9, — N
such that the iterated hybrid dynami@d) brings Q, to Q..
Proof: Define

D. Limit cycles in the level sets of

In many practical applications switching between congrsl|
f1 andf> using a smalb-neighborhood is far too conservative.
It may be possible to escap&< by more than just the small

N :=min{n e NJ0 < N < N|po P"(q) < €}, collar ¢71[§]. In Section IlI-H we show an example where
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the trajectories off, flow from W< N ¢~t[po] with positive all negative real part, then the divergence will be negative
real part eigenvalues, wherg, < ¢, iS some energy, to reversing the flow off,. If the real part of the eigenvalues are
We N o~ pe] with negative real part eigenvalues, crossingll positive the divergence operator will not reverse thevflo

in between the stable manifold at the ga&¥. If we could Even in the event of the eigenvalues having simultaneously
recognize the passage inl¢* and switch off controllerus  positive and negative real parts, the sign of the divergevilte
(i.e. turnW? into an attractor of a suitable modified form ofnot change the instability. Define the functien: Q@ — R by

f2) then a final application of controller; is guaranteed to T - T

achieve the goal statg;. The hope of reworking the form o1() = div(f2) = Arla)” - Vipla) (43)

of us so that the resulting closed loop vector fiefd, has its ~ 2) Maximizingg: Another way of escapingV* is to follow
forward limit set solely inV* thus raises the question of wherfhe direction that maximizeg. By definition its maximum is
there exists limit cycles in the level sets @ffor the flow of the unity. Let the functiom, : Q — R be defined by:

f2. More importantly, we seek a condition that guarantees that 02(q) := VEWQ)T fa(q). (44)
every trajectory offy starting in a small neighborhood ¥9¢ . .
can intersec¥V? either by forward or inverse time integrationusmg L(a) = &(g) = ,O as a candidate control Lyapunov
of system (22). Note thaf, generates a planar flow, makingﬂmctlon for the systend = 02(q)f2(¢) we observe that
the Bendixson’s criteria a natural candidate for such condi L = Ve (VE(Q)T f2(9)) f2(q) (45)
tion. Several authors [39]-[42] have developed extensio_ns = ||IVE(q) f2(q)|I> = 0

Bendixson'’s criteria for higher dimensional spaces, olinaj . o o .
in general conditions that preclude invariant sub-madifol "€ functiono(q) destabilizes (34) awy* if there exists a

on some set. For systems with first integrals, such as sofne> 0 Such that the seL(Ce- — W*) = 0} does not define

classes of systems that result from nonholonomic congsrairf" invariant manifold (following La Salle’s). -
the conditions simplify to a divergence style test. Fetkan 3) Stable manifold approximationthe third heuristic com-

theorem (see Appendix IV and [39]) states that in open SBbs%ytation ofo presented here, aims directly at approximating

wheredivfy # 0 there can exist no invariant submanifold% et stable m?mlfl()@ SO tg [nlr;mae thethnumbe_r ?f swﬂchetsh
of any level precluding cyclic orbits. Note that the predou etween controllery, and f;. Suppose there exists a smoo

H . _i —1 H s i
result does not preclude quasi-periodic orbits. In Sectibn IEnCt'OnG Q= Rtwthose pre |mag«§i. 0] 'LW : 33'23 d
G we give an example that, by having, < 1, results in € same argumentation as in equations (44) and (45) an

. o .
guasi-periodic orbits on a torus. Using Cauchy-Riemann ﬂ[l%placmgg by G(q)” we obtain:

divergence of the vector field, results in: 034(q) == —V(G(9)*)" f2(q). (46)
div(fz) = div (A(q) x V(q)) Again, takingL(q) = G(¢q)? > 0 as a candidate control Lya-

_ A(enT punov function we observe that the systém= 03,(q)f2(q)

(Vx T(q)) Vela) will have its forward limit set inW? if vg € Q — W? :
= Ar(a)” Vela) (42)  (q) = —||12G(q)VG()T f2(q)||> # 0. Note that it is possible
In the examples described here, the s@ = for the zero set ofV(G(q)*)" f2(¢) not to be contained in

{q€ Q:Ar(q)"Vep(q) =0} is a 2-manifold that contains W#, breaking the desired result. In some cases however, it is

the goal. IfD N W = {¢*} andD is not itself invariant for Possible to use the function
f2 then we are guaranteed that there exist no limit cycles on o3(q) == sG(q) (47)

the level sets ofp.
b wheres € {—1,+1}. The signs is chosen so tha¥V° can

be made unstable, i.e. in a neighborhood/®f the signs of
div(f2) and G should match.

