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Abstract 

This paper describes a dual board real time distributed control 
module based on the INMOS T414/T800 Transputers. The CPU 
board provides fast external memory, support for the four 10 
MHz serial Transputer links including two fiber optic links, and 
an 1/0 expansion connector. The board’s backplane connector 
is pin compatible with the INMOS ITEM Development System. 
The plug-in 1/0 board provides a bidirectional latched 32 bit 1/0 
bus with full handshaking support. Half of this board is allotted 
to  a wire-wrap prototyping area allowing for easy customization 
to  specific 1/0 needs. 

An easily configurable network built from this low cost modu- 
lar design should be able to tackle the most demanding real time 
control applications, with respect to computation as well as 1 / 0  
requirements. We describe two particular applications presently 
underway in the Yale Robotics Laboratory. The first is a three 
node network that supports a simple juggling robot. The sec- 
ond is a twelve node network for control of a standard industrial 
robot manipulator. 

1 Introduction 

Advances in theoretical understanding of the dynamical proper- 
ties of nonlinear mechanical systems [7, 13, 14, 15, 231, and some 
recent empirical experience with many-degree-of-freedom robot 
arms [2, 91 suggest that the time is approaching when their con- 
trol will be as routine a matter as that of comparable linear time 
invariant systems. It begins to  seem as though the most critical 
present obstacles to such a possibility lie in the practical realm 
of actuator and computational technology. This paper addresses 
an approach to the constraints of the latter domain. 

We document the specifications and preliminary performance 
characteristics of a low-cost computer intended as the representa- 
tive prototype of a single node in a highly interconnected parallel 
computing and sensing environment dedicated to the real-time 
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control of a complex nonlinear system. While there is no single 
aspect of this system which cannot be equalled (or even bettered) 
by some other commercially existing (or soon to  exist) device, we 
feel that the combination of flexibility in inter-processor connec- 
tion schemes, simplicity of programming and convenience of de- 
velopment environment, and raw computational and 1/0 speed, 
along with its very low cost make it an ideal vehicle for explor- 
ing the practical computational issues in robot control alluded to 
above. We presume that the same considerations lend this com- 
puter a certain attraction within the industrial world as well. 

We continue this introduction with a brief review of compu- 
tational issues in robotics and a comparison of some alternative 
technologies for addressing those issues. The second section of 
the paper provides a short account of the advantages to  this ap- 
proach, a physical description of the prototype system, and a 
description of the improved fabricated dual board - the Yale 
XP/DCS Version 1.0. Finally some application examples are 
discussed in the last section. 

-__ 

1.1 Computational Needs in Robotics 

A generally accepted model for robot arm dynamics takes the 
form 

M ( d i  + 4 4  + k ( q )  = (1) 

where q is a vector of joint meaurements, T is a vector of control 
torques or forces exerted on each joint by the actuators, M arises 
from the “inertial” properties of the links, B ,  from the Coriolis 
and centripetal forces of motion, and k represents the gravita- 
tional forces. Even for kinematically simple robots, the entries 
of the matrices M ,  B ,  and the vector, k ,  are extremely complex 
high order polynomials in transcendental functions of the joint 
variables, q. An important early study by Bejczy [3] shows that 
these nonlinear terms are not simply analytical artifacts, but rep- 
resent cross-coupling forces which may vary by as much as three 
orders of magnitude over the robot workspace. 

As of this writing, the most widely discussed control algo- 
rithm to achieve “robot tracking” around some B priori specified 
reference trajectory, q d ,  is the so-called “computed torque” or 
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“inverse dynamics” algorithm [6, 19, 241, 

which corresponds to  the general linear strategy of pole-placement 
via state feedback, preceded by a forward-loop compensator in- 
tended to invert dynamics of the feedback compensated plant. 
Implementation of this strategy evidently requires computation 
of the full robot dynamical model (1) - on the face of it, roughly 
lo5 flops for a six degree of freedom arm - in real time. Work 
by Hollerbach [7] indicates that the full model may be computed 
at the cost of only lo3 flops by taking advantage of the intrinsic 
structure of the dynamics, and a recent analysis by Lathrop [17] 
indicates a great deal of this computation may be implemented in 
parallel. It should be noted as well, that each sample requires two 
input measurements (a  position and a velocity) and one output 
command (desired torque or force) per degree of freedom. 

