
A New Distributed Real-Time Controller
for Robotics Applications

M. Buhler, L. Whitcomb, F. Levin, D. E. Koditschek ’
Center for Systems Science

Yale University, Department of Electrical Engineering

Abstract

This paper describes a dual board real time distributed control
module based on the INMOS T414/T800 Transputers. The CPU
board provides fast external memory, support for the four 10
MHz serial Transputer links including two fiber optic links, and
an 1/0 expansion connector. The board’s backplane connector
is pin compatible with the INMOS ITEM Development System.
The plug-in 1/0 board provides a bidirectional latched 32 bit 1/0
bus with full handshaking support. Half of this board is allotted
to a wire-wrap prototyping area allowing for easy customization
to specific 1/0 needs.

An easily configurable network built from this low cost modu-
lar design should be able to tackle the most demanding real time
control applications, with respect to computation as well as 1 / 0
requirements. We describe two particular applications presently
underway in the Yale Robotics Laboratory. The first is a three
node network that supports a simple juggling robot. The sec-
ond is a twelve node network for control of a standard industrial
robot manipulator.

1 Introduction

Advances in theoretical understanding of the dynamical proper-
ties of nonlinear mechanical systems [7, 13, 14, 15, 231, and some
recent empirical experience with many-degree-of-freedom robot
arms [2, 91 suggest that the time is approaching when their con-
trol will be as routine a matter as that of comparable linear time
invariant systems. It begins to seem as though the most critical
present obstacles to such a possibility lie in the practical realm
of actuator and computational technology. This paper addresses
an approach to the constraints of the latter domain.

We document the specifications and preliminary performance
characteristics of a low-cost computer intended as the representa-
tive prototype of a single node in a highly interconnected parallel
computing and sensing environment dedicated to the real-time

‘This work is supported in part by Inmm Corporation, GMF
Robotics Corporation, PMI Corporation, Weitek Corporation, and, in
part, by matching funds from the National Science Foundation under
the terms of a Presidential Young Investigator Award held by the last
author.

control of a complex nonlinear system. While there is no single
aspect of this system which cannot be equalled (or even bettered)
by some other commercially existing (or soon to exist) device, we
feel that the combination of flexibility in inter-processor connec-
tion schemes, simplicity of programming and convenience of de-
velopment environment, and raw computational and 1/0 speed,
along with its very low cost make it an ideal vehicle for explor-
ing the practical computational issues in robot control alluded to
above. We presume that the same considerations lend this com-
puter a certain attraction within the industrial world as well.

We continue this introduction with a brief review of compu-
tational issues in robotics and a comparison of some alternative
technologies for addressing those issues. The second section of
the paper provides a short account of the advantages to this ap-
proach, a physical description of the prototype system, and a
description of the improved fabricated dual board - the Yale
XP/DCS Version 1.0. Finally some application examples are
discussed in the last section.

-__

1.1 Computational Needs in Robotics

A generally accepted model for robot arm dynamics takes the
form

M (d i + 4 4 + k (q) = (1)

where q is a vector of joint meaurements, T is a vector of control
torques or forces exerted on each joint by the actuators, M arises
from the “inertial” properties of the links, B , from the Coriolis
and centripetal forces of motion, and k represents the gravita-
tional forces. Even for kinematically simple robots, the entries
of the matrices M , B , and the vector, k , are extremely complex
high order polynomials in transcendental functions of the joint
variables, q. An important early study by Bejczy [3] shows that
these nonlinear terms are not simply analytical artifacts, but rep-
resent cross-coupling forces which may vary by as much as three
orders of magnitude over the robot workspace.

As of this writing, the most widely discussed control algo-
rithm to achieve “robot tracking” around some B priori specified
reference trajectory, q d , is the so-called “computed torque” or

63
CH2686-4/89/0000/0063$01.00 0 1989 IEEE

“inverse dynamics” algorithm [6, 19, 241,

which corresponds to the general linear strategy of pole-placement
via state feedback, preceded by a forward-loop compensator in-
tended to invert dynamics of the feedback compensated plant.
Implementation of this strategy evidently requires computation
of the full robot dynamical model (1) - on the face of it, roughly
lo5 flops for a six degree of freedom arm - in real time. Work
by Hollerbach [7] indicates that the full model may be computed
at the cost of only lo3 flops by taking advantage of the intrinsic
structure of the dynamics, and a recent analysis by Lathrop [17]
indicates a great deal of this computation may be implemented in
parallel. It should be noted as well, that each sample requires two
input measurements (a position and a velocity) and one output
command (desired torque or force) per degree of freedom.