The o function introduced in lemma 5 modifies the flow |n general, finding an exact approximation ¥f* by an
of f» rendering the center manifold unstable. Having thafigebraic implicit equation is unattainable since thatuies
property is sufficient for stabilization, but more can beame solving a set of partial differential equations [15]. We geed
plished. By careful craft ob one can minimize the numberpy finding ak-order polynomial approximation td/¢, denoted
of switches between controllefg and f, necessary to reachpy )3:. Without loss of generality, we assume that the goal is
the desired neighborhood of the goal. If the stable manifold the origin,q* = 0, and the tangent ofV* evaluated at the
W? matches the zero set ef and )W* is made attractive origin is the span of the first two canonical base vedfoiset

by f, for any point in Q, then one getsh/: o &/2(Q,) =
y y P i g by OO( S) 100ne can observe the difference between lkeda’s proposedithly [27]

7
¢", 1.e., only 2 steps are necess,ary o reac? the goal. N%F\% the one presented here. In his scheme the first step aitjsabm
however that if the zero set af intercepts)V¢ more than gspecific, one-dimensional trajectory, instead of the ergal's co-dimension

one time then there exists the possibility that the systelh wene stable manifold, hence one worries about robustnesseipresence of

; ; -inevitable model error and sensor noise. Moreover, it isaimious how to
not progress to the goal' In this section we present prdctl infegrate perceptual limitations in the resulting contial. In the scheme

computational heuristic substitutes forwith zero sets that presented here, we aim at the full co-dimension one stablefotz
locally approximate/Vs. Ujtis always possible to align the tangentdf* at the goal with the span

1) Divergence: Following the results obtained in SectiorPf the first two canonical base vectors by means of a translati= ¢ — ¢*
and a rotationR. The matrix R is obtained by applying the Gram-Schmidt

I1I-D using the divergence operator seems natural. In ﬂZﬁhogonalization on the matrix of the eigenvectors Iof1(q)|q=q+ With

neighborhood of the center manifold if the eigenvalues haeigenvalues sorted by absolute magnitude.

E. Computational heuristic substitutes fer



h be the “aligned” version of,. We seek to find a functidd
g : R? — R such that its graph i3V?, i.e., 3 = g(z1,2).
Define the implicit function as:

G(xy, w2, x3) := g(x1,72) — x3 (48)

Let g, be ak-order polynomial approximation of at the
origin parameterized by; ;:

HEENEDY

i,5>0
i+i<k

i .0
ity
TR

(49)

and leth;, be thek-order Taylor expansion of at the origin:
i 0.0 0
7 _ L1523
hi(z1, 22, 23) = ;D(T!jm ( h) (50)

itjHI<k
For the systemj = h(q) the manifoldG(q) = 0 is invariant.
Therefore for trajectories that start {%(q) = 0 we obtain

G(q) = VG(q9)"h(g) = 0.

o9
oz} 3x% oxh

(51)

Replacingg by gx, h by hy andzs by gi(21,x2) we obtain
the following approximation equation:
99 gk

(|: 8171 8:172

Equation (52) is polynomial iny; ; and in z;. Since by
assumption the tangent spaceWf at the origin is the plane
x3 = 0, we immediately obtain:

15Ji, ~ .
Ik } 'hk) o(z1,22,gx) =0 (52)

oh oh

h(0) = — = — =0, and
8501 q=0 8:02 q=0

70,0 = 71,0 =Y0,1 =0

The 2nd order terms ofy; ; are obtained by solving the
following equation evaluated at the origin, wheke is the
i-th component of:

Fohe o 7 10 ]

Oza Oza 2 0z3
70,2 - 6h2 6h1 8]12 6h1 62h3
1;; | 0z, Oz Ozy Oz 0x10z2
’ 0 ohy  Oh 10%hy

L Oy Oxy 2 0z2 |

Note that a measure of the curvature)dfc at the origin is
given byyf1 — 72,070,2- The higher order terms of; ; are
obtained recursively by incrementally increasini equation
(52) and solving fory; ; with ¢ + j = k.