In fact, algorithm (2) represents only one of a variety of differ- 
ent approaches to the robot trackingproblem, which itself, is only 
one of many control problems which arise within the context of 
robotics. Even within the tracking paradigm, if one does not as- 
sume & priori knowledge of the robot link and robot load dynam- 
ical parameters (i.e. mass, centroid, moment of inertia matrix) 
then an adaptive version of algorithm (2) [lo, 22,111 might be at- 
tempted, and the computational cost would greatly increase. On 
the other hand, one might depart entirely from this paradigm in 
favor of the “natural control” methodology [14, 121 wherein a dy- 
namical “reference model” is substituted for the reference signal, 
Q d .  In this paradigm, off-line planning is almost eliminated and 
the real-time controller is responsible for almost all computation. 
For example, in robot obstacle avoidance problems, the natural 
controller is required to compute the gradient vector of a com- 
plex “navigation function” [16]. Previous research demonstrates 
that this problem is PSpace hard [20], thus the computational 
complexity of any such algorithm may be expected to increase 
exponentially with the number of robot degrees of freedom. The 
prospect of computing feedback algorithms which grow exponen- 
tially with the control problem raises unprecedented demands for 
performance and expandability of the real-time computational 
engine. 

To the complexity of robot control algorithms must be added 
the burden of intelligent sensing. In addition to position and 
velocity of the robot’s joints, most interesting robotics applica- 
tions will involve such data intensive sensory modalities as vision 
or distributed contact forces. These add a considerable compu- 
tational and 1/0 load to the previously described performance 
specifications. 

In summary, the computational complexity of algorithm (2) 
represents merely a lower bound on what we might expect out of 
our real-time robot controllers. Moreover, it seems safe to assert 
that no fixed computational capacity will suffice given the in- 
eluctable desire for additional mechanical degrees of freedom and 
more sophisticated sensory capabilities. It seems useful, however, 
to keep (2) in mind when considering general problems of robot 
control. 
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1.2 Sampling Rates for Distributed Architectures 

If we take (2) as the minimal exemplar of the real-time computa- 
tional load, then there are some lo3 flops for each sampling pe- 
riod required from a centralized processor. In order to complete 
the analysis of the computational power required to implement 
real-time robot control algorithms it is now necessary to  specify 
a target sampling rate. 

A large body of theory presently exists concerning discrete 
time control of a continuous linear time invariant systems. In 
particular, according to the Nyquist Sampling Theorem, we know 
that the sampling rate must be at  least twice the highest fre- 
quency of the bandwidth over which the system is to be con- 
trolled. For practical considerations, one generally picks a factor 
of ten [5]. In contrast, there is no widely applicable understand- 
ing of how to control continuous nonlinear systems with discrete 
controller. The issue of sampling rate is complicated since the 
very notion of a “time constant” is not viable for systems whose 
coefficients change with time or state such as the one character- 
ized by (1). 

A reasonable rule of thumb is that most dc servo motors me- 
chanically coupled to  links of representative mass have individ- 
ual time constants of between 20 and 100 msec. Thus, from the 
point of view of linear theory, it should suffice to  sample each 
motor at least every 10 msec. Indeed, out of the great num- 
ber of commercially available robots today, we are unaware of 
any which achieve a sampling rate much faster than 100 Hz. In 
fact. there is some justification (beyond commercial viability) for 
this circumstance, since (to the best of our knowledge) all ex- 
isting commercial robots employ control schemes which ignore 
the rigid body dynamics (l), and assume that the robot consists 
of a set of dynamically decoupled linear servo motors. No such 
justification, however, may be given for control schemes like algo- 
rithm (2). While reasonable heuristic arguments may be given for 
computing certain components of such strategies at much higher 
rates than others [8], there might always remain the nagging 
possibility that failures or lackluster improvements in robot per- 
formance attending the implementation of sophisticated control 
schemes arise from limitations of sampling. 

