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Abstract

We report on the design and analysis of a controller that can achieve
dynamical self-righting of our hexapedal robot, RHex. Motivated by
the initial success of an empirically tuned controller, we present a
feedback controller based on a saggital plane model of the robot. We
also extend this controller to develop a hybrid pumping strategy that
overcomes actuator torque limitations, resulting in robust flipping
behavior over a wide range of surfaces. We present simulations and
experiments to validate the model and characterize the performance
of the new controller.

KEY WORDS—legged robot, model-based control, contact
modeling, dynamic manipulation, experimentation

1. Introduction

RHex (see Figure 1) is an autonomous hexapod robot that ne-
gotiates badly irregular terrain at speeds better than one body
length per second (Saranli, Buehler, and Koditschek 2001).
In this paper, we report on efforts to extend RHex’s present
capabilities with a self-righting controller. Motivated by the
successes and limitations of an empirically developed largely
open-loop “energy pumping” scheme, we introduce a care-
ful multi-point contact and collision model so as to derive
the maximum benefit of our robot’s limited power budget.
We present experiments and simulation results to demonstrate
that the new controller yields significantly increased perfor-
mance and extends on the range of surfaces over which the
self-righting maneuver succeeds.

Physical autonomy—on-board power and computation—
is essential for any robotic platform intended for operation
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in the real world. Beyond the strict power and computa-
tional constraints, unstructured environments demand some
degree of behavioral autonomy as well, requiring at least basic
self-manipulation capabilities for survivability in the absence
(or inattention) of a human operator. Even during teleopera-
tion, where the computational demands on the platform are
less stringent, the ability to recover from unexpected adver-
sity through self-manipulation is essential. Space applications
such as planetary rovers and similar exploratory missions
probably best exemplify settings where these requirements
are most critical (Altendorfer et al. 2001).

Recovery of correct body orientation is among the simplest
of self-manipulation tasks. In cases where it is impossible for
a human operator to intervene, the inability to recover from a
simple fall can render a robot completely useless and, indeed,
the debilitating effects of such accidents in environments with
badly broken terrain and variously shaped and sized obstacles
have been reported in the literature (Bares and Wettergreen
1999).

RHex’s morphology is roughly symmetric with respect to
the horizontal plane, and allows nearly identical upside-down
or right-side-up operation, a solution adopted by other mobile
platforms (Matthies et al. 2000). However, many application
scenarios such as teleoperation and vision-based navigation
entail a nominal orientation arising from the accompanying
instrumentation and algorithms. In such settings, designers
typically incorporate special kinematic structures, e.g., long
extension arms or reconfigurable wheels (Tunstel 1999; Hale
et al. 2000; Fiorini and Burdick 2003), to secure such vi-
tal self-righting capabilities. In contrast, the imperatives of
dynamical operation that underly RHex’s design and con-
fer its unusual mobility performance (Saranli, Buehler, and
Koditschek 2001) preclude such structural appendages. RHex
must rely on its existing morphology and dynamic maneuvers
to achieve the necessary self-righting ability.
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Fig. 1. RHex 1.5.

There is a significant body of literature in the control of lo-
comotion addressing similar problems arising from both the
dynamic and the hybrid nature of such systems. The work
of Raibert (1986) on dynamically stable hopping robots was
influential in the development of various other systems capa-
ble of performing dynamical maneuvers such as biped gym-
nastics (Hodgins and Raibert 1990) and brachiating robots
(Nakanishi, Fukuda and Koditschek 2000). However, despite
structural similarities, these methods are not directly applica-
ble to our problem as they either aim to stabilize the system
around neutral periodic orbits or concentrate on the control of
non-holonomic flight dynamics.

Quasi-static posture control has been explored in the
legged robotics literature (Waldron and Vohnout 1984; Nel-
son and Quinn 1999), but not the dynamical problem of
present concern. In particular, the problem of dynamically
righting a legged platform introduces the need to consider
intermittent multiple contacts and collisions, while incurring
constraints on feasible control strategies familiar within the
legged robotics literature, arising from morphology, actuator
and sensory limitations. Our recourse to an energy pumping
control strategy is informed by earlier work on dynamically
dexterous robotics such as the swing-up of a double pendu-
lum (Spong 1995; Nakanishi, Fukuda, and Koditschek 1999;
Yoo, Yang, and Hong 2001), which involves some of these
constraints but, notably, does not require consideration of the
hybrid nonlinearities that are inherent to our system (e.g., see
Figure 4). Similarly, recent work on jumping using computa-
tional learning algorithms (Zhang et al. 1997) and simulation
studies of ballistic flipping (Geng, Li, and Xu 2002; Geng et al.
2002) using Poincaré maps for the design of stable control
policies for one-legged locomotion contend with aspects of
dynamics relevant to self-righting, but consider neither mul-
tiple colliding contacts nor inherent or explicit constraints on
feasible control inputs.

In this light, the central contributions of this paper include:
(i) introducing a new multiple point collision/contact model
that characterizes RHex’s behavior during the flipping ma-

neuver; (ii) the description of a new torque control strategy
that uses the model to maximize the energy injected into the
system in the face of these constraints (i.e., consistent with
maintaining a set of postural invariants integral to the task at
hand). We present experimental and simulation evidence to
establish the validity of the model and demonstrate that the
new controller significantly improves on the performance of
our first generation open-loop controller.

2. Flipping with RHex

RHex’s dynamic locomotion performance arises from our
adoption of specific principles from biomechanics such as
structural compliance in the legs and a sprawled posture (Al-
tendorfer et al. 2001). Furthermore, its mechanical simplicity,
with only one actuator per leg and minimal sensing, admits
robust operation in outdoor settings over extended periods of
time.

The rotation axes for RHex’s actuators are all parallel
and aligned with its transverse horizontal body axis. Con-
sequently, the most natural backflip strategy for RHex pivots
the body around one of its endpoints. Pitching the body in
this manner, while keeping one of the body endpoints in con-
tact with the ground, maximizes contact of the legs with the
ground for the largest range of pitch angles and thus promises
to yield the best utilization of available actuation. In contrast,
flipping by producing a sideways rolling motion suffers from
early liftoff of three legs on one side as well as the longer
protrusion of the middle motor shafts.

For surfaces with sufficiently low lateral inclination,
RHex’s rectangular body and lateral symmetry restricts the
motion described above to the saggital plane. When the tail
or the nose of the body is fully in contact with the ground,
the resulting support line provides static lateral stability as
long as the gravity vector falls within the contact surface (see
Section 3). As a result, a set of planar models suffices to an-
alyze the flipping behavior within the acceptable range of
inclinations.

Clearly, large slopes will invalidate this assumption and
may lead to non-planar motion. However, we limit the scope
of this paper to analysis on relatively flat terrain wherein the
planar nature of the flipping motion remains valid. Before
formally introducing the planar flipping models in Section 3,
we will find it useful to describe the general structure of the
flipping controller, as well as motivations and assumptions
underlying its design.

