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Abstract

This paper presents a strict, global Lyapunov function for the
class of dissipative mechanical systems defined on a configura-
tion space which admits a trivial tangent bundle.

1 Introduction

The 'mechanical systems" define a large and important class of
highly nonlinear dynamical equations. For example, all robot
dynamics are are modeled by such systems. Since there can be
no 'operational calculus, Lyapunov theory offers an attrac-
tive alternative approach to a constructive control methodol-
ogy for this class of systems: it is not hard -to translate many
frequency domain insights into this language in the linear case.
[8]. Generalizing such an approach obviously depends upon the
availbility of "adequate" Lyapunov functions.

Here it seems on first impression as though nature has been
kind. There is a 'canonical" Lyapunov function for dissipa-
tive mechanical systems - the total energy - as has been
known for since the nineteenth century. This scalar valued
map enjoys the property of global defaition, since it is con-
structed in terms of the intrinsic Riemannian geometry of the
configuration space. Unfortunately, it results in a semi-definite
derivative along trajectories of a mechanical system, and the
full strength of Lyapunov's method is lost.

Recently, Arimoto [21, Bayard and Wen [15], and the present
author [5,6] have, all independently, devised strict Lyapunov
functions for 'PD" compensated mechanical systems. All three
constructions are remarkably similar, and share the common
fault of achieving only a locally negative definite derivative
(the local domain may be arbitrarily enlarged) on the phase
space. The central contribution of this paper, Theorem 1, is
the construction of a new Lyapunov function for the dissipa-
tive mechanical systems which is global - defined in terms of
the intrinsic Riemannian geometry of an arbitrary mechanical
system -and strict - the derivative is negative definite
on the phase space of (tangent bundle over) any parallelizable
configuration space, vauishing only on the equilibrium states
of the vector field. I

This paper, being of an essentially analytical nature, will
make only illustrative use of the new construction to re-derive
(hopefully in a simpler form) the useful results concerning PD
compensated (quadratic potential) mechanical systems on the
'Euclidean n-disk" reported in the conference papers cited pre-
viously 12,15,61. Namely, such systems are exponentially sta-
ble, hence BI10 stable, and steady- state output magnitudes
may be shown to be proportional to input magnitudes with a
constant of proportionality depeading in a simple fashion upon
the PD gain magnitudes. The larger motivation for this work is

the hope of applying the construction to more general robotic
problems where-the configuration space is not homeomorphic
to a disk and the potential energy is not quadratic. This work
is currently in preparation.

'The limitation to parallelizable spaces - i.e., those whose tangent
bandle is trivial -seems to be an artifact of the present proof rther
than an intrinsk limitation in the construction. This issue is presently
under investigation.

The next section presents the ingredients leading to the
standard definition of a dissipative mechanical system on a
smooth configuration space. Section 3 introduces the new Lya-
punov function. Finally, Section 4 treats the PD compensated
mechanical system, as an example of the construction in the
familiar case.- A variety of technical results and computations
are not included in this paper for lack of space - the reader
is referred to the background technical report [4] for further
details.

2 Dissipative Mechanical Systems
The geometry of classical physics has been extensively studied
for decades, and recent years have witnessed the publication
of numerous expository texts containing the background ma-
terial required for the present paper. This section sketches
the relevant ideas, appealing frequently to the excellent text of
Abraham and Marsden 1].

2.1 Notation

The tangent bundle over a manifold, 7, will be denoted TJ with
projection map r : TJ'- J. The coordinate representation of
a map will be denoted by underlining. For the purposes of
this paper, the manifold, J, will be a simply connected open
subset of WIR, which admits a single global chart, and, when
there is no chance of confusion, coordinate representations of
maps will often be denoted by the same symbol as the original
map. Taking the jacobian of a map between Euclidean Vector
spaces is denoted by D, in contrast to taking the differential
one form of a scalar valued map on an arbitrary manifold, d.

Folbowing Hirsch 13], if X,Y are two vector bundles over J,
then define the morphisrrs between them, .rMX[,y], to be
the set of all smooth (i.e. continuously differentiable r times)
fiber preserving maps which are linear on each fiber, i.e.,

.r[Zsy-/&{ME Cr[.x,yl:
M rj1(q) E C(rxj(q),j7r'(q)) for all q E 4).