F. lllustrative simulations using a norm-like Navigationc-
tion

11

following simply connected configuration space: &t {q €
R?: gl < 1} and

(53)

Clearly, ¢ is a navigation function irQ sincep(90Q) = 1 and

© has a unique minima at the origin. Note that all the level sets
of ¢ are spheres, henge can be stretched to the boundary of
Q resulting inNR = Q. Below we present thes function for
different approximation levelg. Note that for this particular
configuration all thes; functions differ from each other.

o(q) = =7 + 23 + 23 = [lq|*.

x if k=1
£C+y—29 if k=2
7= x+y—;+% if k=4
x-l—%e-i-%-f—i—gz if k=6

Table | compiles the simulation results. One can conclude,
as expected, that the number of iterations of (38) requived t
reach a fixed neighborhood of the goal dramatically deceease
when § increases. Moreover, although and o, do a good
job at escaping/Ve©, they require more iterations in average
than the higher order approximation ¥f*. The best results,

in terms of iteration number, are obtained fgy whenk > 2,
where the approximation ofV* is very good.

TABLE |
SIMULATIONS FOR THE UNICYCLE WITH A NORM TYPE NAVIGATION
FUNCTION. EACH ENTRY CORRESPONDS TO THE AVERAGE NUMBER OF
SWITCHES“N” FROM A RANDOM INITIAL CONDITION 5 METERS AWAY
FROM THE GOAL FOR50 SIMULATIONS. WE USE THE PARAMETER

y=10"3

6= 0.2 0.5 1

e= 1cm 1mm 1cm 1mm 1cm 1mm
o1 27.9 37.8 9.9 13.2 2.9 3.1
o2 29.3 41.0 9.8 12.9 2.7 3.2
o3, k=1 28.7 38.5 10.3 125 2.7 3.0
o3, k=2 28.2 38.3 9.7 135 1.3 1.8
o3, k=4 29.9 37.8 10.6 134 1.3 15
o3, k=6 30.2 379 9.2 13.8 1.4 15

G. Simulations for a single beacon visual servoing problem

We present here a simulation of a different visual servoing
problem: positioning a robot in relation to a single engheee
beacon. This problem has been addressed by Kantor [30] and
Bhattacharya [31], as discussed in the introduction. Télésr-
native solution approach can be readily compared to present
scheme. Since the visibility set (the complete configuratio
space) is not a topological sphere, this example also pesvid

We now present numerical results of simulations for a norr@i- Simple illustration of the additional effort required tear
like navigation function in order to compare the performman@0n about initial conditions outside the “surround”. Figu
of the functionso; defined in Section III-E. Consider thelillustrates how the level sets which are topological sphere

12In general this function may not exist outside a neighbodhofthe origin

(the components 0f;) form a proper subset of the toroidal

visibility set in this case, as illustrated in figure 6(a).
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a) Configuration space b) Top view

level sets

c) State variables d) Energy
3t 1
) ¥
) 0.8
1
0.6f
t
0.4}
0.2f
5 10 15 20 ts t

Fig. 6. Simulation of the hybrid controller operating in thisible set of a single beacon landmark described in Sedtle@. The initial configuration is
qo, the controller switches at timg in position¢s and the final configuration ig;. a) Configuration space plotted dix, y, 1) for readability purposeb)
Top view. The visual beacon is represented by the large kdatkThe gray areas violate the visual constrainjsandd) State variables and energy plots.