2.1. Basic Controller Structure

All the flipping controllers presented in this paper share the
same finite state machine structure, illustrated in Figure 2.
Starting from a stationary position on the ground, the robot
quickly thrusts itself upward while maintaining contact be-
tween the ground and the endpoint of its body (poses I and
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Start
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Fig. 2. Sequence of states for the flipping controller.

II in Figure 2) as the front and middle legs successively
leave the ground. Depending on the frictional properties of
the leg/ground contact, this thrust results in some initial ki-
netic energy of the body that may in some cases be sufficient
to allow “escape” from the gravitational potential well of the
initial configuration and fall into the other desired configu-
ration. In cases where a single thrust is not sufficient to flip
the body over, the robot reaches some maximum pitch lying
within the basin of the original configuration, and falls back
toward its initial state. Our controller then brings the legs back
to Pose I of Figure 2 and waits for the impact of the front legs
with the ground, avoiding negative work—a waste of battery
energy given the familiar power-torque properties of RHex’s
conventional DC motors. The impact of the compliant front
legs with the ground in their kinematically singular configu-
ration recovers some of the body’s kinetic energy, followed
by additional thrust from the middle and back legs, during the
period of decompression and flight of the front leg, i.e., during
a phase interval when it is possible for the legs in contact to
perform positive work on the robot’s mass center. The max-
imum pitch attained by the body increases with each bounce
up until the point where the robot flips or the energy that can
be be imparted by the thrust phase balances collision losses
at which point it must follow that flipping is not possible.

2.2. Observations and Motivation

The performance of the flipping controller is predominantly
determined by the amount of energy that can be injected into
the system through the “thrust” phase. In contrast, the fea-
sibility of the hybrid pumping mechanism depends on the
success of the thrust controller in maintaining body ground
contact to ensure robust recovery of kinetic energy at impact.

The main contribution of this paper is the design of effective
thrust controllers and their analysis in conjunction with the
hybrid pumping scheme to characterize the performance of
flipping.

Our first generation flipping controller was primarily open
loop at the task level, wherein we used high gain propor-
tional derivative (PD) control to “track” judiciously selected
constant velocity leg sweep motions (Saranli and Koditschek
2001, 2002). This scheme was motivated by its simplicity as
well as the lack of adequate proprioceptive sensing capabili-
ties in our experimental platform.

As reported in Saranli and Koditschek (2002), this simple
strategy is capable of inducing a backflip of our earlier exper-
imental platform (RHex version 0.5) for a variety of surfaces
(see Extensions 1 and 2 for movies). However, it does so with
relatively low efficiency (in terms of the number of required
bounces) and low reliability. It shows very poor performance
and reliability on softer surfaces such as grass and dirt—
outdoor environments most relevant to RHex’s presumed mis-
sion (Altendorfer et al. 2001; Saranli, Buehler, and Koditschek
2001). Furthermore, as we report in this paper, it fails alto-
gether on newer versions of RHex which are slightly larger
and heavier. To permit a reasonable degree of autonomous
operation, we would like to improve on the range of condi-
tions under which flipping can function. This requires a more
aggressive torque generation strategy for the middle and rear
legs. However, empirically, we find that driving all available
legs with the maximum torque allowed by the motors usually
results in either the body lifting off the ground into a standing
posture, or unpredictable roll and yaw motions eliminating
any chance for subsequent thrust phases. Rather, we seek a
strategy that can be tuned to produce larger torques aimed
specifically at pitching the body over. This requires a detailed
model of the manner in which the robot can elicit ground reac-
tion forces in consequence of hip torques operating at different
body states and assuming varying leg contact configurations.

3. Planar Flipping Models

In this section, we present a number of planar models, start-
ing with a generic model in Section 3.2, followed by various
constrained versions in Sections 3.5 and 3.6. In each case, we
derive the corresponding equations of motion, based on the
common framework of Section 3.3.

3.1. Assumptions and Constraints

Several assumptions constitute the basis for our modeling and
analysis of the flipping behavior.

ASSUMPTION1. The flipping behavior is primarily planar.

The controller structure described in Section 2.1 operates
contralateral pairs of legs in synchrony. On flat terrain, the
robot’s response lies almost entirely in the saggital plane and
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departures are rare enough to be negligible. Our models and
analysis will hence be constrained to the saggital plane.

Even though the scope of the present paper does not ad-
dress in detail the flipping behavior on sloped surfaces, this
assumption can be intuitively justified by the observation that
the full contact of one of the body endpoints with the ground,
if successfully enforced by the controller, yields lateral static
stability by canceling the lateral moment induced by the ac-
tion of gravity on the body. The largest moment is produced
when the body is standing vertically on one of the endpoints,
and can be counteracted for slopes of up to atan(w/l) where
w is the body width andl is the body length. Even though we
do not present systematic experiments to verify this observa-
tion, this simple model suggests the potential validity of our
planar analysis for a considerable range of lateral slopes as
well.

ASSUMPTION2. The leg masses are negligible relative to the
body mass.

We assume that the leg masses are sufficiently small so that
their effect on the body dynamics is limited to the transmission
of the ground reaction forces at the toes to the body when they
are in contact with the ground. This assumption is a fairly
accurate approximation as a result of the very light fiber-glass
legs on our experimental platform.

ASSUMPTION3. The tail of the body should maintain contact
with the ground throughout the flipping action.

This assumption is motivated by a number of observations
gathered during our empirical flipping experiments. First, dur-
ing the initial thrust phases, the front and middle legs provide
most of the torque. Configurations where the tail endpoint of
the body is in contact with the ground yield the longest du-
ration of contact for these legs, harvesting greatest possible
benefit from the associated actuators.

Furthermore, collisions of the body with the ground, which
introduce significant losses due to the high damping in the
body structure designed to absorb environmental shocks, can
be avoided by preserving contact with the ground throughout
the flipping action. It is also clear that one would not want
to go through the vertical configuration of the body when
the tail endpoint is not in contact with the ground as such
configurations require overcoming a higher potential energy
barrier and would be less likely to succeed.

Finally, the body ground contact is essential for maintain-
ing the planar nature of the behavior and eliminating body roll.
This is especially important for repeated thrust attempts of the
hybrid energy pumping scheme, which rely on the robot body
being properly aligned with as much of the impact kinetic
energy recovered as possible.

In light of these assumptions, the design of thrust con-
trollers has to satisfy two major constraints: keeping the tail
endpoint of the body on the ground and respecting the torque
limitations of the actuators.

d
di

α
γi

φi

N

l

h
T

z

y

m, I

yiµt

τi

yb

zb

µb

zt

yt

Fig. 3. Generic three-degrees-of-freedom (3DOF) planar
flipping model.

3.2. The Generic Model

Even though our analysis will be largely confined to control
strategies that enforce configurations where the tail of the
body remains on the ground, we will find it useful to introduce
a more general model to prepare a formal framework in which
we will define various constraints.