Transpose, symmetric, and positive definite morphisms are
presented in [4], along with the notion of upper and lower
mapitude functions, and the group of scalar com-parison func-
tions,

Kr i E r[R+,R ]
limg..on(t) = 0 and him_. K(t) =

and tx < t2 .. ic(ti) < r(02)},
which are used to define Lyapunov functions on manifolds.

2.2 Mechanical Systems

2.2.1 Kinetic Energy as a Riemannian Metric

Define a mechanical system to be the Lagrangian dynami-
cal system resulting from a cost functional specified by a Rie-

'This work is supported in part by the National Science Founda-
ion under grant no. DMC-8505160
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mannian metric - a positive definite symmetric morphism
Af EAMw[TJ,T*.I], as discussed in [4] - which specifies an
inner product (. ..) on TqJ for every point of configuration
space, q E J. The author has presented a a quick derivation
of the Riemannian metric resulting from the sort of physical
system which motivates the paper - the kinetic energy 2,
K(v)A4 (v v) of a "kinematic chain" encountered in robotics

in a recent encyclopedia article [8].
A Riemannian metric induces an affine connection, V

with respect to which parallel translation preserves the metric
inner product [1].This implies that for any two curves, cl,c2,
in TJ over the same base curve. b=- o cl r oc2, we have

dtd-(cl I c )-=(V6 C1I2 ) + (c1jIV6 C2 )

taking the covariant derivative , along the curves ci, consid-
ered as vector fields over the base curve, b [9].
2.2.2 Coordinate Representation of the Lagrangian

Vector Field

Each point, q C.J, admits an open neighborhood, O C J, on
which the "local phase space at q", is a Euclidean vector space.
Thus, a point, v E TJ admits a local coordinate representation,

pA[Pl ]R{i2n.
P2

For the purposes of the present paper, the configuration space
may be presumed a subset of IR', thus, TI is trivial - i.e. it
is a subset of m"' x IW' - and this local coordinate system is
valid on the entire phase space, TJ.

The equations of motion in the local coordinates result-
ing from application of the "Euler-Lagrange" operator, to the
kinetic energy, K, take the form

1+ rp (,,) =0 ,

where r represents the Christoffel symbols for the given coor-
dinates. The relation of r to the coordinate expression of the
morphism, ML, is derived in [4] as

rp, (X, Y) = M'(p)C(pl,x')y
C(p1,X)y 4 [Z1(xI)Y+M (Y)x - Y]
Z,(X) -(x I)T DMS

where it is also shown that r is symmetric - r(x, y) = r(y, )
- so that this is the expression of the unique torsion free
metric connection. 3 This results in the local representation
of f,A as

P2 = -M-1(Pl)C(pl,p2)p2. (1)

While TJ is endowed with a natural metric induced by the
Riemannian metric, M, as described in [4], the present paper
will require only a local notion of distance, for purposes of
applying comparison functions to TJ [4]. In such applications

2Iinetic Energy is formally defined as a scalar valued map on TPJ
[il[Def. 4.5.21, however it will ease the discussion and do no technical
harm in the present paper to speak of xt as a map on TJ.

s3n earlier papers, {7,6], the author has unwittingly used the local ex-
pression for a metric conniection with non-zero torsion. While the geodesics
of two connections which differ only by tosion are identical, the non-zero
torsion necessitates annoying additional cancellation of "defect" terms in
control applications. It is worth pointing out that other authors have in-
dependently made use of the preferable zero-torsion connection in their
control applications 1l5,12].

it suffices to use the Euclidean norm topology induced by the
metric of the local coordinate system. A metric, p, having been
chosen, any morphism, F, gives rise to scalar valued maps
on J, VF(q),pF(q), as introduced in [4], which measure its
smallest and greatest "magnitudes" on each fiber, and lead to
an obvious construction of a quadratic comparison function on
each fiber.

Lemma 1 For every q E J, the kinetic energy, K, is a non-
degenerate positive definite function on T9J, possessed of a
quadratic lower comparison function, in coordinates,

r-(Pl, P2) > PM||IP211',
2.3 Gradient Vector Fields in Mechanical Sys-

tems

2.3.1 Morse Functions and Their Gradient Vector Fields

Consider the class of twice differentiable real valued functions
so E C2[J,IR]. The co-vector field, dp, is related to the
gradient vector field, grad p, of jo by the identity

A
grad =M-1d5o.

Note that the "hessian" of the original function is obtained
from the jacobian, K1A dpj, in local coordinates,

-K1(pi) [D2i] (pi). (2)

One calls p a Morse function if its hessian is non-singular at
every critical point [3].