We applied the algorithm developed in this paper to « The goal location inSE(2), denoted by(z*, y*,0*), is
this problem, using again, the unicycle motion model mapped bye to (n*, u*,d*). We assume this way that

A= cos(d) sin(f) 0 ]. The navigation function is de- the final orientation of the robot is important.
veloped in double polar coordinates and it is brought back toe The cosine functions are used here, €lg-cos(p—pim)),
SE(2) by the change of coordinates SE(2) — S! xS x R™: since the state variablesand . live in St. The desired

. arctan(y/z) Igiloal is actually(n* + 2kym, u* + 2kom, d*) with ki, ko €

w | =c(w,y,0):= | 0—arctan(y/x) (54) ; )

d \/m o k is a shaping term.
The navigation function reflects the following physical atThe resulting navigation function follows the same “squash
tributes of the sensor: ing” and change of coordinates as in equations (8) and (9).

1) The robot must be in an interval of distances away froMote that by imposing a minimum distance to the bead¢qn
the beacon, so to not get too close or too far away frothe configuration space is not simply connected. It is in fact
it, specificallyd,, < d < da;. homeomorphic to a solid torus as illustrated in figure 6. This
2) The robot's camera must face the beacon at all timaesults ing, < 1. Here, some level sets are topological torus
encoded ag,,, < v < par, Wherep,,, 1as are the field and others topological spheres. However, it is observediea
of view boundaries of the camera in polar coordinategenter manifold/V¢ is a circle, every level set homeomorphic

Consider the potential function: to the sphere intersecl&“ and every level set homeomorphic
5 . . d— a2\ to the torus does not intersel“. Since for all points in the
5 (2 — cos(n — ") — cos(p — p*) + (d — d*)*) domainQ by following the flow of functionf; have its limit

(1 —cos(p — pm))(1 — cos(p — par))(dar — d)(d — dm) set inWWe then one can argue that the domain of attraction for
For the previous potential function we have: the hybrid stabilization algorithm presented here is théren
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a) Configuration space b) Top view

* 2F
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Fig. 7. Simulation of the hybrid controller operating in thisible set of a three beacon landmark. The initial configonais qo, the controller switches at
time ¢ in positiongs and the final configuration ig;. a) Configuration space plotted o, y, 50 — 5 arctan(y/x)) for readability purposeb) Top view.
The visual beacons are represented by the large black do¢sgrby areas violate the visual constraimfsandd) State variables and energy plots.

Q up to a zero measure set. In fact, experience shows thia 383 simulations run of a single beacon visual servoing
better trajectories (in the sense of minimum number of “bagkoblem we obtained a mean error position of 4.3 cm and a
and forward” parallel parking motion for the vector fiefd) mean arc-length ratio of 4.1. Note that in figure 6 the robot
are obtained if the energy levelis kept very high, i.e., in the executes a parallel parking maneuver in the plane. Although
torus level sets. There, the trajectories define quasegiri it is well known that for the unicycle the parallel parking
orbits that intersect the stable manifold® indefinitely. motion is required to move sideways, the trajectory obthine
For the simulations and experiments we consider the int@n the plane is a natural consequence of moving on a level set
esting parameters to be tineean error positiordefined by:  of the navigation function. Moreover, the navigation fuoot
enforces that the robot does not hit the obstacles, singggdoi
that would require puncturing the level sets away from the

where ¢} is the final position reached on théh run; and goal.
the mean arc-length ratiathat gives an idea of how much
worse the robot performs against a fully actuated robot thidt Simulations for the visual servoing problem
can always follow a straight line to the goal. For continuous A representative numerical simulation for the visual segvi
time it is defined by: problem described in Section Il is illustrated in figure M

i _ the navigation functiorp, presented in equation (9), is defined
Jo? g (gh, 1)l dt in a convex set and has a unique critical poingatall of its

g — q*|| level sets are topological spheres. The inputs (40), (4d) an

(39) are computed using the nonholonomic constraint (1&) an
wheret’, is the final time andy/(q, ) the derivative of the the navigation function (9). Table Il compiles the simuati
trajectory starting at the initial positiog}, for the ith run. For results.