Figure 3 illustrates the generic planar flipping model.
Three massless rigid legs—each representing a pair of RHex’s
legs—are attached to a rectangular rigid body with massmand
inertiaI .The attachment points of the legs are fixed atdi , along
the mid-line of the rectangular body. This line also defines the
orientation of the body,α, with respect to the horizontal. The
center of mass (COM) is midway between the pointsN and
T , defined to be the “nose” and the “tail”, respectively. The
body length and height are 2d and 2h, respectively. Finally,
we assume that the body–ground and toe–ground contacts
experience Coulomb friction with coefficientsµb andµt , re-
spectively. Table 1 summarizes the notation used throughout
the paper.

Neither the rectangular body nor the toes can penetrate the
ground. Our model hence requires that the endpoints of the
body be above the ground

zb >

{
d sin|α| + h cosα if |α| < π/2
d sin|α| − h cosα otherwise

, (1)

and that a leg must reach the ground

zb > l − di sinα (2)

before it can apply any torque to the body.As a result, the con-
figuration space1 (α, zb) is partitioned into various regions,
each with different kinematic and dynamic structure as illus-
trated in Figure 4. In the figure, the solid line corresponds to
configurations where one of the body endpoints is in contact
with the ground, determined by eq. (1). All the configurations
below this line (white region) are inaccessible as they would
require the body to penetrate the ground. Similarly, different

1. Contact constraints are invariant with respect to horizontal translation,
allowing for the elimination ofyb.
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Table 1. Notation Used Throughout the Paper

States and dependent variables

c ∈ X System configuration vector
q := [c, ċ]T System state vector

yb, zb Body COM coordinates
α Body pitch

yt , zt Coordinates of the tail endpoint
φi, γi Hip and toe angles forith leg
yi, ẏi Position and velocity of theith toe

Contact forces

F
y

i , Fi GRF components onith toe
F y

c
, F z

c
GRF components on the tail

Control inputs

τ ∈ R
3 Hip torque control vector

T (q) ⊆ R
3 Set of allowable torque vectors

Planar model parameters

d, h Body length and height
di, l Leg attachment and length

µt, µb Coulomb coefficient for toes and
body

m, I Body mass and inertia
kr Coefficient of restitution for rebound

Motor model parameters

vs Power supply voltage
rd, ra Motor drive and armature resistances

Ks, Kτ Motor speed and torque constants
mg, hg Motor gear ratio and efficiency

Table 2. RHex’s Kinematic and Dynamic Parameters

d 0.25 m h 0.05 m
d1 –0.19 m m 8.5 kg
d2 0.015 m I 0.144 kg m2

d3 0.22 m l 0.17 m

shades of gray in Figure 4 represent the number of legs that can
reach the ground for a given configuration, with the bound-
aries determined by eq. (2). All legs can reach the ground
for configurations shaded with the darkest gray whereas all
legs must be in flight for those configurations shaded with
the lightest gray. The shaded regions also extend naturally to
configurations with body ground contact.

− − −− − −
α (rad)(rad)

z (m )z (m )

0.20.2

0.30.3

11 123 32

Fig. 4. Hybrid regions in the planar flipping model based
on RHex’s morphology (see Table 2). Solid lines indicate
body ground contact for the nose (α < 0) and the tail
( α > 0). The liftoff transitions of the front, middle and back
legs are represented by dotted, dash-dot and dashed lines,
respectively. Lighter shades of gray indicate that fewer legs
can reach the ground.

F z
c

F y
c

τi

τi

Fi

F y
i

Pi

Pi

mg F z
hi

F z
hi

F y
hi

F y
hi

Fig. 5. Free body diagrams for the body and one of the legs.

3.3. Framework and Definitions

In deriving the equations of motion for all constrained models
in this paper, we use a Newton–Euler formulation, presented
in this section so as to unify the free-body diagram analysis
of all three models.

Figure 5 illustrates the generic free-body diagrams for the
body link and one of the leg links. Based on whether a link
is in flight, in fixed contact with the ground or sliding on the
ground, the associated force and moment balances yield linear
equations in the unknown forces and accelerations, taking the
form

A(c)v = b(c, ċ) + D(c) τ . (3)

Here,τ := [τ1, τ2, τ3]T is the torque actuation vector,c
is the configuration vector, andv is the vector of unknown
forces and accelerations. The definitions of bothc andv, as
well as the matricesA(c), b(c, ċ) andD(c) are dependent on
the particular contact configuration and will be made explicit
in subsequent sections.
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3.4. Unconstrained Dynamics with No Body Contact

Ideally, our flipping controllers will attempt to maintain con-
tact between the body and the ground. However, part of
our analysis requires the investigation of the unconstrained
dynamics.

For this general case, no ground reaction forces act on
the body link and the tail end of the body is free to move.
Furthermore, assuming that all legs are in sliding contact
with the ground, the friction forces take the formF y

i =
−µt Fi sign(ẏi), where ẏi represents the translational ve-
locity of theith foot. In this case, the vector of unknowns and
the system state are defined as

v := [F1, F2, F3, α̈, ÿt , z̈t ]T (4)

c := [α, yb, zb]T .

For each leg, we can write the moment balance equations
as

(l cosγi + lµ̄i sinγi)Fi = −τi , (5)

whereµ̄i := −µt sign(ẏi) is the effective Coulomb friction
coefficient andγi corresponds to the toe angle as shown in
Figure 3. In the operational range of the flipping controller,
these equations are solvable. However, there are interesting
“jamming” singularities in the remaining parts of the state
space, which we investigate in Section 3.7.

Similarly, force and moment balances for the body link
yield

µ̄1F1 + µ̄2F2 + µ̄3F3 − mÿb = 0

F1 + F2 + F3 − mz̈b = mg
3∑

i=1

(di cosα − diµ̄i sinα)Fi − I α̈ =
3∑

i=1

τi (6)

whereÿb andz̈b are components of the body acceleration and
can be written as affine functions ofα̈, ÿt and z̈t by simple
differentiation of the kinematics. The combination of eqs. (5)
and (6) yields the matricesA(c), b(c, ċ) andD(c).

3.5. Dynamics with Sliding Body, Sliding Toe Contacts

In general, we observe that throughout the execution of our
flipping behaviors, both the leg and body contacts slide on
the ground. As a consequence, we can rewrite the horizontal
components of ground reaction forces in terms of their vertical
components using Coulomb’s friction law. Here, the vector of
unknown quantities becomes

v := [F1, F2, F3, α̈, F z

c
, ÿt ]T (7)

c := [α, yb]T ,

yielding a system with two degrees of freedom: the body pitch
and the horizontal position of the tail.