It is widely accepted in the field of robotics that parallel pro- 
cessing represents the only reasonable approach to the computa- 
tional requirements as represented above. We will advance the 
argument in the sequel that from the point of view of cost, reli- 
ability, and expandability, distributed parallel architectures hold 
the most practical promise for robot controllers. However, this 
recourse further complicates the question of sampling rate: com- 
munications occur not merely across the robot input and output 
channels but “inside the computer” as well between individual 
distributed processing components. Thus, each motor experi- 
ences a local sampling rate dictated by the external 1/0 speeds 
of its individual supervisory node, while the overall coupled sys- 
tem of motors and nodes gives rise to a more complex set of cross 
latencies which characterize the “freshness” of the data from the 
it“ node as used to  compute the new values a t  the j t h  node. 

Our point of view is that advances in technology should obvi- 
ate the need for any consideration of the effects of discrete time 



controllers insofar as local sampling rate is concerned. If suffi- 
ciently fast digital computer and sensory instruments are avail- 
able for each local node, then we may implement what appears 
to  the analogue controlled system as a continuous control signal. 
The effect of the cross latencies introduced by our distributed 
architecture upon the overall stability and performance of the 
coupled closed loop system is a more subtle phenomenon, which 
we have begun to  study independently [25]. 

For the present purposes of specifying the computational ca- 
pabilities of our distributed engine, we set the goal of supporting 
the minimal computational load and all the low level 1/0 with 
one node (although we may use more than one for such a task 
in practice). We set the (intuitive, rather than analytically jus- 
tifiable) goal of sampling at two orders of magnitude above the 
Nyquist rate of the robot's motors. We presume a six degree 
of freedom robot with joint sensors which deliver position and 
torque information for each degree of freedom and a separate 
power amplifier for each which accepts desired torque commands 
from the controller. Thus, each node must be capable of deliv- 
ering at  least lo3 flops, reading from and writing to  18 parallel 
1/0 channels at a rate of 1 KHz. 

1.3 Commercially Available Technology 

The architecture reported here represents a compromise between 
the seemingly endless horizon of contemporary hardware power 
and the limited ability of a small research group with many other 
pressing priorities to gain the advantages thereof. This limita- 
tion translates into the decision to  restrict attention to  reasonably 
cheap, commercially available hardware components with facile 
and well documented development environments. Since our situ- 
ation is by no means unusual within the engineering community, 
this account may be of interest on more than a purely technical 
level. 

Before examining hardware options within that narrower con- 
text, it is worth reviewing the requirements arising from the the 
domain of application discussed in the previous section. In gen- 
eral, the overall system should consist of simple and inexpen- 
sive nodes. Inter-node communication ought to be fast, since, as 
has been noted in the previous section, real-time control appli- 
cations are as much data driven as computationally bound. The 