mean error position= Mean; [||¢; — ¢*||] , (55)

mean arc-length ratic= Mean, , (56)
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V. EXPERIMENTAL IMPLEMENTATION correction. Since it assumed that the beacons project into a
We now present the results of our implementation of tHE'€: following figure 2(a), roll correction is accomplishey
tting a line to the 2D centroid of the 3 blobs (chosen by size

visual servoing algorithm using the robot RHex [2] in thred , i ,
steps. In Section IV-A, we outline the hardware and softwaf8'd ¢1ass) and attaching a frame to it. The beacon coordinate

components that comprise the image processing pipelii. I£€ defir_1ed_in reIatipn to that frgme. Th_e following s_impﬂfie
important to keep in mind that this perceptual apparatust m§&Pression is used in the experimental implementationyevhe
be quite simple since it is located entirely onboard the tob¥i: Yi) are th_e c_eﬂriltr0|ds of the 'Fhree be.acons in the image
and runs in real time as we detail below. In Section Iv-B wBlane after Heikkila's lens correction map:

describe the controller implementation, emphasizing e t X+ 0Y; (57)
extensions to the simple version of the algorithm presented o= 14062
above in Section Il that compensate for the significant sens ¢i = arctan(e;) +7/2 (58)
noise and limitations in control authority inherent in this .

; . . - with,
physical setting. We explain why the resulting closed loop
(hybrid) behavior is still governed by the correctness ltesu 5o X Yi-3X XiVi (59)
of Section Ill, notwithstanding these real world adjustisen ' (> X)2-3> X2

Finally, we present tables and figures of data summarizifg the simulations developed in Section Ill-H the robot is

implementations of the complete system. pitch are encoded in the navigation function. However, i th
experimental implementation there can be large distursmnc
A. The Perceptual Hardware and Software that pitch the robot enough for the beacons to leave the field

L o of view either from the bottom or from the top of the image.
The entire visual sensor suite is implemented on a secow

dedicated, onboard 300MHz PC104 stack, running Linux € coded a state mach|_ne that in case of "emergency” will
stop and rotate the robot in place until it relocates the tesc
connected by local ethernet to the (QNX based) motor contigl.” " .
. . . is simple procedure corrected for all the temporary fagu
stack documented in [2]. We implement the following com; ) o
. L . that occurred due to excessive pitching.
putational pipeline on this second stack at a 10 Hz update : T .
rate: 4) Supervisory state machine: The transitions between the
1) Video acquisition: is accomplished by a Sony DFWC%OBOntr(.)"ersf1 and :f2 are |mplem_enfte.d. using a standard state
) LS : machine formulation. The robot is initiated with controllg.
camera via a firewire connection. o . .
eﬁ transition occurs if the robot crosses the stable maniépld

2) Image processing library: Early vision is accomplish L o . .
using our in-house SVision library inspired by Hagers XVi_proxmatlon switching to controllef;. If f; fails to bring the

; . ) : : iy robot to a pre-defined neighborhood of the goal location, i.e
sion [43] albeit conS|Qer§ny stripped dO.W” in compart _" reaches the center manifold outside the goal’'s neighbarhoo
implement the following image processing methodology:

) ) ] ) and a fixed amount of time as passed, then another transition
« color calibration (this step is executed only at startup): fccyrs, switching back to controllgs. The robot stops when
lookup table is used for color classification in the YUVt yeaches the goal’s neighborhood. As mentioned before,

color space (the standard TV NTSC color space) Wite state machine will also deal with particular emergency
size 256 x 256 x 256. Different color classes are acquiredsjyations.

by selecting different objects in the GUI's camera view.
After a C(_)Ior class is a_cqwred |ts_ size is |_ncre_é§etny B. Controller Implementation.
a pre-defined amount in the luminance direction of the _
HLS color space (Hue, Luminance and Saturation) so as! "€ control algorithms use the camera map exactly as
to maximize robustness to daylight changes, specificaﬁ&‘ﬁfmed above in Section Il. However the substantial peuedpt
switching from shade to direct sun exposure. noise and limitations in control authority associated vatlr

« blob extraction: the standard 4-neighbor connected coRf?ysical RHex environment require two additional complica
ponents algorithm is used as presented in [44]. A vectlpns in the controller implementation. _
of mass, centroid and labeling class is returned per blobFirst, although the horizontal plane behavior of the robot
found. RHex is reasonably well approximated by the unicycle me-