In this case, the moment balance for each leg remains the
same as eq. (5) and the body balance equations become

µ̄1F1 + µ̄2F2 + µ̄3F3 − µ̄b F z

c
− mÿb = 0

F1 + F2 + F3 + F z

c
− mz̈b = mg

3∑
i=1

(di cosα − diµ̄i sinα)Fi + [(h + µ̄bd) sinα

+(µ̄bh − d) cosα]F z

c
− I α̈ =

3∑
i=1

τi ,

(8)

where, once again, system kinematics yields the body accel-
erationsÿb andz̈b as functions of̈α andÿt .As before, the com-
bination of eqs. (5) and (8) yields the matricesA(c), b(c, ċ)
andD(c).

3.6. Dynamics with Sliding Body, Fixed Rear Toe Contact

The third and final contact configuration we consider corre-
sponds to cases where the rear toe is stationary under the
influence of stiction. This model is primarily motivated by
the observed behavior of various flipping controllers, where
the rear toe stops sliding following the liftoff of the front and
middle pairs of legs. Consequently, we incorporate this model
into our feedback controller to be activated when the measured
(or estimated) system state indicates that the rear toe is indeed
stationary. Here, the vector of unknown quantities is

v := [F1 F2 F3 α̈ F z

c
F

y

1 ] (9)

c := α ,

leaving a system with a single degree of freedom: the body
pitchα. In this case, however, the moment balance for the rear
leg is slightly different and includes the unknown horizontal
ground reaction force, yielding

l cosγ1F1 + l sinγ1F
y

1 = −τ1, (10)

while the moment balance equations for the middle and front
legs remain the same as eq. (5). Finally, the balance equations
for the body link now take the form

F
y

1 + µ̄2F2 + µ̄3F3 − µ̄b F z

c
− mÿb = 0

F1 + F2 + F3 + F z

c
− mz̈b = mg

3∑
i=1

(di cosα)Fi −
3∑

i=2

(diµ̄i sinα)Fi

−(d1 sinα)F
y

1 + [(h + µ̄bd) sinα

+(µ̄bh − d) cosα]F z

c
− I α̈ =

3∑
i=1

τi.

(11)

Similar to the previous two models, system kinematics
yields the body accelerations̈yb andz̈b as functions of̈α we
use eqs. (10) and (11) to compute the matricesA(c), b(c, ċ)
andD(c).
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3.7. Existence of Solutions and Leg Jamming

In the preceding sections, we presented a number of con-
strained models with their associated equations in the un-
known forces and accelerations. However, the equations by
themselves do not ensure the existence of solutions. In this
section, we present conditions sufficient for these model to
admit solutions, and show that the flipping controller oper-
ates within the resulting consistent regions in the state space.

In this context, a major singularity arises in computing
the ground reaction forces on sliding legs using the moment
balance equation (5). To illustrate the inconsistency, suppose
that legi is sliding forward withẏi > 0 and the leg is within
the friction cone with cotγi < µt . Whenτi < 0, the massless
legs in our model require a positive vertical component for
the ground reaction force,Fi > 0. However, the solution of
the leg moment balance equation yields

Fi = − τi

l cosγi − lµt sinγi

< 0 , (12)

resulting in an inconsistency. Consequently, when the leg is
sliding forward and is inside the friction cone, there are no
consistent solutions for the unknown forces and accelerations.

It turns out that this problem is a special case of the well-
known Painlevé problem of a rigid rod sliding on a frictional
surface (Painlevé 1895; Mason 2001). For certain parameter
and state combinations, it is impossible to find any consistent
set of finite forces and accelerations and one needs to seek
impulsive solutions for the unknown quantities. This problem
and its variations stimulated a large body of work in frictional
collisions (Baraff 1991; Wang and Mason 1992; Stewart and
Trinkle 1997; Stewart 1998), which hypothesize that the rigid
rod would “jam” in such cases and start pivoting around its
contact point.

Even though such impulsive force based approaches are ex-
tremely useful in evaluating the equations of motion for simu-
lation purposes, their utility diminishes significantly when our
goal is the design of a feedback controller. Even very small
parametric errors or sensor noise could result in the measured
state becoming inconsistent, putting the system outside the
domain of the model-based controller. Unlike simulated sys-
tems, we do not have the luxury of applying impulsive forces
to a physical robot through its actuators to bring it to a state
where consistent solutions exist.

Fortunately, empirical evidence accumulated over months
of physical experiments with the robot reveals that, in the
absence of dramatic external disturbances, RHex operates
in regions of its state space away from these singularities.
Starting from a stationary position, the front four legs always
slide backward, which guarantees a solution for the associated
ground reaction forces. Furthermore, even though the rear legs
usually slide forward, RHex’s kinematics ensure that the ori-
entation of the rear two legs is always outside the friction
cone, yielding a consistent solution for the associated reac-
tion forces. Finally, the body link always slides forward and

admits a consistent solution once the toe reaction forces are
identified.

4. Model-Based Control of Flipping

We have presented, in the previous sections, the equations
of motion for a variety of planar flipping models that are
constrained versions of the generic model described in Sec-
tion 3.2. In this section, we use these models to design a con-
troller that is capable of performing dynamic back flips with
our hexapod platform.

In particular, our controller attempts to maximize the ac-
celeration of the body pitch, while maintaining contact of the
body endpoint with the ground and respecting torque con-
straints of the motors. Depending on the current measured (or
estimated) state of the rear toe, the appropriate model is chosen
among those presented in Sections 3.5 and 3.6 in formulating
the maximization problem. The resulting feedback controller
implicitly defines a switching law based on the physical state
of the rear toe, with no explicit discrete internal states. On
RHex, direct measurement of toe stiction is not possible and
we instead use an empirically designed estimator, described
in Section 5.3.

For both planar models, when the system is far from singu-
lar regions described in Section 3.7, the unknown forces and
accelerations can be computed by directly solving eq. (3),
yielding

v = A−1(c)b(c, ċ) + A−1(c)D(c) τ . (13)

Both constrained systems are underactuated and direct in-
version of these dynamics to obtain torque solutions is gen-
erally not possible. Furthermore, our task is not specified in
terms of particular choices of ground reaction forces and ac-
celerations. Rather, we are interested in the (in)stability prop-
erties of particular degrees of freedom in the system, partic-
ularly the body pitch, as well as various constraints arising
from our assumptions in Section 3.1. As a consequence, our
controller is based on a constrained optimization formulation
informed by the underlying dynamics.

4.1. Constraints on Control Inputs

The first set of constraints in solving eq. (13) arises from phys-
ical limitations of the actuators in RHex. Torque limitations
for the simplest, resistive model of a geared DC motor arise
from the interaction between the back EMF voltage, the max-
imum available supply voltage and the armature resistance.
Our model-based controller is designed to respect constraints
based on this simple model for each motor, yielding decoupled
torque limits in the form

Kτhg(−vs − φ̇i

mgKs
)

mg(ra + rd)
< τi <

Kτhg(vs − φ̇i

mgKs
)

mg(ra + rd)
, (14)
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wherevs is the supply voltage,ra andrd are the armature and
drive resistances,Ks andKτ are the speed and torque constants
and finally,mg andhg are the gear ratio and efficiency. These
limits clearly depend on the system state through the motor
shaft velocitiesφ̇i .