In fact, algorithm (2) represents only one of a variety of differ-
ent approaches to the robot trackingproblem, which itself, is only
one of many control problems which arise within the context of
robotics. Even within the tracking paradigm, if one does not as-
sume & priori knowledge of the robot link and robot load dynam-
ical parameters (i.e. mass, centroid, moment of inertia matrix)
then an adaptive version of algorithm (2) [lo, 22,111 might be at-
tempted, and the computational cost would greatly increase. On
the other hand, one might depart entirely from this paradigm in
favor of the “natural control” methodology [14, 121 wherein a dy-
namical “reference model” is substituted for the reference signal,
Q d . In this paradigm, off-line planning is almost eliminated and
the real-time controller is responsible for almost all computation.
For example, in robot obstacle avoidance problems, the natural
controller is required to compute the gradient vector of a com-
plex “navigation function” [16]. Previous research demonstrates
that this problem is PSpace hard [20], thus the computational
complexity of any such algorithm may be expected to increase
exponentially with the number of robot degrees of freedom. The
prospect of computing feedback algorithms which grow exponen-
tially with the control problem raises unprecedented demands for
performance and expandability of the real-time computational
engine.

To the complexity of robot control algorithms must be added
the burden of intelligent sensing. In addition to position and
velocity of the robot’s joints, most interesting robotics applica-
tions will involve such data intensive sensory modalities as vision
or distributed contact forces. These add a considerable compu-
tational and 1/0 load to the previously described performance
specifications.

In summary, the computational complexity of algorithm (2)
represents merely a lower bound on what we might expect out of
our real-time robot controllers. Moreover, it seems safe to assert
that no fixed computational capacity will suffice given the in-
eluctable desire for additional mechanical degrees of freedom and
more sophisticated sensory capabilities. It seems useful, however,
to keep (2) in mind when considering general problems of robot
control.

64

1.2 Sampling Rates for Distributed Architectures

If we take (2) as the minimal exemplar of the real-time computa-
tional load, then there are some lo3 flops for each sampling pe-
riod required from a centralized processor. In order to complete
the analysis of the computational power required to implement
real-time robot control algorithms it is now necessary to specify
a target sampling rate.

A large body of theory presently exists concerning discrete
time control of a continuous linear time invariant systems. In
particular, according to the Nyquist Sampling Theorem, we know
that the sampling rate must be at least twice the highest fre-
quency of the bandwidth over which the system is to be con-
trolled. For practical considerations, one generally picks a factor
of ten [5]. In contrast, there is no widely applicable understand-
ing of how to control continuous nonlinear systems with discrete
controller. The issue of sampling rate is complicated since the
very notion of a “time constant” is not viable for systems whose
coefficients change with time or state such as the one character-
ized by (1).

A reasonable rule of thumb is that most dc servo motors me-
chanically coupled to links of representative mass have individ-
ual time constants of between 20 and 100 msec. Thus, from the
point of view of linear theory, it should suffice to sample each
motor at least every 10 msec. Indeed, out of the great num-
ber of commercially available robots today, we are unaware of
any which achieve a sampling rate much faster than 100 Hz. In
fact. there is some justification (beyond commercial viability) for
this circumstance, since (to the best of our knowledge) all ex-
isting commercial robots employ control schemes which ignore
the rigid body dynamics (l), and assume that the robot consists
of a set of dynamically decoupled linear servo motors. No such
justification, however, may be given for control schemes like algo-
rithm (2). While reasonable heuristic arguments may be given for
computing certain components of such strategies at much higher
rates than others [8], there might always remain the nagging
possibility that failures or lackluster improvements in robot per-
formance attending the implementation of sophisticated control
schemes arise from limitations of sampling.

It is widely accepted in the field of robotics that parallel pro-
cessing represents the only reasonable approach to the computa-
tional requirements as represented above. We will advance the
argument in the sequel that from the point of view of cost, reli-
ability, and expandability, distributed parallel architectures hold
the most practical promise for robot controllers. However, this
recourse further complicates the question of sampling rate: com-
munications occur not merely across the robot input and output
channels but “inside the computer” as well between individual
distributed processing components. Thus, each motor experi-
ences a local sampling rate dictated by the external 1/0 speeds
of its individual supervisory node, while the overall coupled sys-
tem of motors and nodes gives rise to a more complex set of cross
latencies which characterize the “freshness” of the data from the
it“ node as used to compute the new values a t the j t h node.