2.3.2 Lifting Gradient Vector Fields

Any smooth real valued function, So: J -. IR may be "pulled
back" to TI in a natural fashion by defining @-pA r. This
defines a new Lagrangian function,

A
A = K - (,

whose Lagrangian vector field, f. can be shown to include
a "lift" of the gradient vector field of p in the following sense.
It can be shown [1] that c is a trajectory of f,,p@ if and only if
its base integral curve, b= r a c has the property

V 6 = -grad p ob. (4)

This implies that the resulting Lagrangian vector field may be
written as

f5; X(x) = fr. (x) - V. (grad p ) o r (x),

where V is the vertical lift.

2.3.3 Coordinate Representation of a Mechanical Sys-
tem with Good Potential Energy

Say that p E C2[I, IP] is a good potentialfunction at qo if it
is a Morse function on J, positive definite at qo, and bounded
away from zero everywhere else on J. This means that there
can be found a lower comparison function, A4, E K2, for S, in
the sense defined in [4].

Ao pgJ(qo,q) < p(q) (5)
In such a case, qo is a local minimum of p- an attracting
equilibrium state of -grad 'p . It follows that 4 lIdplI is a

4The metric, M, on TJ induces a metric on T'J, with respect to which
the norm of a co-vector is well defined.
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decrescent positive definite function at qo, admitting the upper
comparison, v,4 E K1, with the property

(6)
Using the same arguments as in [3J[Lem.6.1.1], given any

local coordinate system on a neighborhood, O, of q E J, p
induces a smooth map K1 : IRn' -+ £(JR",IR) such that
M- (pO)Kj(pj)pj is a representation of grad Vp. It now follows
that the vector field, f.-,p admits the coordinate representa-
tion

P2
2

_-'(PI) (C(Pl,P2)P2 + Kj(pj)pj.) 7

2.4 Strict Dissipative Vector Fields and Exter-
nal Forces

Following Abraham and Marsden, once again, say that a smooth
vector field, fJd, on TJ is dissipative [1] if it is vertical and
has the property with respect to the kinetic energy, K, that

difd S 0.

Since fd is vertical, it may be uniquely associated with a smooth
fiber map, k2: TJ -_ TJ, via lifting

fd(v) _ -V, oM-1k2(V).
If the product k2(v) -v is a positive definite map on TIJ for
every q E IJ, then say that fd is a strict disspative vec-
tor field . In this case, there may be found a smooth map,
K2 : TI J£(TqI ,Tq;J) such that k2(V) = K2(v)v, and (K2).,
the symmetric part of K2 as defined in [41 is always positive
definite.

Lemma 2 ifdfis a strict dissipative vector field on TJ, then
-dxfd is a positive definite function on TJ, with a quadratic
lower comparison function, in coordinates,

k2(pI, P2) PaP2 . KIP2112.

2.5 Dissipative Mechanical Systems
To summarizes a kinetic energy law, n, determined by a Rie-
mannian metric, M, on J, induces a mechanical system (1)
through the Lagrangian vector field, f,r, whose base integral
curves are geodesic with respect toM. The addition of a po-
tential function,. 9 results in a new Lagrangian vector field,

Vig-V(grad so) or,

whose integral curves conserve total energy, j7 = x+j. Finally,
the choice of a dissipative vector field, fd, completes the list
of ingredients. We will limit attention to following class of
mechanical systems:
Definition:

A dissipative mechanical system is defined *y the vector field
Af = f'c-@ + fd, (8)

where

1. K is the kinetic energy induced by a Riernannian metric,
M. on J;

t. p is a 'good potential function' in the sense of Section
2.5.9;

5. fd is a 'strict' dissipative vector field- in the sensc of
Section 2.4.

In local coordinates, the disturbed dissipative mechanical
system can be written,

~1 =P
A =-M-1(pa) ([C(Pl,p2) + I(pl,P2)1P2 + Kl(pl)p

(9)

3 The Stability of Dissipative Mechani-
cal Systems

Lord Kelvin showed that total energy, s7 = x + jo, is a Lya-
punov function for a dissipative mechanical system in 1886 114].
Arimoto and colleagues [10,131 contributed a precise demon-
stration that every minimum of the potential field is a local
attractor by application of LaSalle's Invariance Principle. Sim-
ilar independent work of Van der Schaft [111] and this author
17] appeared subsequently. Of course, the central idea of en-
ergy dissipation is to be found in the standard texts as well,
[1][Prop. 3.7.17]. Since 71 is not a strict Lyapunov function -
that is, the Lie derivative, Lf(i) is negative semi-definite -
conclusions about asymptotic properties of the flow near (qo,0)
require the application of LaSalle's Invariance Principle. This
limits application to autonomous dynamics, precluding any in-
put/output analysis of the effects of the external disturbance.
This flaw will now be corrected: we will 'firx Lord Kelvin's
formula by adding a "cross term" to the total energy function
which makes its derivative along the motions negative definite.