. communication scheme must be easily reconfigurable, and node 
expandible with minimal deterioration of bandwidth. Such flexi- 
bility with respect to  size and interconnection pattern allows for 
a variety of applications, and admits comparison of competing 
algorithms or different computational distributions of the same 
algorithm - all critical aspects of the experimentation we en- 
vision. The performance of a single node should be close to or 
exceed that of a "standalone" commercial microprocessor in or- 
der to achieve the desired computation rate with the minimal 
number of nodes. Furthermore, since robot sensor and actuator 
technology is in a state of rapid flux, each node must be easily 
adaptable to a variety of analog and digital inputs and outputs 
in an expandable fashion. Finally, the parallel hardware has to  
be matched with a suitable language which supports parallelism 
as well as a development environment for creating, distributing 
and debugging code. 
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Truly parallel systems employing a distributed architecture 
amenable to multiple instruction flow are already commercially 
available (e.g., Floating Point Systems, Intel (hypercube), etc.). 
While these systems typically exhibit great processing power they 
often have limited internode communication bandwidth or inad- 
equate 1/0 capability. Cost represents a major consideration in 
our project as well as in industrial robot control systems: invest- 
ments in the range of up to  several hundred thousands dollars dis- 
qualify commercially available distributed networks for our pur- 
poses. On the other hand, Armyprocessors, offered by companies 
like Systolic Systems, Marinco Computer Procucts or Mercury 
Computer Systems, represent an alternative means of boosting 
computing power for conventional mainframes or even personal 
computers, to  which they interface via memory map. They com- 
monly feature rates between one and five million floating point 
operations per second, substantial user libraries and cost around 
$5000. Unfortunately, their 1/0 capability is typically limited. 
Moreover, array processors cannot afford the ease of expandabil- 
ity of truly distributed architectures, nor can they admit experi- 
mentation with interprocess communication and synchronization. 

The innerent caveats of purchased systems (i.e. cost, manu- 
facturer dependence, inflexibility, "non-transparency", hardware 
overhead) may be eliminated by recourse to customized design, 
and an increasing number of such "homemade" distributed, real 
time controllers, are indeed being built. Generally these systems 
evolve around off the shelf commercial microprocessors, e.g. one 
of TI'S TMS320, Motorola's 68000 or National Semiconductor's 
32000 family. Of course, a number of commercially developed 
single board computers based on these processors are becoming 
available as well. 

Whichever of these processors (or of the myriad number of 
chips similar in architecture) is chosen as the basis of such a CUS- 
tomized distributed architecture, all share two big disadvantages. 
First, they are not designed to  be interconnected for parallel p r e  
cessing and thus, by themselves, do not afford inter-processor 
communication. Thus one generally is forced to resort to  a bus 
based approach - the basic structure for almost all parallel real- 
time control systems built in the past. Unfortunately, the bus 
communication bandwidth decreases a t  least linearly with the 
number of nodes and 1/0 units which are attached in a parallel 
fashion. While it play be feasible to  build such parallel systems 
with only few nodes, expandability quickly becomes limited (de- 
pending on the communication requirements of the specific ap- 
plication). Moreover, due to  the lack of a suitable language, soft- 
ware issues become more and more problematic as the hardware 
increasingly exploits p>@elism. 

In this paper, we present a solution to the problem of real- 
time distributed control based upon the INMOS Transputer Chips 
We describe the development of the XP/DCS, a real-time con- 
trol node with the floating point computational power, internode 
communication bandwidth, 1/0 interface and development envi- 
ronment required for advanced distributed control applications. 
The CPU board provides fast external memory, support for the 
four 10 MHz serial Transputer links including two fiber optic 
links, and an 1/0 expansion connector. The board's backplane 
connector is pin compatible with the INMOS ITEM Development 
System. The plug-in 1/0 board provides a bidirectional latched 
32 bit 1/0 bus with full handshaking support. Half of this board 
is allotted to  a wire-wrap prototyping area allowing for easy CUS- 

tomization t o  specific 1/0 needs. The cost of the board set at 
the time of writing is slightly over 82000. 



2 Design: Philosophy and Prototypes 

The choice of the INMOS product line represents a strategy 
which standardizes and places the burden of parallelism - inter- 
processor communications support, software, and development 
environment - around a commercial product, while customizing 
the computational "identity" of particular nodes by recourse to 
special purpose hardware. 

The Transputer is a 32-bit RISC microprocessor with fast on- 
chip RAM, interrupt and DMA support, an internal architecture 
supporting multi-processing, and four high speed serial interprc- 
cessor communication links. The latter capability represents the 
most important feature of this chip relative to its competitors. 
The four links circumvent the constraints of bus based interprc- 
cessor communication schemes both with regard to reconfigura- 
bility as well as bandwidth. The result is a topology to  which 
nodes are added or deleted simply by physically connecting a 
four wire serial cable (and System Service connections). Through 
the parallel processing constructs of the associated programming 
language, OCCAM, one can equally simply address the software 
requirements of process concurrency. Whether multitasking on 
one transputer, or engaged in parallel implementation on a net- 
work of transputers, the desired relationships between software 
processes and hardware processors may be specified with ease 
and flexibility. 