We introduce a second constraint on the control inputs to
ensure that Assumption 3 holds. Our controllers must explic-
itly enforce body–ground contact throughout the progression
of the remaining degrees of freedom. Fortunately, this require-
ment is easily captured through the constraint

F z

c
> 0 , (15)

an inequality that is linear in the input torques as can be seen
from the corresponding component of eq. (13).

DEFINITION 1. For a particular stateq ∈ Q, we define the
corresponding set of allowable torques,T (q) as the set of all
torque input vectorsτ ∈ R

3 such that

F z

c
(q, τ) ≥ 0

∀i, Fi(q, τ) ≥ 0

∀i, τmin

i
(q) ≤ τi ≤ τmax

i
(q) .

4.2. Maximal Thrust Control

For both models of Sections 3.5 and 3.6, the solutions forα̈

andÿt are continuous functions of the input torques. For any
given state, this functional relationship is defined through our
hybrid toe contact model and the solutions for the ground reac-
tion forces, subject to the constraints described in the previous
section. As a consequence, the problem of choosing hip con-
trols to maximize thrust becomes a constrained optimization
problem over the allowable input torque space.

DEFINITION 2. Given the current stateq ∈ Q, we define the
maximal torque inputτ∗ as the torque vector that yields the
maximum pitch thrust:

τ∗(q) := argmax(α̈(q, τ )).

τ ∈ T (q)

Fortunately, the solutions of eq. (13) depend linearly on the
input torques. Consequently, the constraints in Definition 1 as
well as the objective function,̈α(q, τ), are linear in the in-
put torques as well. As a result, standard linear programming
techniques can be employed to identify efficiently the maxi-
mal torque solutionτ∗. In particular, we use a simple geomet-
ric solution that exploits the low dimension and the largely
decoupled structure of the constraints (Saranli 2002). Specif-
ically, the motor torque limits of eq. (14) can be expressed
as an axis-aligned constraint cube in 3-space, which we then
intersect with the plane defined by the inequality constraint of
eq. (15). The optimal solution can be obtained by simply eval-
uating the objective function on the vertices of the resulting
intersection polygon as well as the corners of the cube.

In summary, we start by computing the unknown forces and
accelerations for the current system state as affine functions
of the torque inputs using eq. (13). It is then straightforward
to construct the linear constraints of Definition 1. Finally, a
geometric, computationally efficient algorithm is used to find
the exact solution to the resulting linear programming prob-
lem, maximizing the thrust to the pitch degree of freedom
while maintaining body–ground contact and respecting the
limitations of the actuators. It is important to note that these
computations are sufficiently simple as to be implemented in
real time (∼500 Hz) on the 300 MHz Pentium class processor
used in RHex’s control system.

4.3. Hybrid Energy Pumping

Depending on the frictional properties of the surface, our max-
imal thrust controller may or may not inject sufficient energy
to complete the flip. In cases where it fails to achieve the
sufficient energy level in the first attempt, our controller uses
the same strategy as the first generation controller presented in
Section 2.1. Once the body starts falling, local PD loops servo
all legs to predetermined angles and wait until the collision of
the front legs with the ground.

In order to recover as much of the impact kinetic energy as
possible before the next thrust cycle, our controllers position
the front leg vertically prior to impact, exposing the (passive)
radial compliance of the leg to the bulk of the work performed.
The vertical placement also avoids slippage of the leg as well
as friction losses and, as noted above, eliminates the need
for the motor to apply any torque during the collision due
to the kinematically singular configuration. Moreover, during
the decompression of the front leg, the middle and back legs
can still apply additional thrust to inject energy even during
the collision.

It would be possible to extend the continuous dynamics
of Section 3 to incorporate compliance and other dynamical
reaction forces of the front leg so as to construct a “stance
phase” model that might then be integrated to obtain a more
accurate prediction of the body kinetic energy returned at the
next leg liftoff event. Examples of such predictive models can
be found in the literature (Goldsmith 1960). However, their
accuracy is still hostage to the difficulty of determining the
dynamic properties of materials as well as other unmodeled
effects (Chatterjee 1997; Chatterjee and Ruina 1998).

In consequence, we chose to incorporate a purely algebraic
collision law in our model, where a single coefficient of resti-
tution−1 ≤ kr ≤ 1 summarizes the incremental effects of leg
compression/decompression and additional thrust contributed
by the middle and back legs during the decompression of the
front legs. In doing so, we assume that no torque is applied
to the front legs during the collision, constraining impulsive
forces to act along the leg. Furthermore, we require that the
impact occurs while the leg is within the friction cone to avoid
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toe slip. Finally, we assume that the tail of the body comes to
rest (̇yb = 0) during the fallback of the body, leaving the sys-
tem with only one degree of freedom—the pitch,α. In light
of these assumptions, we use the algebraic law

α̇+ = −kr α̇− , (16)

relating the pitch prior to and following the collision (α̇− and
α̇+, respectively) to verify that the resulting impulsive forces
on the body do not cause liftoff of the tail. This yields ap-
propriate initial conditions for the subsequent thrust phase.
Again, empirical evidence reveals that these simplifying as-
sumptions approximate well the physical behavior that RHex
exhibits in the vast majority of circumstances.2 As our exper-
imental platform has no means for detecting tail liftoff and
subsequent compensation, we use a conservative choice for
the front leg angle prior to impact to minimize chances for
such an event.

5. Experimental Results

5.1. Experimental Platform

The most recent version of the robot, RHex 1.5, adopted for
the present experiments, has a rigid body that measures 50×
20 × 15 cm3, and houses all the computational and motor
control hardware, including batteries and two PC104 stacks
for control and vision tasks. Each leg is directly actuated by a
Maxon RE118751 20W brushed DC motor combined with a
Maxon 114473 two-stage 33: 1 planetary gear (Interelectric
AG 1997/98), delivering an intermittent stall torque of 6 Nm
at 24 V. The total weight of the robot is roughly 8.5 kg.

In contrast to the earlier versions, RHex 1.5 incorporates a
three-axis gyro for inertial sensing of the body orientation in
addition to the motor encoders. Recently developed behaviors
on RHex increasingly rely on accurate estimation of the spa-
tial body orientation. As a consequence, we use a quaternion
representation together with integration of gyro readings at
300 Hz to implement a singularity-free robust estimator, sup-
porting flipping as well as other inertially guided locomotion
primitives (Skaff et al. 2003). Furthermore, for the flipping
behavior in particular, we minimize gyro drift by resetting
orientation estimates following each collision when it is pos-
sible to compute the robot orientation through kinematics.