« lens correction: the standard Heikkila [45] lens model fghanics presented in Section II-C, the limited number ofsgai
used. The lens correction map includes all the intrinsfivailable for any given terrain [46] typically dictate thae
camera parameters, including focal length, and returﬁgallgble fore-_aft speed control be limited to a few diseret
“normalized” points, with units in meters, projected intd/elocny maghnitudes. ThusZ a more accurate model of_ control
a plane 1 meter away from the robot’s camera. Calibratiét/thority would replace:, in equation (11) with a variable
is performed at startup using a flat checkerboard surfa%_%'i'j”g its \éalues I'”d"’} dlscre';)e_ set. Fc;tr)tu_napelyag;gwmtm

3) Image stabilization: The centroid information providede s can be scaled in an arbitrary (albeit sign definite) mean

. o i . with no change in steady state behavior. Namely, for any
by the image processing library follows a post-processaig rgradient field, f(z) — —V and any positive scalar valued

13The color's acquired simply-connected volume is projedted the Hue function, o (), Observe thatp remains a Lyapunov functmn
and Saturation plane and then spread over an interval in hgifance axis. for the scaled fields(x)f(z). Our implementation using a
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discrete magnitude field can now be modeled &y) := C. Experimental results

ao/[1f(2)]].

Second, in systems where noise is introduced

via im- The first data set, a trace of the visually perceived pose

perfect perception or actuation the vector figlgl loses its and energy level resulting from application of controljgr
¢-invariance. Although a thorough-going treatment of th@ustrated in figure 8, gives a feeling for the robustness of
stochastic version of our problem lies well beyond the scofjeese gradient style controllers as the robot roughly Hiatvy

of this paper, the reliance on gradient vector fields oncénag&aces out the desired trajectory in the face of notablecsens
affords an intuitively simple “regulator” against thesedesir- Noise, the inevitable perturbations from uneven ground, as
able (and, ultimately, dangerous) fluctuations in proxmé Well as the very severe parametric uncertainty arising from
the obstacles. Namely, suppose that the noise is additite dhe crudeness of the unicycle model as a description of the

zero mean. Rewrite equation (34) as:
G = fa(q) +v(t)
Define the new inpufg as:

fo = fala) + B(¢" — #(q)) fila)
= oJ(A)Vo + B (¢" —¢) HV ¢,

horizontal plane behavior of RHex. Far away from the beacons
the pose estimation performs poorly, as seen in the high

(60) variance of the data. This experiment is conducted outdoors
using RHex’s onboard camera only, according to the proeedur
(61) documented above in Section IV-A, for two different target

levels, as defined before equation (62).
The second data set — a graphical and tabular summary

where 3 is a positive scalar ang* is the desiredarget level of convergence from several different initial configurato
set normally chosen to be slightly less then 1. The dynamies portrays the nature of “practical stability” [25] assugin

of o for ¢ = fa(q) + v(t) are:
¢ =V fa+B(¢* — ) Vo  HV o+ Vo' v
~—— ————  ——
=0 vy w
= 0v(p" — ) +w

As ¢(t) evolves over timeyp(q(t)) converges to a neighbor-
hood of p* if v > 0 andw is small in proportion. In practice

convergence to a small neighborhood of the goal pose with
the guarantee of maintaining visibility (never losing gigfh
the triple-beacon landmark) along the way. This experiment
was conducted indoors with the ground truth data acquired
(62) Dby an overhead camera running at 30Hz. Quantitatively, the
interesting parameter to measure is thean arc-length ratio
of the path, defined in discrete time by:

this means that the robot will stay in the proximity of thegietr

level setp* while it is in motion, escaping the center manifold.
, rereal
that adding the second term to the vector field (61) is indeed
necessary. The robot was not able at all to follow a partrcul
level set whenf, was solely used. In contrast, note thfatis

energy dissipative, hence standard arguments from Lyapu
theory establish its robustness against these sorts afrpart
tions without the requirement of any further modificatidn.