The Transputer Development System (TDS), consisting of an 
evaluation board (B004) and supporting software and documen- 
tation, satisfies the need for a coherent prototyping environment. 
Using an IBM AT, or a more powerful engineering workstation 
(e.g. Sun, Apollo, Vax, etc.) as a host, the user can generate, 
debug, compile, and download code to a target node or group of 
nodes. The network configuration utility included in TDS mini- 
mizes the software changes attending the addition of a node: the 
new node's name (i.e. PROCESSOR 5 T8) along with processes 
targeted to run on it are adjoined to  an existing network config- 
uration file; assignment of download link and interprocessor data 
transfer links completes the specification. The OCCAM com- 
piler contained within the TDS supports the creation of processes 
that use "channels" for communication. These soft channels are 
mapped into physical links when a program is configured. Given 
this capability, programs intended for a particular interconnec- 
tion scheme using a specified number of nodes can be simulated 
on variant networks, or even a single transputer, if desired. 

In summary, from our point of view, the Transputer's pri- 
mary advantage over the other comparable CPU's mentioned in 
the previous section is its intrinsic inter-processor communica- 
tions capability. This capability is notable both with respect to 
hardware performance as well as the relative sophistication of 
the commercially provided development environment for paral- 
lel and concurrent applications. We now describe the present 
state of evolution of a board design for a real-time motion con- 
troller based upon this technology. In Section 2.1 we describe 
some hardware studies designed to convince us of the feasibil- 
ity of achieving "customized computational identity" at various 
nodes via co-processor technology. In Section 2.2 we describe 
the standardized PC board set with homogeneous computational 
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capability (based solely upon the Inmos T800 CPU) and "cus- 
tomized 1/0 identity" which has become our general purpose 
laboratory work horse for real-time control applications. 

2.1 The Prototype Version: Hardware Exploration 

The addition of special purpose coprocessors to  particular nodes 
represents an integral aspect of the hardware development path 
we have chosen to  pursue. The advent of the application specific 
integrated circuit (ASIC), and associated design tools make the 
consideration of future customized coprocessors an attractive al- 
ternative versus adjusting algorithms to the limitations of current 
(or near term) hardware. For the XP/DCS Prototype we selected 
the well known WEITEK 1164,65 64/32 bit IEEE floating point 
Multiplier and ALU together with the T414 Transputer. This 
served the dual purpose of an exercise in transputer/coprocessor 
design as well as boosting the T414's floating point computa- 
tional capabilities which is of central importance in robotics. At 
the time this work was begun, around summer of 1986, the T414's 
software floating point processing ability fell short of our com- 
putational needs. INMOS had announced the T800 [4], the next 
generation transputer with on-chip floating point support, but 
the date of availability was unclear. 

A detailed report on this first generation design is available 
in a separate technical report [18]. For the purposes of this pa- 
per, we offer a summary feature list for the XP/DCS Prototype 
as follows: the T414 15 MHz 32 bit RISC microprocessor with 
four 1OMbps serial communication 1inks;AOK bytes of external 
zero wait state static RAM; WEITEK 1164/1165 IEEE 64/32 bit 
floating point chip set; Five 32 bit 1/0 ports; Eight individually 
addressable flags. 

