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Absfracl-This paper a d d m m  problems of robot naviga. 
tion with nonholonomic motion constraints and perceptual 
cues ansing from onboard visual SeNOhg in partially enpi- 
neered environments. We focus on a unicycle motion model 
and a variety of artificial beacon constellations motivated by 
mlevance to the autonomow hexapod, RHex. We pcopose 
a general hybrid pmceduw that adapts to the constrained 
motion setting the standard feedbsek controller arising from 
a navigation function in the fully acluated cage by switching 
back and forth between moving “down” and “aemss” the 
associated gradient field toward the stable manifold it induces 
in the constrained dynamics. Guaranteed to avoid obstacles 
in all cages, we provide some reasonably general m c i e n t  
conditions under which the new pmcedure guarantees con- 
vergenm to the goal. Simulations are provided for perceptual 
models previously introdud by other authors. 

I .  INTRODUCTION 
The literature on navigation of nonholonomically con- 

strained bodies is extensive. Most work has been focused 
on systems with no sensory constraints. Khennouf et al. 
[9] and Lno et al. [I31 use invariant manifolds; Astlofi [I], 
makes the system discontinuous and stabilizes it by contin- 
uous feedback control: Tayebi et al. [21] use back stepping 
design; Monaco et al. [I51 apply multi-rate digital control; 
Sordalen [ZO], Pome1 [I71 and Samson [lX] propose time 
varying feedback control laws. 

In general, applying a smooth feedback control law to a 
nonholonomically constrained system introduces a center 
manifold in the configuration space. The goal ties on the 
center manifold and attracts all initial conditions on its 
(generically transverse) co-dimension one stable manifold 
(a leaf of the foliation [61 generated by the constraints), 
lkeda et al. [7] introduced the notion of Variable Constraint 
Control (VCC) in which a feedback controller is designed 
to achieve an invariant manifold that goes through the goal, 
in effect, picking out a distinguished trajectory lying within 
the goal’s stable manifold. The elegant formulation allows 
reaching the goal in two steps but has some shortcomings: 
the first step aims only at a specific, one-dimensional tra- 
jectory. instead of the entire goal’s co-dimension one stable 
manifold. Moreover, it is not obvious how to integrate 
perceptual limitations in the resulting control law. 

Other authors focus specifically on problems of percep 
mal limitation. Ostrowsky [22] uses a blimp equipped with 
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a camera, maintaining a ball on the center of the camera’s 
field of view. Chaumette [141 positions a fully actuated 
camera arm in relation to a collection of features. Cowan 
(41 uses navigation functions [lo] to position a 6dof arm. 

More recently Murrieri et al. [I61 and Kantor et al. [SI 
combine both motion constraints with perceptual limita- 
tion. Both authors assume a particular set of nonholonomic 
constraints, Then, a feedback control law is built taking 
into account those constraints. Kantor et al. extend lkeda’s 
work by using a sequential composition of controllers to 
reach a zone where it is safe to apply VCC. This approach 
can result in optimized trajectories but can be hard to reuse 
on systems with Merent motion models andlor different 
perceptual constraints, 

In this paper, we seek to decouple the (typically holo- 
nomic) perceptual constraints from the (typically non- 
bolonomic) motor constraints by adapting an “arbitrary” 
navigation function [IO] to an “arbitrary” nonholonomi- 
cally constrained first order mechanism operating in the 
configuration space comprising the navigation function’s 
domain. The encoding of bolonomic constraints via navi- 
gation functions is a very effective means of constructing 
“designei‘ basins around specified goal points for fully 
actuated first and second order mechanisms. For example, 
in visual servoing applications, the navigation function 
takes into account external constraints like limited field of 
view, obstacles and so on. We are particularly interested in 
extending Cowans work on navigation with visual beacons 
to the robot RHex [19], but we will introduce a consider- 
ably more general framework for solving such problems. 