3.1 The 'Potential Angle' and Energy Scaling
Function

The concern of this section, is the construction of a new scalar
valued map on TJ whose co-vector field acts on the portion
of f which 'is ignored" by dn - the "vertical lift" of the po-
tential gradient vector field. Namely, a map, a E C'[TJ,IR],
is constructed to measure the "angle" between the desired ve-
locity of the lifted gradient flow, and the actual velocity of the
dissipative system.

The Riemannian metric is a symmetric isomorphism in
4wMTJI,T*Jl. By choosing a morphism in the other direction
one obtains the desired angular comparison, as follows. Say
that a morphism, F E Xw¶T1J,TJ], is a pre-metric if its
symmetric part is a "positive definite" operator on each fiber.
Given a a manifold, I, with a Riemannian metric, M, on the
tangent bundle, r : TJ -. J, a pre-metric, F, and a scalar
valued map, S e C'[I,NR], define the potential angle map,
of C'[TJ,IR] by

Aa4v) = (Fdjoo r(v) j1- t))g (10)
Lemma 3 The Lie derivative of the potential angle map, a, along
the dissipative mechanical system, Jf, (9), is a acalar valued
map on TI which may be expressed as

Lfct(v)= (Bv I v) - (Fdw or(v) k2(v)) -(dpFd;) or(v).
where B E Mw[TI,TJ].
Proof: If c is any smooth curve in TJ, then it may

considered as vector field along the base curve, r o c = b.
Thus,

d aoc= (VC Fdsoob I c) + (Fdoob l V&c)
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since V is the Riemannian connection. If c is the tra-
jectory of any second order system then

b=Tr c6=c,

hence

tad aoc =(V Fdpoob c) + (Fdpo0b I Vb}
=(Bc I c) + (Fdpob I V ),

where B E X4[TJ,TJA denotes the morphism V Fd6p.
Since b is the base iritegral curve of a dissipative medcan-
ical system it follows that

V6b= -grad p ob -k2(c),
hence

a o c (Bc I c )-( Fdwo bl k2(c) )
-(Fd6pobl grad p ob)

- (IB c )-( Fdp o b I k2(c) )
- (dp. Fdp) o b,

and the result follows

03

The pre-metric property of F insures that the last term of
Lf(a) is globally non-positive, vanishing only on the critical
points of p, since F, defines a positive definite quadratic form
on the co-tangent bundle. Thus, adding a to tq introduces a
negative term in the derivative which does not vanish auto-
matically on the zero section of TJ. Unfortunately, a, itself,
is sign indefinite, and its derivative along trajectories of f in-
curs two additional sign indefinite terms as well as computed
by Lemma 3 - It will now be shown that a "rescaling" of q
obtained by composition with a suitable comparison function,
yE K1, serves simultaneously to dominate the indefinite terms
of both a and its derivative. Specifically, define

I?(X)
6

-SaoX + I(Vd6p 'o -)(X)
(11)

+'72 [fox (u(MB). 0 An) (a)do]
where '70, 7I, 12 are positive non-decreasing scalar functions
to be chosen below, and v(MB). is a smooth non-decreasing
function which satisfies the inequality

V(MB).(X) > SUp (B),(q),
nJ(qo,q)<X

where P(MB). denotes the "tensor magnitude" of the symmet-
ric part of the morphism MB on each fiber, as defined in [4],
and vj, is an upper comparison function for [ldpoll as defined
in Section 2.3.3.

3.2 Verification of the Construction

First observe that v preserves the sign definite properties of ?I
when their composition is added to a.

Proposition I For every dissipative mechanical system, f,
(8') and potential angle map, at, (10), there can be found a
comparison function, y E K1, of the form (11), such that

is a positive definite function in C' [TJ, IR+].