Our point of view is that advances in technology should obvi-
ate the need for any consideration of the effects of discrete time

controllers insofar as local sampling rate is concerned. If suffi-
ciently fast digital computer and sensory instruments are avail-
able for each local node, then we may implement what appears
to the analogue controlled system as a continuous control signal.
The effect of the cross latencies introduced by our distributed
architecture upon the overall stability and performance of the
coupled closed loop system is a more subtle phenomenon, which
we have begun to study independently [25].

For the present purposes of specifying the computational ca-
pabilities of our distributed engine, we set the goal of supporting
the minimal computational load and all the low level 1/0 with
one node (although we may use more than one for such a task
in practice). We set the (intuitive, rather than analytically jus-
tifiable) goal of sampling at two orders of magnitude above the
Nyquist rate of the robot's motors. We presume a six degree
of freedom robot with joint sensors which deliver position and
torque information for each degree of freedom and a separate
power amplifier for each which accepts desired torque commands
from the controller. Thus, each node must be capable of deliv-
ering at least lo3 flops, reading from and writing to 18 parallel
1/0 channels at a rate of 1 KHz.

1.3 Commercially Available Technology

The architecture reported here represents a compromise between
the seemingly endless horizon of contemporary hardware power
and the limited ability of a small research group with many other
pressing priorities to gain the advantages thereof. This limita-
tion translates into the decision to restrict attention to reasonably
cheap, commercially available hardware components with facile
and well documented development environments. Since our situ-
ation is by no means unusual within the engineering community,
this account may be of interest on more than a purely technical
level.

Before examining hardware options within that narrower con-
text, it is worth reviewing the requirements arising from the the
domain of application discussed in the previous section. In gen-
eral, the overall system should consist of simple and inexpen-
sive nodes. Inter-node communication ought to be fast, since, as
has been noted in the previous section, real-time control appli-
cations are as much data driven as computationally bound. The

. communication scheme must be easily reconfigurable, and node
expandible with minimal deterioration of bandwidth. Such flexi-
bility with respect to size and interconnection pattern allows for
a variety of applications, and admits comparison of competing
algorithms or different computational distributions of the same
algorithm - all critical aspects of the experimentation we en-
vision. The performance of a single node should be close to or
exceed that of a "standalone" commercial microprocessor in or-
der to achieve the desired computation rate with the minimal
number of nodes. Furthermore, since robot sensor and actuator
technology is in a state of rapid flux, each node must be easily
adaptable to a variety of analog and digital inputs and outputs
in an expandable fashion. Finally, the parallel hardware has to
be matched with a suitable language which supports parallelism
as well as a development environment for creating, distributing
and debugging code.

65

Truly parallel systems employing a distributed architecture
amenable to multiple instruction flow are already commercially
available (e.g., Floating Point Systems, Intel (hypercube), etc.).
While these systems typically exhibit great processing power they
often have limited internode communication bandwidth or inad-
equate 1/0 capability. Cost represents a major consideration in
our project as well as in industrial robot control systems: invest-
ments in the range of up to several hundred thousands dollars dis-
qualify commercially available distributed networks for our pur-
poses. On the other hand, Armyprocessors, offered by companies
like Systolic Systems, Marinco Computer Procucts or Mercury
Computer Systems, represent an alternative means of boosting
computing power for conventional mainframes or even personal
computers, to which they interface via memory map. They com-
monly feature rates between one and five million floating point
operations per second, substantial user libraries and cost around
$5000. Unfortunately, their 1/0 capability is typically limited.
Moreover, array processors cannot afford the ease of expandabil-
ity of truly distributed architectures, nor can they admit experi-
mentation with interprocess communication and synchronization.

The innerent caveats of purchased systems (i.e. cost, manu-
facturer dependence, inflexibility, "non-transparency", hardware
overhead) may be eliminated by recourse to customized design,
and an increasing number of such "homemade" distributed, real
time controllers, are indeed being built. Generally these systems
evolve around off the shelf commercial microprocessors, e.g. one
of TI'S TMS320, Motorola's 68000 or National Semiconductor's
32000 family. Of course, a number of commercially developed
single board computers based on these processors are becoming
available as well.

Whichever of these processors (or of the myriad number of
chips similar in architecture) is chosen as the basis of such a CUS-
tomized distributed architecture, all share two big disadvantages.
First, they are not designed to be interconnected for parallel p r e
cessing and thus, by themselves, do not afford inter-processor
communication. Thus one generally is forced to resort to a bus
based approach - the basic structure for almost all parallel real-
time control systems built in the past. Unfortunately, the bus
communication bandwidth decreases a t least linearly with the
number of nodes and 1/0 units which are attached in a parallel
fashion. While it play be feasible to build such parallel systems
with only few nodes, expandability quickly becomes limited (de-
pending on the communication requirements of the specific ap-
plication). Moreover, due to the lack of a suitable language, soft-
ware issues become more and more problematic as the hardware
increasingly exploits p>@elism.