We introduce a two step controller: the hrst moves on 
level sets of the gradient function so as to reach the goal‘s 
stable manifold; the second uses the gradient control law 
to reach the goal. If, as is generally the case, a closed 
form representation of the stable manifold cannot be found, 
an approximation can be used. In any case, by iterating 
successive applications of both controllers the robot is 
guaranteed, under fairly general conditions, to reach the 
goal without hitting any obstacle along the way. 
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11. CONTROL LAW 
A. Adapting navigation functions to noholonomically con- 
strained systems 

As in [7] consider the first order drift free underacmated 
system described by: 

4 = n(q)u; q E v c R", U E P, (1) 

Where U E Rm are the velocity inputs of the system and 
'D is a compact set. Suppose that B : 'D i W" x Rm is 
rank m < n. Define the nonholonornic pmjection matrix 
M : ZI i ~n as follows, where B(q)t = (BTB)-'BT 
is the pseudo-inverse of B(q):  

M ( Q )  = B(q)B(q)' = B(q) (B(dTB(q))-'  B ( d T  (2) 

M can be interpreted as a projection into the available 
directions of motion with constraints defined by B. Then 
if we let U = B(q)tu rewrite equation (1) as: 

q = M(q)v;  U E R" (3) 

Suppose the control Lie algebra [21 on M spans R" on the 
configuration space. Now consider the navigation function 
'p : 'D i W such that the following system is globally 
asymptotically stable at the goal q': 

4 = - V M  (4) 

A Navigation function [IO] is a C2 artificial potential 
function on a compact manifold 'D, such that 'p : Q 4 

[ O , l j .  It must encode a goal set G as the unique global 
minimum, 9(5) = 0, and achieve a maximum of 1 on 
the entire boundary of 'D, i.e., y(8'D) = 1. (For more 
information on how to construct Navigation functions see 
[IO]). Apply to equation (3) to get: 

0 = -M(q)VV(Q) (5 )  

Define the set W c  = { q  t 'D : M(q)Vp(q)  = 0). Using (0 

as a Lyapunov function on system (3, and noticing that 
M by construction is a positive semi-definite matrix, the 
derivative of the Lyapunov function is negative outside Wc 
and zero at W c  

By La Salle's theorem every solution of ( 5 )  approaches 
Q c W", where Q is the largest invariant set of W' 
at some fixed level, 0, := q-'[a], of 9. In this case 
'2 = W c  by definition of Wc. Moreover, the Center 
Manifold Theorem for Flows [61 shows that if p is Cf then 
system ( 5 )  has a Cp invariant stable manifold W" at q* of 
dimension m and a CT-' center manifold of dimention 
n - m, in this case Wc. 

B. Moving on a level set of p 
Since (3) drives the robot to a point on W c  that will 

generally be removed from the goal, we find a controller 
that first reaches the stable manifold W 3  by moving on 
level sets a-. By doing so the robot is guaranteed not to 
hit the obstacles. 

Suppose we can find a vector field f such that: 

f : 'D -t TD 1 f(9) E W q )  n S ( M )  (7) 

Where TL'(q) is the tangent space of the level sets of 9 at 
q and 5 ( M )  is the image of M. By construction, 9(q) = 
cmst  is an invariant submanifold of the system Q = f(q). 
To see this, we simply take the total derivative of 9 and 
n o t e t h a t ~ ~ V 9 . q = V 9 . f a n d f E T L f ( q ) n ~ ( l M ) +  
f E TL'(q). Hence, by definition of the orthogonal 
complement V p  E (TL'(q))' =+ vp f = o + d = 0. 

Since B(q) is assumed to be full rank, there exists a 
matrix A of dimension n ~ m x n, also full rank, such 
that A(q)B(q) = 0. Moreover, span[A(q)I = ker(B) = 

ker(M). 
If dim(kerM) = n - 2 then' f can be implemented 

using a generalized cross product: 

n 

f(q)=C L i j k  ... l(VLP(P)))(A(Q)l)li ' '  ' (A(q)n-Z)l@i (8) 
i , j , k  . A = O  

~ i j . , . ~  denotes the permutation tensor [SI, &; are the canoni- 
cal basis vectors, A(q)i is the ith line of A(q) and (A(q)i)j 
is the jth element of line i of A. This applies to a fairly 
extensive class of systems including the unicycle, carts 
(with or without multiple trailers [Ill), etc. In particular, 
for the M e x  motivated planar unicycle described in the 
examples section, we have n = 3 and m = 2. Therefore 
the vector field f reduces to: 

f (4 )  = V d q )  x 19) 

Given such a consmction for j whose flow moves along 
level sets, 9, of p within the span of M, we now seek 
to reach the stable manifold at the goal of equation (5 ) .  
Consider the system: 

4 = ,J(Q)f(4) (10) 

Where U : V ---t R is a scalar function. Any vector field of 
the form u(q) f (q) verses the requirements of (7) since 
TL' n 5(M) is a linear space. Suppose we can find a 
C' scalar function p : Q t R such that p-'[0] = W E  
and p ( q )  > 0,Vq $ W'. Let u(q) := -Vp(q)  . f ( q ) .  If 
Vp(q) . f ( q )  # 0,Vq $ W" then the vector field u(q)j(q) 
is guaranteed take its limit set in W', as we now show 
by noting that p plays the role of a Lyaponov function for 
(10): 

p > 0, vq $ WE. 

i = VP(4) ' Q = - (VPL(4) . f(dT < 0, Vq 6 ws 
La Salle's theorem states that every solution of (10) ap- 
proaches the largest invariant subset of W s  as t + ca. 