2.2 The Second Generation: XP/DCS Version 1.0 

The previously described prototype had been in daily operation 
for almost one year in a three node configuration controlling a 
juggling apparatus in the Yale Robotics Laboratory described 
in the next section. Over that time, we upgraded the nodes as 
experience dictated and as the availability of appropriate new 
technology allowed. It became clear that easy customization of 
a node's 1/0 capability was as important as tailoring its compu- 
tational characteristics. We set about in our second generation- 
design to achieve a general purpose 1/0 board which would stan- 
dardize the interface between our computational network and 
the physical world. The essential features of this new board in- 
clude an upgrade from T414 to T800 processor, the addition of 
fiber optic link interface capability, and modularization into a 
mother-daughter board set. The first feature provides reason- 
able computational power (1 Mflop) with no special purpose co- 
processors. The second improvement turns out to be a vital step 
in so EM1 hostile an environment as an electrical servo actuated 
robot. Fiber optic technology meant the long awaited end to in- 
terference problems and impedance matching "artistry" for the 
7m communication lines which link the transputer network. The 
main structural innovation is the clear separation between com- 
putation and 1/0 on two separate boards. All 1/0 functions (and 
eventually, any coprocessors will) reside on a "daughter card" 



which plugs into a "bus expansion connector" on the "mother 
card". The latter - the CPU board proper - can therefore be 
used alone as a floating point node or with an attached 1/0 card 
as a complete data acquisition and control node. 

2.2.1 The XP/DCS CPU board 

1 

XPlDCS 

Figure I: XP/OCS - CPU board 

The high line density typical for 32 bit designs dictated the use 
of a four layer Printed Circuit Board with the attending bene- 
fits of reduced ground noise and enhanced signal integrity (the 
prototype was plagued by electrical and mechanical wire wrap 
failures). We standardized to the increasingly popular Eurocard 
form factor, using a board size of 100" x 220mm, the so-called 
Single Extended Eurocard. The rear edge connector is pin com- 
patible with INMOS' evaluation cards for the ITEM system. 

The CPU board supports both the T800 as well as the T414 
at jumper selectable clock speeds of 15-20Mhz. A power-up reset 
signal provided on the board ensures that the processor is reset 
properly at  power-up. Without this provision, random external 
bus accesses may occur until a program is downloaded. This 
is especially bad for 1 / 0  devices which may thus be accessed 
arbitrarily and cause potential disaster. 

This version is much simpler than the prototype. The advent 
of the T800 with its on chip floating point support has eliminated 
the need for the WEITEK chipset and its support circuitry. Sec- 
ond, we have moved all TTL logic into one PAL. Third, all 1/0 
related functions have moved to the 1/0 board. This halves the 
chip count for the CPU board to 12 devices. 

By exploiting the development of fast 32k x 8 SRAMS we have 
increased the local memory by a factor of four compared to the 
prototype to 128K bytes of which 124K bytes (for T8) or 126K 
bytes (for T4) are accessible. To satisfy the requirement of zero 
wait states, 70 ns chips from Mitsubishi are used. As before each 
XP/DCS node has access to the host's (larger) memory through 

a serial link connection. We also keep open the option to add 
additional local SRAM memory on the 1/0 card. Only further 
experience with real life control situations will determine if larger 
local memory is needed. 

The Transputer's four high speed serial links are made avail- 
able on the rear edge connector compatible to the INMOS ITEM 
boards. The link speeds are user selected. All inputs are Schot- 
tky diode clamped. For purposes of improving the impedance 
matching in critical cases the output lines' series resistances can 
he altered. To ensure signal integrity in harsh EMI, two of the 
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links may be routed to  fiber optic ports located on the board's 
front edge. Current hardware choices limit the fiber bandwidth 
to BMbps, the link speed which will be supported by all trans- 
puter family products. 

To serve as visual software status indicators or aid in system 
debugging, eight LEDs are located at the front edge of the card. 
The system service lines to  and from the Transputer pass through 
the rear edge connector and have pin-outs compatible with those 
in the INMOS ITEM unit. All three, Error,.Analyse, and Reset 
are visually displayed by the LEDs. 

The Z/O connector (DIN type 'B') located on the lower edge of 
the board, passes the 32 bit Data/Address bus with all interrupt- 
,DMA- and bus control lines. Thus any kind of add-on board can 
to be attached that interfaces to the transputer memory interface. 
However it is required that all signals be buffered after the 1/0 
connector. 