In this paper, we present a solution to the problem of real-
time distributed control based upon the INMOS Transputer Chips
We describe the development of the XP/DCS, a real-time con-
trol node with the floating point computational power, internode
communication bandwidth, 1/0 interface and development envi-
ronment required for advanced distributed control applications.
The CPU board provides fast external memory, support for the
four 10 MHz serial Transputer links including two fiber optic
links, and an 1/0 expansion connector. The board's backplane
connector is pin compatible with the INMOS ITEM Development
System. The plug-in 1/0 board provides a bidirectional latched
32 bit 1/0 bus with full handshaking support. Half of this board
is allotted to a wire-wrap prototyping area allowing for easy CUS-

tomization t o specific 1/0 needs. The cost of the board set at
the time of writing is slightly over 82000.

2 Design: Philosophy and Prototypes

The choice of the INMOS product line represents a strategy
which standardizes and places the burden of parallelism - inter-
processor communications support, software, and development
environment - around a commercial product, while customizing
the computational "identity" of particular nodes by recourse to
special purpose hardware.

The Transputer is a 32-bit RISC microprocessor with fast on-
chip RAM, interrupt and DMA support, an internal architecture
supporting multi-processing, and four high speed serial interprc-
cessor communication links. The latter capability represents the
most important feature of this chip relative to its competitors.
The four links circumvent the constraints of bus based interprc-
cessor communication schemes both with regard to reconfigura-
bility as well as bandwidth. The result is a topology to which
nodes are added or deleted simply by physically connecting a
four wire serial cable (and System Service connections). Through
the parallel processing constructs of the associated programming
language, OCCAM, one can equally simply address the software
requirements of process concurrency. Whether multitasking on
one transputer, or engaged in parallel implementation on a net-
work of transputers, the desired relationships between software
processes and hardware processors may be specified with ease
and flexibility.

The Transputer Development System (TDS), consisting of an
evaluation board (B004) and supporting software and documen-
tation, satisfies the need for a coherent prototyping environment.
Using an IBM AT, or a more powerful engineering workstation
(e.g. Sun, Apollo, Vax, etc.) as a host, the user can generate,
debug, compile, and download code to a target node or group of
nodes. The network configuration utility included in TDS mini-
mizes the software changes attending the addition of a node: the
new node's name (i.e. PROCESSOR 5 T8) along with processes
targeted to run on it are adjoined to an existing network config-
uration file; assignment of download link and interprocessor data
transfer links completes the specification. The OCCAM com-
piler contained within the TDS supports the creation of processes
that use "channels" for communication. These soft channels are
mapped into physical links when a program is configured. Given
this capability, programs intended for a particular interconnec-
tion scheme using a specified number of nodes can be simulated
on variant networks, or even a single transputer, if desired.

In summary, from our point of view, the Transputer's pri-
mary advantage over the other comparable CPU's mentioned in
the previous section is its intrinsic inter-processor communica-
tions capability. This capability is notable both with respect to
hardware performance as well as the relative sophistication of
the commercially provided development environment for paral-
lel and concurrent applications. We now describe the present
state of evolution of a board design for a real-time motion con-
troller based upon this technology. In Section 2.1 we describe
some hardware studies designed to convince us of the feasibil-
ity of achieving "customized computational identity" at various
nodes via co-processor technology. In Section 2.2 we describe
the standardized PC board set with homogeneous computational

66

capability (based solely upon the Inmos T800 CPU) and "cus-
tomized 1/0 identity" which has become our general purpose
laboratory work horse for real-time control applications.

2.1 The Prototype Version: Hardware Exploration

The addition of special purpose coprocessors to particular nodes
represents an integral aspect of the hardware development path
we have chosen to pursue. The advent of the application specific
integrated circuit (ASIC), and associated design tools make the
consideration of future customized coprocessors an attractive al-
ternative versus adjusting algorithms to the limitations of current
(or near term) hardware. For the XP/DCS Prototype we selected
the well known WEITEK 1164,65 64/32 bit IEEE floating point
Multiplier and ALU together with the T414 Transputer. This
served the dual purpose of an exercise in transputer/coprocessor
design as well as boosting the T414's floating point computa-
tional capabilities which is of central importance in robotics. At
the time this work was begun, around summer of 1986, the T414's
software floating point processing ability fell short of our com-
putational needs. INMOS had announced the T800 [4], the next
generation transputer with on-chip floating point support, but
the date of availability was unclear.