Proof: Note that 0 vanishes at o = (qo,O) as re-
quired. We first seek to show that 0 is positive definite.
Note that, in coordinates,

7 > 4 = Ao(IIPII) + VTItp2jI2,
according to (5). Moreover,

?(X) > IN(X)-7X + 71(u(A, o ,\i-O) (x)
from the definition of ay and (6) - it follows that

70 X7 . 4o i > 'yOP7-IIp2II2 + yIVdl,(IIp II).
Notice, moreover, in coordinates, that

Ha1 . IDE (pi)ETMp2I < VdV(IIPII) MFTM(P1) 1mu21,
where IFTM(PI) is again the tensor magnitude -function
defined in [4]. It follows that

> Vd1P - PFTMVdIIP2II + 7LM11P211
and it suffices 5 to find non-decreasing functions, -yo,'7y,
such that ,i O sj is smooth and

III (17 2PFTM(PI) ] 0

[ 2MFTM(PI) o (O)VM(PI) J

For this, the conditions

'0 > 1; 71 VFTMoAq1' (12)

are sufficient, where VFTM is a smooth non-decreasing
function satisfying the inequality
0

The addition of the "angle measurement" in 0 results in a
locally negative definite derivative, t. In fact, the appropriate
rescaling of v affords dominance of the negative definite terms
"as globally as the potential function can allow". This is made
precise by the following central result.

Theorem 1 Let f be a dissipative mechanical system. Then
for every valid potential angle map, ca, (10), and a compari-
son function, 7 E K1, of the form (11), the positive definite
function,

07o01 + a

has a derivative along trajectories of f,

0 = Lf(6),
which is non-positive on TJ and vanishes only on the equilib-
rium states of f.

Proof: Let 'a E K1 be chosen as in (11), so that 0 is
positive definite in consequence of Proposition I WVe
have, along any curve, c, in TJ,

=(' o'7)? + .

If c is a trajectory of f, then, in coordinates,

v= -PhCf2(P1,P2)P2-
"The sufficiency depends upon the fact that vO, is an upper compar-

ison function for lldwll, hence (in contrast, for instance, to a lower com-
parison function) mnay be guaranteed not to vanish except at the point qo.
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Now -
'
the derivative of -y , satisfies

1 (X) . '7o + 72V(MB). o

since all constituent functions of y are non-decreasing.
From A§1 o i) > jPf, it follows that

V(MB) O Al? 17O!V>(MB). (IIPII) > V(MB). (11IIP111)
hence,

S < -gJfP2 (70 + 2AMB).) +

Using the results of Lemma 3, expressed in coordinates,
we have
4 =-D -FTDsp IT- D'CMK 2n + PWM_P2

< - FtDer+ PFTr 2M4P2MI 11BDEI+pI MB1AIB 112
where

= inf p.(q)
is a positive constant according to the assumption that
F is a premetric. It now follows that

tIc-1(PQ(P) (P)+V(MB) (IP)(J) (l)12(j)VKP)1fffl;

j(P)2-[QP019"l I° l (IMI) -YO(n)]-JFFMK,flfl
The second term is negative as long as '72 is greater than
the constant function,

72 >- (13)

where P- is specfied in Lemma 2 . The 2 x 2 matrix-
is negative definite when

7o > 1 + ( ) VT2 oA1

VFTAIK(} -SUP3P3:X sup1 ll2 tMLKAPnP2)xII
(14)

which satisfies the earlier condition (12) as well. 6 Un-
der these conditions,0 is negative except at the critical
points of so as identified in the zero setion of TJ - the
equilibrium states of f.

In the next section we consider the application of this con-
struction to disturbed mechanical systems on a configuration
space which is guaranteed to admit Morse functions with a sin-
gle critical point- an open disk in UR". The application to non-

autonomous mechanical systems on a configuration space with
non-unity Euler characteristic e.g., the punctured manifolds
which result from robot obstacle avoidance problems with mov-
ing obstacles -- is the subject of a separate paper.

6Note that y o q is stil C' with these deions, folowing the same
argument as in Proposition -.

4 Application to a PD Controlled Me-
chanical System

There are relatively few occasions when J admits a Morse func-
tion with a single critical point. In this section-we examine in
detail one such (practically significant) case where J is a an
open n-disk. In such a case, IIdpjj being radially ubounded, 0
is radially unbounded as well.