The experiments performed on RHex, described next

Although formal robustness analysis is generally not atdd
for nonlinear systems, the nondegenerate gradient syst
of the kind introduced in this paper are structurally stablgha
hence “small” perturbations away from the nominal model a
guaranteed to result in only “small” perturbations in thaiti

set.

The resulting modified input of (41) used in the experiments,
before applying the scaling required for RHex’s discretelac

ation presented in the beginning of this section, is:
up 1= B [0J(A) + 8 (¢" — ) ] Ve

As a final note we would like to remind the reader that

S lla, — a4 |

Jnean arc-length ratic= Mean; P — , (64)
lao — a*

Fnere: spans the indexes of the samples for itte experi-
ment. Table Il compiles the experimental results and figure
"Willustrates three representative runs. No chatteringceff
was observed in both the experiments. This is due to the
., state machine formulation (that prevefit and f, to switch

in an “incoherent” fashion) and RHex’s actuation model,
izing discrete steps. Note however that in wheeledolehi
ttering may occur when controllgs is used very close to
tfie goal, i.e. with a very small energy. Singewill live on a
very small level set of the navigation function, this resuit
very small oscillations around the goal.

TABLE Il
EXPERIMENTS EXECUTED USING THE ROBORHEX IN COMPARISON TO
(63) SIMULATIONS OF A UNICYCLE ON THE SIMPLY CONNECTED
CONFIGURATION SPACE DEFINED IN EQUATION(10)

throughout the paper we consider only the problem of point
stabilization and avoid the tracking problem. In the expen- # mean error position mean arc-length ratio
tal implementation the robot eventually “tracks” a level sk Simulations: 368 5.3 cm 2.9
the navigation function but still does not track any patacu  Experiments: 1 5 17.6 cm 9.3
fixed trajectory. Tracking changes completely the striectuir 2 5 17.8 cm 6.2
the problem since in general time-invariant vector fields ca 3 5 17.6 cm 6.5
no longer be used for control. 4 5 26.1 cm 5.2
R 5 5 11.5 cm 5.5
l4gpecifically, the Lie derivative of along f1 := f1 + v is “usually” 6 5 27.9 cm 4.9

negative — except possibly in a small neighborhood of theeremanifold

whose size is regulated by the relative magnitudefiofand the variance of

v. It follows that this neighborhood remains an attractor awerage”.
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Fig. 8. RHex's outdoor experiments on packed dirt for cdigrofz. a) Top view of perceived trajectory with units in meters drjdperceived energy(q)
for target levelp* = 0.9. ¢) Top view of perceived trajectory ard) perceived energy(q) for target levelp* = 0.8. The beacons are represented by the
black dots.

a) b) ©)

Fig. 9. RHex’s ground truth measurement experiments. fiffegoal locationg* are represented by the thick line white triangles. Theahitonfigurations
qo are represented by the thin line gray triangles and the fioafigurationsq; by the solid black triangles.

V. CONCLUSIONS AND FUTURE DIRECTIONS APPENDIX |

We present a robust visual servo suitable for registering a CAMERA MAPS
legged robot with limited perception relative to engineere
landmarks over rugged outdoor terrain. At the heart of our Define ¢* : SE(2) — C as the map from local body
algorithm is a provably correct hybrid controller that resis coordinates to the intermediate spatéy:
navigation functions developed for fully actuated bodies o

kinematically constrained systems. It is straightforwaeod ) arctan(—xy/ys)
extend the guarantee of obstacle avoidance. Verifiable as- ¢ (Zv: Ub, 0b) == O — arctan(—x;/ys)
sumptions are given for convergence to an arbitrarily small Vg +yp

neighborhood of the goal. We present various simulations fo
different perceptual models and summarize the results of With inverse:
extensive empirical implementation on the legged robot:RHe

We are presently exploring generalizations to robots with bes 1 —rsin(¢)
higher degrees of freedom and alternative motion consrain () (gt 1) = | reos(9)
as well as a variety of alternative landmark schemes. ¢+v
VI. ACKNOWLEDGMENTS Define ¢*® : SE(2) — SE(2) as the map from world