A detailed report on this first generation design is available
in a separate technical report [18]. For the purposes of this pa-
per, we offer a summary feature list for the XP/DCS Prototype
as follows: the T414 15 MHz 32 bit RISC microprocessor with
four 1OMbps serial communication 1inks;AOK bytes of external
zero wait state static RAM; WEITEK 1164/1165 IEEE 64/32 bit
floating point chip set; Five 32 bit 1/0 ports; Eight individually
addressable flags.

2.2 The Second Generation: XP/DCS Version 1.0

The previously described prototype had been in daily operation
for almost one year in a three node configuration controlling a
juggling apparatus in the Yale Robotics Laboratory described
in the next section. Over that time, we upgraded the nodes as
experience dictated and as the availability of appropriate new
technology allowed. It became clear that easy customization of
a node's 1/0 capability was as important as tailoring its compu-
tational characteristics. We set about in our second generation-
design to achieve a general purpose 1/0 board which would stan-
dardize the interface between our computational network and
the physical world. The essential features of this new board in-
clude an upgrade from T414 to T800 processor, the addition of
fiber optic link interface capability, and modularization into a
mother-daughter board set. The first feature provides reason-
able computational power (1 Mflop) with no special purpose co-
processors. The second improvement turns out to be a vital step
in so EM1 hostile an environment as an electrical servo actuated
robot. Fiber optic technology meant the long awaited end to in-
terference problems and impedance matching "artistry" for the
7m communication lines which link the transputer network. The
main structural innovation is the clear separation between com-
putation and 1/0 on two separate boards. All 1/0 functions (and
eventually, any coprocessors will) reside on a "daughter card"

which plugs into a "bus expansion connector" on the "mother
card". The latter - the CPU board proper - can therefore be
used alone as a floating point node or with an attached 1/0 card
as a complete data acquisition and control node.

2.2.1 The XP/DCS CPU board

1

XPlDCS

Figure I: XP/OCS - CPU board

The high line density typical for 32 bit designs dictated the use
of a four layer Printed Circuit Board with the attending bene-
fits of reduced ground noise and enhanced signal integrity (the
prototype was plagued by electrical and mechanical wire wrap
failures). We standardized to the increasingly popular Eurocard
form factor, using a board size of 100" x 220mm, the so-called
Single Extended Eurocard. The rear edge connector is pin com-
patible with INMOS' evaluation cards for the ITEM system.

The CPU board supports both the T800 as well as the T414
at jumper selectable clock speeds of 15-20Mhz. A power-up reset
signal provided on the board ensures that the processor is reset
properly at power-up. Without this provision, random external
bus accesses may occur until a program is downloaded. This
is especially bad for 1 / 0 devices which may thus be accessed
arbitrarily and cause potential disaster.

This version is much simpler than the prototype. The advent
of the T800 with its on chip floating point support has eliminated
the need for the WEITEK chipset and its support circuitry. Sec-
ond, we have moved all TTL logic into one PAL. Third, all 1/0
related functions have moved to the 1/0 board. This halves the
chip count for the CPU board to 12 devices.

By exploiting the development of fast 32k x 8 SRAMS we have
increased the local memory by a factor of four compared to the
prototype to 128K bytes of which 124K bytes (for T8) or 126K
bytes (for T4) are accessible. To satisfy the requirement of zero
wait states, 70 ns chips from Mitsubishi are used. As before each
XP/DCS node has access to the host's (larger) memory through

a serial link connection. We also keep open the option to add
additional local SRAM memory on the 1/0 card. Only further
experience with real life control situations will determine if larger
local memory is needed.

The Transputer's four high speed serial links are made avail-
able on the rear edge connector compatible to the INMOS ITEM
boards. The link speeds are user selected. All inputs are Schot-
tky diode clamped. For purposes of improving the impedance
matching in critical cases the output lines' series resistances can
he altered. To ensure signal integrity in harsh EMI, two of the

-~

links may be routed to fiber optic ports located on the board's
front edge. Current hardware choices limit the fiber bandwidth
to BMbps, the link speed which will be supported by all trans-
puter family products.

To serve as visual software status indicators or aid in system
debugging, eight LEDs are located at the front edge of the card.
The system service lines to and from the Transputer pass through
the rear edge connector and have pin-outs compatible with those
in the INMOS ITEM unit. All three, Error,.Analyse, and Reset
are visually displayed by the LEDs.