The legs on the current RHex are monolithic pieces of com-
pliant fiber glass, attached to motor shafts through aluminum
hip fixtures. As the third design iteration on possible leg ma-
terials and morphologies, they exhibit significantly improved
reliability and compliance characteristics (Moore et al. 2002).
Each of the legs in the set used for the experiments in this pa-

2. Due to the lack of sensing of the translational body coordinates in RHex
1.5, our only evidence for this observation comes from qualitative analysis
of video footage from flipping experiments.
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Fig. 6. Simple motor model for RHex.

per is roughly 16.5 cm long, weighs 80 g and has a radial
compliance3 of 1900 N m−1.

5.2. Approximate Model-Based Torque Control

RHex 1.5 does not have hardware support for controlling the
hip actuators in torque mode. Due to space and power lim-
itations, the current design operates in voltage mode, where
commands from the on-board computer drive an H-bridge
amplifier, whose output is then fed through a low-pass filter
and connected directly to the armature of the DC motors at
each hip. In order to implement our flipping controller, we
use an inverse model of the motor amplifier—a slight variant
of the model described in McMordie, Prahacs, and Buehler
(2003), with less than 6% prediction error—to achieve rea-
sonably accurate control of the hip torque.

Figure 6 illustrates our simple model for the amplifier and
motor stages. We assume that the combination of the PWM
amplifier with the LC filter can be approximated with a passive
resistor on the load side in series with an ideal transformer,
whose duty factord ∈ [−1, 1] can be arbitrarily commanded.
Furthermore, we assume a simple resistive model for the mo-
tor, followed by a gear head with a reduction ratio ofmg and
efficiency ofhg.

In order to obtain the desired torque on the output shaft, the
commanded duty factor must be chosen to yield an appropriate
armature current. A straightforward solution of the circuit in
Figure 6 yields

d = mg(ra + rd)τ
∗
φ

hgKτvs

+ φ̇i

mgKsvs

(17)

as the input command to the PWM amplifier.
Table 3 summarizes parameter values for RHex’s motors.

In all the experiments reported in this paper, we used a 1 kHz
software loop to implement eq. (17), which yields a steady
state RMS error of around 6% between the actual and desired
hip torques (McMordie, Prahacs, and Buehler 2003).

3. Even though compliance is critical in RHex’s dynamic locomotion per-
formance, it is not nearly as dominant for the flipping behavior. Only small
discrepancies are introduced in the leg length due to the radial compliance and
the accuracy of the torque control suffers small delays due to the rotational
compliance of RHex’s legs.
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Table 3. Parameters for RHex’s Hip Motors

rd 0.45� Kτ 0.01763 N m A−1

ra 1.65� mg 0.03 leg/mtr
Ks 59.21V s rad−1 hg 0.8 leg/mtr

5.3. Detection of Toe Stiction

Our switching controller design requires measurement of rear
toe velocity to determine which of the models in Sections 3.5
and 3.6 is to be used for the maximal torque controller. How-
ever, RHex is not equipped with sufficiently accurate inertial
sensors to estimate the translational velocity of the body. Fur-
thermore, our crude model of the robot kinematics results in
further errors in the transformation to the leg states, rendering
detection of toe stiction through estimation of body velocity
infeasible.

Nevertheless, high-speed video footage (see Extension 3)
of flipping on various surfaces reveals that the behavior of
the rear toe is very consistent and regular across different
experiments. As the front and middle legs leave the ground,
the rear toes start sliding forward. Briefly after the liftoff of
the middle legs, the motion of the rear toes come to a stop.
For the remainder of the thrust, they only move intermittently
and exhibit a stick–slip style low-frequency chattering due to
the passive compliance in the legs. This sticking of the rear
toes is also consistently marked by a relatively sharp increase
in the pitch acceleration.

Motivated by these observations, we devised a filter for the
pitch acceleration measurements as a mechanism for detecting
toe stiction. Beyond a certain pitch value where both the front
and middle legs are in flight, we switch to the “stuck” toe
model when there is a “sharp” change in the pitch acceleration.
Our sharpness measure is based on manually tuned threshold
parameters, which are specific to each surface. In the future,
we plan to incorporate estimates of body velocity as well as
contact sensors on the legs, which should eliminate the need
for this filter and the associated manual tuning.

5.4. Thrust Phase Model Performance

In this section, we present experimental data to establish the
baseline performance of our thrust controller on linoleum,
a slippery surface with relatively consistent frictional
properties.

For the experiments presented in this section, we fixed the
friction coefficient for the body contact asµb = 0.4, based on
ranges indicated in Marks (1996) for plastic on linoleum type
surfaces. This parameter has very little effect on controller
performance due to the small associated ground reaction force
enforced by the controller.

In contrast, in order to estimate the much more important
toe friction coefficient and assess the corresponding model

Fig. 7. Sequence of snapshots during flipping on linoleum
with µt = 0.39, for the period where the maximal thrust
controller is active. Subsequent frames in which the robot
falls back and recovers are not included. White arrows
indicate contact points for the toes and the body.

performance, we ran a number of experiments using approxi-
mate measurements of RHex’s kinematic and dynamic param-
eters (see Table 2), for different settings of the toe friction co-
efficientµt . Four runs were recorded for 15 different settings
in the rangeµt ∈ [0.1, 0.6] (see Extension 4 for experimental
data).

Figure 7 displays a sequence of snapshots for one of these
experiments, extracted from the high-speed video footage of
Extension 3. We only included the most relevant part of the
experiment, which is the period where the maximal thrust
controller was active. A number of important details are illus-
trated by these snapshots. First, the tail of the robot remains in
contact with the ground throughout the whole run, which in-
dicates the controller’s success in maintaining its constraints.
Secondly, throughout flipping, the front two legs slide back-
wards, whereas the rear legs and the body contact are sliding
forward, which justifies our static assumptions for the direc-
tions of frictional forces to yield̄µi . Finally, even though it
is hard to recognize in the snapshots alone, rear toe stiction
and chattering in the second half of flipping is evident in the
associated video footage of Extension 3.

For each experiment, we logged the pitch rate and angle
measurements. We computed the model prediction for the
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Fig. 8. Mean RMS error in estimated pitch velocity as
a function of the toe friction coefficient. For each data
point, vertical bars indicate standard deviation across four
experiments. The script PlotRMSError.m of Extension 4 can
be used to generate this figure.

pitch acceleration using eq. (13), subsequently integrated to
obtain the model predictions for the pitch rate.4 The results are
then compared with the actual measurements to characterize
the accuracy of the model predictions.

Figure 8 plots the RMS error between the measured and
predicted pitch rates for different friction coefficients. For
each setting, the mean and standard deviations across four re-
peated experiments are shown. The best model performance is
obtained forµt � 0.4. Considering various levels of approx-
imations used in our model, including the inaccuracies in the
kinematic and dynamic parameters, unmodeled compliance
in RHex’s legs and the approximate software torque control,
the RMS error of 0.4 rad s−1 is surprisingly small—less than
10% of the maximum speed attained during the flip.