All symbols will refer to the local coordinate representa-
tion. The kinetic energy remains in the general form,

X(P) PIMI)P2t
where M is analytic in P1, and takes values in the set of posi-
tive definite symmetric matrices. The only further restriction
(imposed for computational convenience, and because it cor-
responds the situation in robotics) is that both M and its
derivatives are bonded on phase space, so that there exists
an upper bound, jIg, on the the morphism norm as well as a
lower bound, Pm7, and there is a linear spread estimate with
constant Vr3 A v/ITXI/X as defined in [4].

The potential energy is defined to be that of a 'perfect"
Hook's law sprig,

,(pi) _ pKipi,
where K1 is a positive definite symmetric matrix- The dissi-
pative field is defined to be a Rayleigh field, k2(p)p2= K2P,
where 1K2 is a positive definite symmetric matrix as well. There
is an external force, as well. Note that the operator bounds on
K1, K2 are al constant, according to the definitons in [41.

This corresponds to a "linear proportional and derivative
feedback compensator applied to a pure mechanical systm
(1), the entire closed loop subsequently 'forced& by the con-
trol input, u(t), giving rise to the nonlinear control system, (9),
where K1, K2 are constant positive definite symmetric matri-
ces.

4.1 Construction of a Strict Lyapunov Function

Applying the definitions from Section 3.1, the various bounding
functions associated with p are

A;1(x) = Pv4(y)=p,c1X; vO4A1(X) = nK,oLx.

The construction of 0 depends upon the angle map, a,
which, in turn, requires the choice of a morphism, F E Mw¶TJ, TJJ,
whose symmetric part is positive definite. In the present case
a convenient choice is specified as F: (pi,p2) '- pl, K7'p2),
for this leads to the simple angle map (??)

ae Dw FTMp2 = pTMP2.
The coefficient functions, -yi, may all be chosen constant as

shown in 14). The morphism, B(x), is now computed as

Vs.Fdjp = (D,1FD,) z+r(FDp,zx)
- FD2%x+ t(D )x+ M-(M1 + J)(FDw)x
= I+0+ IM'(K(.+J)(p,)x,

and it follows that

P(MB).(OiPI) = PM(P1{II) + pvP()(IipJ11).
Applying the assumption that M and DMS- have bounded
magnitude on the configuration space yields the affine function

V(MB).(X) - + 2 .(k)X> A(MB).(X),
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hence

V(MB), °I P-1()d <Hx + 2 VX3m=
The complete Lyapunov function is giveen by

o_9pTpp; p I[Qo/)MK 70 +R1(+ 1/2)M ;

(15)
where the constant coefficients are defined in [4]. Compare this
to the total energy function,

v- P.Hp H o[ Mfl

4.2 Input/Output Analysis of the PD Compen-
sated System

In this section we will refer extensively to the language and
detailed computation in the technical report [4] in order to
extract explicit relationships between input and output bounds
from the globally strict Lyapunov function, 0.

Although it was shown in Theorem 1 that the construc-
tion has a negative definite derivative along the motions of the
pd compensated unforced mechanical system (9), we are now
interested in displaying an explicit quadratic lower comparison
function for the specific case defined by (15).

Lemma 4 The negative derivative map, -Lf(O), admits a
quadratic lower comparison function,

@X) -VQX2,

where Q is a positive definite symmetric matrix defined by
the 'feedback gains', Ki, 1K2, and 'energy scaling constants',
yp$' yq , used in (15).

The lower comparison function, X4, may now be used to
find a 't-descent region" (defined in [4]) - i.e. a region
wherein the Lyapunov function, 0, and, ultimately, the dis-
tance to the origin, along solutions to the forced system 9 is
guaranteed to be decreasing as long as the forcing function is
bounded by f.

Proposition 2 For every j > 0 there exists a S > 0 such that
if Ilull < # then O,, is atrictly negative on the set

P - PoJ {p E P llPI > 6}
This result leads immediately to the construction of a "de-

scent rate estimate" as defined in [4], which, in turn, demon-
strates that 6 is not only globally strict, with a radially un-

bounded Lie derivative, but, when restricted to any compact
domain, is uniform as well.

Proposition 3 For all X1 E IR+,D, as defined in Proposition
1 , is a uniform lyapunov function for f on D=_ Po"I"

This yields the desired bound on the magnitude of the state
of the forced system, expressed in terms of the "feedback gain"
magnitudes and scaling coefficients.

Theorem 2 The motion of a PD compensated mechanical sys-
tem (9) from the initial condition lipoll = Xo, in response to
inputs of magnitude less than ce < oo is bounded by

llp(t)lL :< e-i o(XO)t apoX0 + a- 3(a).VQ
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