'If dim(ker M )  < n - 2 then one has more dueclions 10 move on the 
level  el^ of v within the span of M ,  and questions of involutivity arj, 
that lie beyond the scope of the present study. 
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C. Two step controller 

two vector fields: 

negativedefinite. Make U@) = @(p), P'(pk) = P(ph+q') 
and p = '2 - q*. Using the previous notation and constructions, define 

111. APPROXIMATING STABLE MANIFOLDS 
f i  : D + T'D such that f i ( q )  = - M ( q ) .  Vv(q) 
f 2  : + such that fz(q) = d q ) f  (4') 

In this section we find k-order local approximations to 
the stable manifold at the goal of system (5), by recursively (I1) 

Let f ; ( q o )  and f;(qo) be the flows generated by fl and fz, 
respectively, i.e., f r ( q o )  are trajectories of the solution of 
the differential equation q = f (4) with initial condition qo, 
r denotes time. Since D is positive invariant under both f 1  
and f z ,  both of these vector fields take their forward limit 
sets in 'D, hence we get two maps fp" : 'D + 'D such that: 

, 

Assume that pL-'[O] = W s .  Knowing that for all qo $ 
W e  we have IIfz(q0)ll > 0, then f,"(qo) E W s .  But 
fr(Ws) = q' + f r  o f,"(qo) = q*. Therefore, for 
any initial condition outside the center manifold Wc of 
system (3, applying controller fz followed by controller 
fi reaches any neighborhood of the goal q'. so long r is 
made large enough. 

D. Iterative controller when W 3  is unknown 
In general it may not be easy to find a closed form 

representation of the stable manifold WE.  A sufficient hut 
not necessary condition for convergence to the goal is that 
we ca~f ind  an approximation of the stable manifold of the 
form W 9  = { q  E B" : p ( q )  = 0}, such that @ = 

(the restriction of 'p to an open neighborhood of W") is a 
Lyapunov function. 

Proposition 1: For every initial condition outside the 
center manifold W e  of system (5). applying f l  followed 
by f i  intermittently conveEes to the goal 4'. 

Proof: Let f ;  be the flow gener%ed by 8 ( q )  f (4). 
Let P7,,-(q) = f? o f;'(q) E N(W'} by choosing 
a sufficiently large r2. If r, is made a function of q. 
i.e., ri ; D + R+ then define the recursive time-invariant 
equation: 

are now ready to apply the standard Lyapunov analysis 
for autonomous discrete-time systems. 
Claim I: VU,,,(,,),,, Vqk  E N{@}/Wc then 

Proof: Since qk W c  then IIM. V9 o (qk)ll > 0. 

I 

q k + l  = prl,Tg(4'k) = f ? ( q k 2 0  f ? (" ) (qk )  = p ( q k ) .  we 

d ( P k + I )  < @(qd 

o and p ( f F ( q k ) ( q k ) )  < p(qk). Then we get: 
Equation (6) guarantees that f F ( ' * ) ( q k )  # q k ,  V 'T l (4k )  > 

d ( q k + I )  = P(f?(@') 0 f?('"(qk)) 

- ~ v ( f ; i ( v * )  ( P k ) )  < d q k )  = @ ( q k )  

solving a parameter matching eqiation. ~n pirticu~ar, the 
curvature of the stable manifold at the equilibrium point 
can be obtained as a function of partial derivatives of 
the vector field h(q) described next [61. We start by 
"normalizing" the system so that the goal is at the origin 
and the tangent of the stable manifold is spanned by vectors 
of the canonical base. In doing this, we seek to represent 
the stable manifold explicitly as [zm+l " .  xnIT = 
g(xl,.  . . ,xm). Consider the system: 

Q = -M(q)V'p(d = h(q) 

p = f@)  = R-'h (R-'p - 4') 

Apply a change of coordinates to get: 

(12) 

Let J = Df(0). The Center Manifold Theorem for 
Flows states that the eigenspace generated by the eigen- 
vectors with negative eigenvalues of J is tangent to the 
stable manifold W 3  at the origin, Let  R' he the change of 
basis for the real Jordan canonical decomposition; 