The Z/O connector (DIN type 'B') located on the lower edge of
the board, passes the 32 bit Data/Address bus with all interrupt-
,DMA- and bus control lines. Thus any kind of add-on board can
to be attached that interfaces to the transputer memory interface.
However it is required that all signals be buffered after the 1/0
connector.

The performance of this CPU board is determined by the
Transputer.employed and the number of wait states for external
memory cycles. As we use zero wait states memory (for CPU
speeds up to 20MHz) all the performance measures given by IN-
MOS in [21] for the transputer apply for our CPU board, as well.

As mentioned above, the XP/DCS CPU board is pin com-
patible with all existing INMOS evaluation products using the
B201-1 10 slot card cage. The 1/0 daughter board derives its
power from the CPU board . Analog supply voltages are passed
from the rear edge connector to the 1/0 connector on several
pins. These rear edge pins are not connected in the standard
INMOS ITEM chassis.

2.2.2 The XP/DCS 1 / 0 board

The first 1/0 innovation was, as mentioned above, to separate
computational and 1/0 functionality. Second, the test period
with the prototype has shown it had more digital 1/0 than we
ever needed, and was too inflexible, providing a fixed number
(5) of input and output ports, each 32 bits wide. Moreover,
virtually every 1/0 device is now available with tri state output,
eliminating the need for a separate 1/0 latch for each unit, and
permiting operation in a parallel fashion via the same 1/0 latch.

Thus, it became soon clear that in order to simultaneously
maximize flexibility as well as ease of use, we needed a latched
32 bit bidirectional 1/0 bus which provides for a virtually unlim-
ited number of 1/0 devices with minimal chip count. In order

61

to further minimize the custom 1/0 effort when accommodat-
ing a specific 1/0 device, we provide six individually addressable
sets of four latched handshaking output lines as well a8 a total
of eight handshaking input lines. In order to prevent arbitrary
latched outputs of the handshaking output lines a t power up
to cause disaster (for example, enabling a robot joint while the
torque command is not under control), these outputs wake up in
a high impedance state and can be jumpered to either polarity on
the fabricated section of the 1/0 board. For programming and
debugging convenience, all handshake output lines can be read
back.

This implementation provides the user with a maximum of
support for custom 1/0 needs: Most tristate I/O devices should
be able to interface to this bus without any additional support
chips at all. If desired, several devices can be accessed simultane-
ously: for example, two 16 bit or three 10 bit D-to-A or A-to-D
converters could be accessed by attaching the different chips to
different portions of the 1/0 bus.

We call the mode previously described the asynchronous 1/0
mode. Devices can be accessed independent of their speed. A
complete 1/0 cycle would take in this default mode would take
about 1 p., or roughly the time for one flop. Recall that a typical
robotic application, as outlined in the first section, requires 18
1/0 operations and 1000 flops per sampling time. Thus we can
easily see, that with these timing considerations the 1/0 time
requirements are negligeible compared to the computational re-
quirements. The typical three external memory cycles are: (1)ad-
dress/enable device via handshaking out; (2) read from / write
to device (if necessary, after delay); (3) disable device.

However, in general (for example for some ASICS, or if one
needs the faster 1/0 cycle time - generally a gain of less than
lpec) , the board allows for direct bus interfacing to the trans-
puter called synchronous 1/0 mode. This is possible by removing
the bidirectional bus latches. However, no default latched mode
is simultaneously possible and no further support is provided on
board for thjs mode which is not considered the default use.

3 Applications
The XP/DCS system was designed to be the general workhorse
for real-time motion control experiments within the Yale Robotics
Laboratory. In this section we very briefly review our experiences
with two particular pieces of robotic apparatus.

3.1 Control of a Juggling Apparatus

One line of research we pursue is directed towards understand-
ing underlying principles in modeling, analyzing and controlling
robots that repetitively catch or throw, hop, run - or juggle. For
empirical validation of our theoretical models and as a source of
insight, we have built a simple two dimensional juggling appa-
ratus. The physical system consists of a puck, which slides on
an inclined plane and is batted successively by a simple “robot”
- a bar with billiard cushion rotating in the juggling plane as
depicted in Figure 3. The figure depicts the simple three node
XP/DCS newtork we employ in this application consisting of an
intelligent sensing node to estimate puck positions and veloci-
ties from the digitizing table, a motor controller node, and a
host/logging node.

l \ D C I et..
YDlDT

h

Figure 4, is a “recording” of a successful “vertical one-juggle”
using an algorithm reported in [l]. The plot shows the actual
horizontal (bl-axis) and vertical (bz-axis) trajectory of a planar
free-falling puck subjected to a series of juggling impacts by the
robot. The puck is controlled from the initial drop point (upper
left) to a stable pure vertical periodic orbit.