We thank John Guckenheimer for several useful converggordinates to body coordinates:
tions related to the computation of invariant manifolds and
George Kantor, Al Rizzi and Anthony Bloch for a number of RT o Tw
stimulating and helpful conversations bearing on the mnubl (T, Yooy Ou) 1= — [ gw 1 }
addressed in this paper. We would like to thank the reviewers
for a number of very helpful suggestions and comments
regarding the presentation of this material. with equal inverse since®? is an involution.
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APPENDIXII The previous theorem establish that under appropriate con-

COMPUTATION OF INVERSE CAMERA MAP ditions the “slow” dynamics oh,,, defined in equation (27) ,

Let ¥; = [ cos(¢;) sin(¢;) | where ¢; are the angles approaches the center manifold iaf asa goes to zero. For

defined in Section II-A. Knowing that ”.JY = 0 we have: @ tutorial treatment of Singular Perturbations please 48¢ |

or [49].
V' TRy (piRa, Ry +11)és =0 (65)
in particular, sincex; = —as = «; pa =0 APPENDIX IV
FECKAN’S EXTENSION OF THEBENDIXSON'S CRITERIA

1Yy JRyés =04 Ry =01 [ JY2 —Y2 | (66)

Definition 2 (F&kan [39]): Let M < R! be an m-
dimensional compact smooth orientable submanifold with a
nonempty borde®M. HencedM is anm — 1-dimensional
b=+ T compact smooth orientable sub-manifold. Assume that 2.

2 Let V C R™ be ak-dimensional smooth submanifold &
Let Y’ andY be obtained by expressions (5) and (6). Thenwith empty borderdV = (. Let 3 € Lip(OM,R"™) be such

YT R JRyRoés + 1Y T T Ryés — 0 that 3(M) C V andr = §/0M satisfy:

The constand; = +1is chosensothat 3 < ¢ < 7 resulting
in:

(67)

(68)

. | 7 is injective ondM.
o [yr oy ]| Ml J
TJR¢é2

Il The inverser—! : 7(0M) — R! is Lipschitz on the set

T(OM) C R™.

Let Y[ be the orthogonal complement of the subspagge call the sets = 7(9M) anm — 1-V-L-boundaryof V. It
generated by the lines dff, i.e. Y, lives in the null space s a generalization of smooth submanifoldsiof

of YT, with YT = (YYT)~'Y the pseudo-inverse of 7.

Theorem 5 (Fékan [39]): Let g1, 9o, -

-, 9p € C*(R™,R)

Since[ YT Yy | is full rank then the previous expressiome first integral of (22). If = G~1[0] is a nondegenerate

is equivalent to:

VT w1 | JReRyéa | _
v | v v e | o
YiYT I 7[ JRsRyés |
{YfY’T OH rIRges | 0 (69)
Solving for Ry, we get: [1]
Y'Y,
T = dg—r— 70
el (70) 12
Ry, = Rj[Jz -z | (71) a
Simplifying we obtaim):
¢ = arctan(0, R} JY'Y]) (72) 4

Again d9 +1 is chosen so that-7 < ¢ < 7. Finally
. : i 5]
solving forr in (69) we get:

YYTI[ Jr —x |és+rJRyés =0 )

& r|JReéal| = [YTYTT[ Jx -z ]é 0
1YY TIY'Y,|
o p=t -t T2l 73
7774] (73)
8]
APPENDIX |1

FENICHEL S SINGULAR PERTURBATION THEOREM

Theorem 4 (Fenichel [47]):Consider the system (28) with [9]
0 < a <« 1. Suppose that forx = 0, (28) admits an
equilibrium manifold of dimensionn, 0 < m < n, denoted
by Wy and for allg* € W}, the Jacobian matrix),ha |40y  [10]
admitsn — m eigenvalues with a strictly negative real part.
Then, for every open and bounded subSgtof W}, there [11]
exists an open neighborhodg of Qy in R™, such that, forx
positive and small enough, the perturbed system (28) admits
an attractive invariant sub-manifold’;* contained inV; and
close tow).

level set of the mapping' = (g1, 92, - -

,gp) and in addition

divfy # 0 on V, then there is nam — p — 1-V-L-boundaryS
of V' which is invariant for (22).
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