Figure 9 illustrates the best run withµt = 0.39, resulting
in an RMS error in the pitch rate prediction of 0.4 rad s−1.
Figure 10 portrays a similar comparison between the actual
robot performance and a pure simulation with the same ini-
tial conditions and model parameters (see Extension 4 for
data). The reader must bear in mind two qualifications in
comparing these two figures. First, the simulation uses a fixed
supply voltage at 23.5 V, roughly modeling the average bat-
tery voltage drop during the experiments. Secondly, for the
simulated model, we replace the model switching logic of
Section 5.3 with a direct measurement of the toe velocities,
yielding proper detection of toe stiction.

These results suggest that our model provides an accurate
quantitative representation of the thrust phase. Nevertheless,
there are a number of inaccuracies in its prediction, mainly
visible in the pitch acceleration plots. Most significantly, our

4. Note that the integral of the predicted acceleration throughout the experi-
ment is not the same as a pure simulation of the model dynamics.

model fails to predict the large overestimation of the initial
acceleration and the subsequent, relatively large oscillations
in the measured acceleration.

We believe that the origin of both discrepancies is the com-
pliance in RHex’s legs. The initially uncompressed legs intro-
duce some delay in responding to the torque commands, re-
sulting in a small delay in the measured pitch acceleration. A
similar effect is visible subsequent to the liftoff of the middle
legs which also causes oscillations due to the sudden loading
of the rear legs.

Nevertheless, most of these differences do not significantly
influence the average performance of the model prediction. In
addition to the accurate prediction of the pitch velocity, the
robot successfully keeps its tail on the ground and consistently
performs successful flips on linoleum in a single thrust (see
Figure 7 and Extension 3).

For a better understanding of the controller performance,
it is also useful to look at the resulting motor commands. Fig-
ure 11 illustrates torque outputs of combined pairs of rear,
middle and front legs estimated using the motor model of
eq. (17). Throughout the first phase, when all the legs are
in contact with the ground, the controller applies maximum
available torque to all the legs, which decreases as the motor
shafts rotate faster. Following the liftoff of the front legs, the
body ground reaction force constraint becomes dominant and
the torque output to the rear legs is constrained to avoid tail
liftoff. This continues through the liftoff of the middle legs,
until the detection of rear toe stiction (see Section 5.3). The
underlying model is then switched to that of Section 3.6. To-
wards the end of the flip, the tail liftoff constraint becomes
dominant once again due to centrifugal forces.

5.5. Multi-Thrust Flipping on Linoleum

In this section, we present experimental data on flipping
through multiple thrust phases. As in the previous section,
we use a linoleum surface for these experiments due to the
consistency of its frictional properties.

On linoleum, our maximal thrust controller on RHex al-
ways performs a backflip in a single thrust phase. Conse-
quently, we artificially scale the torque limits of eq. (14) to
decrease the injected energy during each cycle necessitating
multiple thrust phases to flip the robot over. In particular, we
decrease the torque limits for the front, middle and rear leg
pairs by 90%, 20% and 20%, respectively, from the actual
constraint computed using eq. (14). The larger reduction of
the front leg torque limits is intentional and significantly de-
creases the energy injected in the first thrust phase—the only
time period in which front legs do any active work.As a result,
the first thrust is forced to fail, necessitating additional cycles
for a successful flip.

We ran 10 experiments on linoleum with these param-
eter settings, all of which successfully flipped RHex after
three thrust phases (see Extension 4 for experimental data). A



914 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / September 2004

α̇
(r

a
d
/s

)

α̈
(r

a
d
/s

2 )

t (s)t (s)

0.10.1 0.20.2 0.30.3 0.40.4

0

0
0

0

1

2

3

4

5 100

50

−50

Fig. 9. Model predictions for the pitch velocity (left) and acceleration (right) compared to the experiment with best model
performance (µt = 0.39). Solid lines indicate model prediction whereas dashed lines show the actual measurements. Shaded
regions indicate different number of legs in contact with the ground: dark (3), middle (2) and light (1).
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Fig. 10. Pure simulation predictions for pitch velocity (left)
and acceleration (right) compared to the experiment with best
model performance (µt = 0.39). Solid lines indicate simu-
lated model trajectories whereas dashed lines show the actual
measurements. Shaded regions indicate different number of
legs in contact with the ground: dark (3), middle (2) and light
(1). The script PlotSimulationData.m of Extension 4 can be
used to generate this figure.

representative experiment is illustrated in Figure 12, where
the first thrust phase failed to flip the robot over and two more
cycles were needed before enough energy was injected into
the system. In the following paragraphs, we present a number
of features of Figure 12 that were consistently observed in all
10 experiments.

Our first observation is that the coefficient of restitution for
the collision of the front legs with the ground is approximately
0.67. Even though this coefficient is primarily a function of
the material properties of the front legs, there is also some
contribution from the middle and rear legs. In particular, our
approximate kinematic model results in premature contact of
middle and rear legs with the ground during the compres-
sion of the front leg, resulting in undesired negative work.
In contrast, the maximal thrust controller is engaged as the
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Fig. 11. Hip torque commands for the experiment with
best model performance (µt = 0.39). Solid, dashed and
dash-dotted lines correspond to rear, middle and front leg
pairs, respectively. Shaded regions indicate different number
of legs in contact with the ground: dark (3), middle (2) and
light (1).

pitch velocity changes sign, yielding additional thrust from
the middle legs prior to the end of the collision.

Two aspects of the velocity plot are also important to note.
First, there is a significant deceleration at the beginning of the
second and third thrust phases (indicated by horizontal arrows
in Figure 12), which is not present in the very first thrust. This
is once again primarily due to the compliance in the legs,
which introduces a delay in the action of torque commands
through the legs. As the middle and rear leg springs are very
close to their rest positions following the collision, the body
does not immediately feel the torque commands acted by the
maximal thrust controller, resulting in a brief deceleration.

The second aspect concerns the sharp drops in the velocity
following the end of each thrust cycle (indicated by the vertical
arrows in Figure 12), as the robot body starts to fall towards
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Fig. 13. Body pitch (left) and pitch velocity (right) for flipping
on linoleum with the open-loop strategy. This controller
always fails to flip RHex 1.5. The script PlotOpenloop.m of
Extension 4 can be used to generate this figure.

the rebound. As described in Section 4.3, this is when local
PD controllers for each leg are activated to bring them to fixed
angles in preparation for the collision. Even though the legs
have relatively small mass (0.48 kg total) compared to the
robot body, their sudden movement effects the body velocity.

5.6. Performance of the Open-Loop Controller

As noted in Section 2.2, our first generation flipping controller
was primarily open loop at the task level, with only local feed-
back at the hips for PD control of the motor angles and crude
detection of maximum pitch at each thrust. With this sim-
ple initial design, we were able to achieve successful flipping
maneuvers over a reasonable range of surfaces on an earlier
version of RHex (Saranli and Koditschek 2001, 2002). How-
ever, with new sensors, improved computational hardware as
well as structural ruggedization, RHex’s newest version, 1.5,
is heavier and slightly larger, resulting in consistent failure of
the open-loop controller.