~~

3.2 An Advanced XP/DCS Based Robot Controller

An advanced robot controller based on the XP/DCS is under con-
struction for both testing new robot control algorithms and inves-
tigating issues of distributed real time control. For this task the
GMF Robotics Model A-500, a four degree of freedom SCARA
type arm shown in Figure 5, was chosen as the target mechanical
unit.

Like virtually all currently available robot systems, the orig-
inal A-500 system controller provides an integrated high level
user interface which serves admirably in industrial applications,
but precludes the low level servo intervention which is needed in
the research laboratory. For our experiments it is necessary to
be able to directly and independently specify the torque being
delivered by each joint of the robot. Since the original control
system does not allow this type of interface at any level, it was
necessary replace the manufacturer’s control system with our own
system. For each of the robot’s joints, the new interface consists
of a dedicated INMOS Transputer which directly commutates (in
software) the currents in the DC brushless motors at the robot
joints. The system block diagram for a single joint is shown in
Figure 6

The servo transputers provide a clean interface to each actua-
tor, thus freeing the designer of the control network from low level
operational requirements of the particular motors used. Thus the

68

architecture of the control network will be dictated solely by the
structure of the particular control algorithm chosen. We now

transputer network which realizes the algorithm.
briefly describe an advanced control algorithm and a distributed N*dcnrL.mus:Bu~d. r * .=S umbm-. rig” ID Namrk L.Ln<y: Sdf Dullamg.

Acknowledgements

Our first experiments will be directed toward computation
of the computed torque strategy (2) discussed in the introduc-
tion. Our present implementation has each servo processor com-
municating directly to two processors: a dedicated computation
processor and a dedicated communication server processor. The
server processors communicate in a ring topology. Communicat-
ing directly with the i’th low level servo is the i’th computation
node which computes the subexpression of equation 2 associated
with the the 9th joint. The local computation consists of the
entire feedback gain calculation, and the i’th rows of both the
M (q) and B(q, q) matrices, followed by the appropriate multipli-
cation and summation. The local computation receives the 9th
state information directly from the i’th servo, and the j,j # 9th
state information as well as the reference information from a ded-
icated server node. This local computation is currently executed
on a single T-800, but one might imagine further granularization
of this process. Each low level servo node also reports its state
directly to its local server node which forwards this data to the
remaining servers. An additional command server receives refer-
ence trajectory commands from the host and forwards this data
to the servers. This topology is illustrated in Figure 7.

Since the servo control boards of Figure 6 are not yet com-
plete a t the time of writing, our epxerimentation to date has been
limited to timing measurements of algorithm (2) implemented

...................................

: -

L ... :

h...&5”*.-. ”“1: Tk. Collud M I I r*

upon the network illustrated in Figure 7 with the low-level nodes
generating simulated commutation commands and robot state
information. These experiments are reported in some detail in
[25], and it will suffice here merely to display a variety of “cross
latency” matrices (as defined in the introduction of this paper)
in Figures 8, 9, and 10, which obtain from a variety of distri-
bution and communications schemes. All measurements are in
microseconds.

69

We would like t o thank Prolessors Peter Kindlmann and Alfred Ganz lor numerous technical
and philosophical contributions to the d a i p reported here, as well as their continuing generous
pedagogical eflorts on our behall.

References

[I] M. Biihler , D. E. Koditschek, and P. J. Kindlmann. A one degree 01 lreedom juggler in a
two degree of freedom environment. In Pm. IEEE Confewnce on Intelligent Systems ond
Robots. page , Tokyo, Japan, Oct 1988.

[2] C. H. An, C. G. Atkeaon, J. D. Griffiths, and J. M. Hollerhach. Experimental evaluation 01
feedforward and computed torque control. lo Sirth CISM-IFTOMM Symposium on Theory
end P m d i n of Robols end Manipulators. Sep 1986.

(31 Antal K. Bejczy. Robol Arm D p o m i e a and Control. Technical Report 33-699, Je t Propul-
sion Laboratory, Pasadena, CA, 1974.

[4] INMOS Corporation. IMS T800 Tmnsputer. Product Overview 72 TRN 117 01. [NMOS
Corporation. Nov 1986.

(51 Gene F. Franklin and J . David Powell. Digilal Control of Dynomic Systems. Addison-
Wesley, Ikading, MA, 1980.