The performance of this CPU board is determined by the 
Transputer.employed and the number of wait states for external 
memory cycles. As we use zero wait states memory (for CPU 
speeds up to 20MHz) all the performance measures given by IN- 
MOS in [21] for the transputer apply for our CPU board, as well. 

As mentioned above, the XP/DCS CPU board is pin com- 
patible with all existing INMOS evaluation products using the 
B201-1 10 slot card cage. The 1/0 daughter board derives its 
power from the CPU board . Analog supply voltages are passed 
from the rear edge connector to  the 1/0 connector on several 
pins. These rear edge pins are not connected in the standard 
INMOS ITEM chassis. 

2.2.2 The XP/DCS 1 / 0  board 

The first 1/0 innovation was, as mentioned above, to separate 
computational and 1/0 functionality. Second, the test period 
with the prototype has shown it had more digital 1/0 than we 
ever needed, and was too inflexible, providing a fixed number 
(5) of input and output ports, each 32 bits wide. Moreover, 
virtually every 1/0 device is now available with tri state output, 
eliminating the need for a separate 1/0 latch for each unit, and 
permiting operation in a parallel fashion via the same 1/0 latch. 

Thus, it became soon clear that in order to simultaneously 
maximize flexibility as well as ease of use, we needed a latched 
32 bit bidirectional 1/0 bus which provides for a virtually unlim- 
ited number of 1/0 devices with minimal chip count. In order 
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to  further minimize the custom 1/0 effort when accommodat- 
ing a specific 1/0 device, we provide six individually addressable 
sets of four latched handshaking output lines as well a8 a total 
of eight handshaking input lines. In order to prevent arbitrary 
latched outputs of the handshaking output lines a t  power up 
to  cause disaster (for example, enabling a robot joint while the 
torque command is not under control), these outputs wake up in 
a high impedance state and can be jumpered to  either polarity on 
the fabricated section of the 1/0 board. For programming and 
debugging convenience, all handshake output lines can be read 
back. 

This implementation provides the user with a maximum of 
support for custom 1/0 needs: Most tristate I/O devices should 
be able to  interface to this bus without any additional support 
chips at all. If desired, several devices can be accessed simultane- 
ously: for example, two 16 bit or three 10 bit D-to-A or A-to-D 
converters could be accessed by attaching the different chips to 
different portions of the 1/0 bus. 

We call the mode previously described the asynchronous 1/0 
mode. Devices can be accessed independent of their speed. A 
complete 1/0 cycle would take in this default mode would take 
about 1 p., or roughly the time for one flop. Recall that a typical 
robotic application, as outlined in the first section, requires 18 
1/0 operations and 1000 flops per sampling time. Thus we can 
easily see, that with these timing considerations the 1/0 time 
requirements are negligeible compared to  the computational re- 
quirements. The typical three external memory cycles are: (1)ad- 
dress/enable device via handshaking out; (2) read from / write 
to device ( if necessary, after delay); (3) disable device. 

However, in general (for example for some ASICS, or if one 
needs the faster 1/0 cycle time - generally a gain of less than 
lpec ) ,  the board allows for direct bus interfacing to the trans- 
puter called synchronous 1/0 mode. This is possible by removing 
the bidirectional bus latches. However, no default latched mode 
is simultaneously possible and no further support is provided on 
board for thjs mode which is not considered the default use. 

3 Applications 
The XP/DCS system was designed to  be the general workhorse 
for real-time motion control experiments within the Yale Robotics 
Laboratory. In this section we very briefly review our experiences 
with two particular pieces of robotic apparatus. 