Figure 13 illustrates an example on linoleum, which is one
of the least challenging surfaces for flipping with its low fric-
tion (see Extension 4 for experimental data). For this experi-
ment, we manually tuned motor gains and leg trajectories in
an attempt to gain as much thrust as possible while keeping
the tail on the ground. Invariably, the unavailability of sys-
tem state forced our tuning to be overly conservative, making
it impossible to harvest maximum performance. As a con-
sequence, our simple first generation controller consistently
fails to flip over even after several thrust phases, unable to
exceed a maximum pitch value of around 0.75 rad.

5.7. Flipping on Rugged Surfaces

The final set of experiments we present characterize the per-
formance of model-based flipping on a number of indoor and
outdoor surfaces. Figure 14 illustrates each of these surfaces
with snapshots from associated experiments. The associated
video footage is also included in Extensions 5, 6, 7, 8 and 9.

This section presents two families of experiments: flip-
ping on hard surfaces with consistent frictional properties—
carpet, asphalt and packed dirt—and flipping on soft outdoor
surfaces—thin and thick grass—for which quantitive char-
acterization is much less feasible due to the high level of
inconsistency and variation in surface properties across ex-
periments.

For the experiments on hard surfaces, we ran sets of three
experiments for 10 different settings of the leg/ground co-
efficient of friction. As in Section 5.4, we compared model
predictions to measured performance to identify the frictional
properties of each surface. The first three rows of Table 4 sum-
marize the coefficients of friction we identified for each hard
surface, as well as the performance of model based flipping
with the identified parameter in terms of the percentage of
success and the number of required thrusts.
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Fig. 14. Snapshots of flipping on various rough surfaces: (a)
carpet; (b) asphalt; (c) packed dirt; (d) thin grass; (e) thick
grass.

Table 4. Model-Based Flipping Performance on Hard and
Soft Rough Surfaces

Terrain µt Success Thrusts

Packed dirt 0.55 100% 1
Asphalt 0.6 100% 1
Carpet 0.7 100% 1

Thin grass – 90% 1
Thick grass – 0% –

See Extensions 5, 6, 7, 8 and 9 for sample movies and Exten-
sion 4 for experiment data.

On all hard surfaces, the robot successfully flipped over
for each attempt. In all cases, no more than a single thrust
phase was required. For these experiments, we did not ex-
plicitly tune the detection algorithm for toe stiction, so there
was significant variability in controller performance following
the liftoff of the middle legs (see Extension 4). As a conse-
quence, in identifying the friction coefficient for each surface,
we only considered errors in the pitch rate estimation prior to
the switching of the model. In practice, the effect of the model
discrepancy on the flipping performance beyond the liftoff of
the middle legs turns out to be not significant as the motor
torque limits dominate over the remaining constraints.

Characterization of flipping performance on soft surfaces
is much more challenging due to their inherent irregularity.
Unlike the hard surfaces, more than two or three experiments
on the same location result in the legs digging in the grass,
changing the associated frictional properties. Furthermore, it
is unreasonable to hope that the Coulomb friction model will
be accurate in modeling the sliding of the legs in thick grass,
which usually results in wedging and other unpredictable out-
comes. Consequently, we only ran 10 experiments on both
thin and thick grass and did not attempt to identify the fric-
tional properties of these surfaces. The second part of Table 4
presents the success percentages of these experiments.

Not surprisingly, thick grass presents a significant chal-
lenge and the robot is not able to flip even with multiple thrust
attempts (see Extension 8). On the other hand, thinner grass is
much less demanding and usually admits flipping in a single
thrust (see Extension 9). This is a significant improvement
over the first generation open-loop controller, which was in-
capable of inducing a flip even with the lighter and smaller
RHex 0.5.

6. Conclusion

In robotic locomotion research, autonomy is likely to impose
some of the most demanding constraints on design and lim-
itations on behavior. It is very difficult, often impossible, to
achieve in systems otherwise designed for non-autonomous
operation. RHex, our hexapedal platform, demonstrated that
autonomy as a design goal can achieve significant advances
in real-world performance and robustness.

In this paper, we present a new controller to implement
self-righting behavior on RHex, which is perhaps the sim-
plest instance of self-manipulation other than locomotion it-
self. Our modeling and analysis yields significant improve-
ments to the simple first generation controller, extending its
domain of success to a wider range of terrain conditions. We
present empirical evidence to verify the validity of our model
and to document the performance of a new model based con-
troller. We show that the maximal thrust controller we in-
troduce performs successful flipping maneuvers on linoleum,
carpet, packed dirt, asphalt and thin grass, usually with only a
single thrust phase.We also demonstrate an “energy pumping”
scheme, designed to handle disturbances or terrain conditions
which may induce the failure of the first thrust attempt. In
each case, we present empirical evidence to compare model
predictions to actual measurements of robot performance.

The design of the new model-based controller makes a few
simplifying assumptions to make a real-time implementation
feasible. Relaxation of these assumptions through more for-
mal analysis of the preliminary model we described in this
paper is also of great interest. Extensions of the flipping be-
havior such as uninterrupted rolling or handstands will re-
quire a much better analytical understanding of the model.
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We believe that such extensions to the behavioral suite of a
morphology as limited as RHex is the best way to address the
shortcomings of contemporary actuation and energy storage
technology while continuing to press ahead in the develop-
ment of practically useful robots.

Appendix: Index to Multimedia Extensions

The multimedia extension page is found at http://www.
ijrr.org.

Table of Multimedia Extensions
Extension Type Description

1 Video OpenLoopSingleShot.mpg.
RHex 0.5 flipping on linoleum
with the original open-loop
controller.

2 Video OpenLoopCarpet.mpg.
RHex 0.5 flipping on carpet
with the original open-loop
controller. Multiple thrusts are
required for a successful flip.

3 Video LinoleumSingleShot.mpg.
High-speed video (150fps)
of RHex 1.5 flipping on
linoleum with the model based
controller.

4 Data data_scripts.tar.gz. Data files
and visualization scripts for all
the experiments and simula-
tions. Please see README.txt
in this archive for details on the
format of data files and the us-
age of associated scripts.

5 Video ModelBasedCarpet.mpg.
RHex 1.5 flipping on car-
pet with the model-based
controller.

6 Video ModelBasedDirt.mpg. RHex
1.5 flipping on packed dirt with
the model-based controller.

7 Video ModelBasedAsphalt.mpg.
RHex 1.5 flipping on as-
phalt with the model-based
controller.

8 Video ModelBasedThickGrass.mpg.
RHex 1.5 failing to flip on thick
grass with the model-based
controller.

9 Video ModelBasedThinGrass.mpg.
RHex 1.5 flipping on thin
grass with the model-based
controller.
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