161 E. Freund. Fast nonlinear control with arbitrary pole placement lor industrial robots and
manipulators. The lntcmationol Journal of Robotics Research, 1(1):65-78, 1983.

[7] J . M. Hollerbach. A recursive lormulation 01 manipulator dynamics and a comparative
study of dynamics formulation and complexity. In Brady e t al., editor, Robot Motion,
pages 73-87. MIT Press. 1982.

IS] Oussama Khatib. R e d time obstacle avoidance for manipulators and mobile robots. The
Intcmotionol Journal of Robotics Rescorch. 5(1):90-99, Spring 1986.

[9] Pradeep K. Khmla and Taken Kanade. Real-time implementation and evaluation of model-
based controls on cmu dd arm ii. In Pmceding IEEE Intcmational Conference on Robotics
and Automation, p a g a 1546-1555, San Francisco, CA, Apr 1986.

[IO] Daniel E. Koditschek. Adaptive strategies lor the control 01 natural motion. In IEEE
P m m d m g s 24lh Conference on Decision and Control, pages 1405-1409, Fort Lauderdale,
Dec 1985.

1111 Daniel E. Koditschek. Adaptive techniques lor mechanical systems. In Filth Yale Worluhop
on Appticotioru of Adaptwe Systems Throry, pages 259-265, Center lor Systems Science,
Yale University. New Ilaven, CT, May 1987.

[I21 Daniel E. Koditschek. Automatic planning and conlrol olrobot natural motion via feedback.
In Kumpati S. Narendra, editor, Adoptive and Lemning Syslems: Theory 4nd Applications,
pages 389-402, Plenbm, 1986.

1131 Daniel E. Koditschek. High gain feedback and telerobotic tracking. In Workshop on S p a
Tclmbotics, pages 355-361, Je t Propulsion Laboratory, California Institute of Technology,
Pasadena, CA, Jan 1987.

1141 Daniel E. Koditschek. Natural motion lor robot arms. In IEEE Proceedings 2 J d Confennn
on Decision and Control, pages 733-135, Izs Vegas. Dec 1984.

1151 Daniel E. Koditschek. Robot kinematics and caordinatte translormations. In IEEE Pro-
ceeding* 241h Confennee on Decision and Control, p a g e I d , Fort Lauderdale, Dec 1985.

(161 Daniel E. Koditschek and Elan Rimon. Robot navigation functions on manifolds with
boundary. Aduonces in Applied Malhemotics, (to appear).

1171 R. 11. Lathrop. Parallelism in manipulator dynamics. I d . J. Robotic4 Res., 4(2):80-102,
Summer 1985.

[lS] F. Levin, M. Bihler, and D. E. Koditschek. A Prototype Pmess ing Celllor Distributed
Real Time Control. Technical Report 8701, Center for Systems Sdence, Yale University,
Mar 1987.

[IQ] J . Y. S. Luh, M. W. Walker, and R. P. Paul. Resolved acceleration control 01 mechanical
manipulators. I E E E Tmnsoclion on Aulomotic Control AC-23468-474. 1980.

[ZO] Jacob T. Schwartz and Micha Sharir. On the “Piano Movers” Problem I. The Case of
o Two-Dimensional Rigid Polygonal Body Moving Amidst Polygonal Barriers. Technical
Report 39. N.Y.U. Courant Institute Department 01 Computer Science. New York, 1981.

[Zl] Roger Shepherd and Peter Thompson. L i u , Damned Lies, ond BenchmarLa. Technical
Note 27 72 TCH 027 00, INMOS Corporation, J d 1987.

[22] Jean-Jacques E. Slotine and Weiping Li. On the adaptive control of robot manipulators.
In Pme. ASME Winter Annual Meeting, page , Anaheim, CA., Dec 1986.

1231 Morikazu Takegaki and Suguru Arimoto. A new feedback method lor dynamic control 01
manipulators. ASME Jovrnal oj Dynamics Syalema,Measunmcnt, ond Control, 102:119-
125, 1981.

1241 T . J . Tarn, A. K. Bejczy. A. Isidori. and Y. Chen. Nonlinear feedback in robot arm control.
In P m . 23rd IEEE Conference on Deciaion ond Control. pages 736-751, Las Vegass. Nev..
Dec 1984.

12.51 Louis L. Whitcomb, M. Biihler, and D. E. Koditschek. Preliminary experiments real-time
distributed motion control. I n Pm. North Americon Tronsputcr Users Croup, NY, Oct
1988.

I