3.1 Control of a Juggling Apparatus 

One line of research we pursue is directed towards understand- 
ing underlying principles in modeling, analyzing and controlling 
robots that repetitively catch or throw, hop, run - or juggle. For 
empirical validation of our theoretical models and as a source of 
insight, we have built a simple two dimensional juggling appa- 
ratus. The physical system consists of a puck, which slides on 
an inclined plane and is batted successively by a simple “robot” 
- a bar with billiard cushion rotating in the juggling plane as 
depicted in Figure 3. The figure depicts the simple three node 
XP/DCS newtork we employ in this application consisting of an 
intelligent sensing node to  estimate puck positions and veloci- 
ties from the digitizing table, a motor controller node, and a 
host/logging node. 

l \  D C I  et.. 
YDlDT 

h 

Figure 4, is a “recording” of a successful “vertical one-juggle” 
using an algorithm reported in [l]. The plot shows the actual 
horizontal (bl-axis) and vertical (bz-axis) trajectory of a planar 
free-falling puck subjected to a series of juggling impacts by the 
robot. The puck is controlled from the initial drop point (upper 
left) to  a stable pure vertical periodic orbit. 

~~ 

3.2 An Advanced XP/DCS Based Robot Controller 

An advanced robot controller based on the XP/DCS is under con- 
struction for both testing new robot control algorithms and inves- 
tigating issues of distributed real time control. For this task the 
GMF Robotics Model A-500, a four degree of freedom SCARA 
type arm shown in Figure 5, was chosen as the target mechanical 
unit. 

Like virtually all currently available robot systems, the orig- 
inal A-500 system controller provides an integrated high level 
user interface which serves admirably in industrial applications, 
but precludes the low level servo intervention which is needed in 
the research laboratory. For our experiments it is necessary to 
be able to directly and independently specify the torque being 
delivered by each joint of the robot. Since the original control 
system does not allow this type of interface at  any level, it was 
necessary replace the manufacturer’s control system with our own 
system. For each of the robot’s joints, the new interface consists 
of a dedicated INMOS Transputer which directly commutates (in 
software) the currents in the DC brushless motors at the robot 
joints. The system block diagram for a single joint is shown in 
Figure 6 

The servo transputers provide a clean interface to  each actua- 
tor, thus freeing the designer of the control network from low level 
operational requirements of the particular motors used. Thus the 
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architecture of the control network will be dictated solely by the 
structure of the particular control algorithm chosen. We now 

transputer network which realizes the algorithm. 
briefly describe an advanced control algorithm and a distributed N*dcnrL.mus:Bu~d. r * .=S umbm-. rig” ID Namrk L.Ln<y: Sdf Dullamg. 
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Our first experiments will be directed toward computation 
of the computed torque strategy (2) discussed in the introduc- 
tion. Our present implementation has each servo processor com- 
municating directly to  two processors: a dedicated computation 
processor and a dedicated communication server processor. The 
server processors communicate in a ring topology. Communicat- 
ing directly with the i’th low level servo is the i’th computation 
node which computes the subexpression of equation 2 associated 
with the the 9th joint. The local computation consists of the 
entire feedback gain calculation, and the i’th rows of both the 
M ( q )  and B(q, q )  matrices, followed by the appropriate multipli- 
cation and summation. The local computation receives the 9th 
state information directly from the i’th servo, and the j,j # 9th 
state information as well as the reference information from a ded- 
icated server node. This local computation is currently executed 
on a single T-800, but one might imagine further granularization 
of this process. Each low level servo node also reports its state 
directly to its local server node which forwards this data to the 
remaining servers. An additional command server receives refer- 
ence trajectory commands from the host and forwards this data 
to  the servers. This topology is illustrated in Figure 7. 

Since the servo control boards of Figure 6 are not yet com- 
plete a t  the time of writing, our epxerimentation to date has been 
limited to timing measurements of algorithm (2) implemented 
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upon the network illustrated in Figure 7 with the low-level nodes 
generating simulated commutation commands and robot state 
information. These experiments are reported in some detail in 
[25], and it will suffice here merely to display a variety of “cross 
latency” matrices (as defined in the introduction of this paper) 
in Figures 8, 9, and 10, which obtain from a variety of distri- 
bution and communications schemes. All measurements are in 
microseconds. 
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