A1 0 . . .  
J =  R'-' [ .'. A~ 11 R'=R'-'AR' . 

where Ai are real eigenvalue blocks. Notice that A, are 
sorted so that the zero eigenvalues are on the bottom. Next, 
apply the Gram Schmidt ortogonalization to find a rotation 
matrix R = Gram(R'). At this point the tangent to the 
stable manifold of system (12) ( W s )  is the span of the 
canonical base vectors [SI,. . . ,E!,,,]. Let p = (51,. . . ,xn). 
Define the function G : W" + such that G(p) = 

g(x1,. . . ,xm) - [zm+l . . . xnIT, with g : Bm + W"-m. 
Let G = 0 be the implicit representation of W E  at 
the origin and [xm+l . . .  x,IT = g(z1, . . .  ,xm) its 
explicit representation. We proceed by finding a polynomial 
approximation of g on p d a l  derivatives of f .  Let and 
fk be k-order taylor approximations of g and f at the 
origin: 

For a scalar valued function, U : 'D + R, and 
a map, P' : D + D, define the "discrete derivative" i ,+ ...+. ,,i* 
AV := U o P' - U .  The Lyapunov criteria for discrete-time 
systems states that the origin of pk+l = P'(plc) is asymp- 
totically stable if, in a neighborhood of the origin, there is a 

since G = 0 is an invariant ,,,anifold of (121, its total 
derivative is zero: 

continuous positive definite function u(p) so that Aw(p) is G = p g  - r ] . f = o  (13) 
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(a) 1st order approximation of stable manifold (b) 2nd order approximalion of stable manifold 

Fig. 1. Simulation of a WO stcp eonmller using different order approrima*ions of the stable manifold. The initial position is to. The convoller 
switches at t ,  and the final position is t j .  Due to thc high cuwamre of b e  stable manifold W' at the origin b e  l a  order approximation requircS a 
higher number of iteraeons to a h  thc pmximity of the goal. 

To find an $-order approximation of W s  replace g and f 
by ijk and f k  on equation (13): 

([Dg -11 .,?k) 0 (Z1,. . .  ,Zm,gk(Xl,. . .,Zm)) = o  (14) 

(14) is a system of n - m equations with variables 
XI ,_. . ,  x,. By construction, the 0 and 1st order co- 
efficients are equal to zero. The 2nd and upper order 
coefficients are computed recursively by matching the 
xi coefficients of equation (14). in effect, solving linear 
equations recursively. 

A. Erample I :  W9 is a surface on R3 

Here we have n = 3 and m = 2, therefore (14) reduces 
to one equation: 

The 2nd order coefficients can be computed by solving the 
linear set of equations: 

Resulting in: 

The 3rd and higher order coefficients are computed in a 
similar fashion. Note that the curyature of W 3  at the origin 
is computed by r& - r0,2,h,o. 

B. Erample 2: approximations of W s  with high curvature 
for a unicycle 

If W s  has a high curvature at the goal, then the order of 
approximation becomes relevant, especially if the number 
of steps necessary to reach a fixed neighborhood of the 
goal is desired to be minimized. Let 'p : W3 + P3 be a 
potential function with goal at the origin and M be the 
nonhnlonomic projection matrix for the unicycle: 

* 

'p(x,y, 0) = x 2  + y* + o2 (15) 
sin20 cos8sin.5 0 

O I  1 
M(x,y,O) = B . B t =  -cosOsinO cos20 

0 
[ 0  (16) 

The ke rM is the span of A(q) = [cos(O) sin(0) 01. Using 
the potential function (15) with M results in the the cen- 
ter manifold W c  = {(s,y,O) E R3jy = 0 A 0 = 0).  Using 
equation (14) we get the following k-th order approxima- 
tions to the stable manifold at the origin: 

iq = {x=O} 

w; = {.=-- y8 2 } 

y0 y03 y05 
= tZ } '2 48 480 

Figure 1 illustrates numerical simulations of the vector 
fields (1 1) using 1st and 2nd order approximations of W E .  
Due to the high curvature of W" at the origin, the 1st 
order approximation results in a poor hnal position after 
one iteration. More iterations are required to reach the goal. 
The 2nd order controller reaches the proximity of the goal 
in one iteration. 

IV. SIMULATIONS 
This section provides numerical simulations of two in- 

stances of navigation with visual constraints. 



A. Example 1: registration of mbot using set of 3 beacons. 

Cowan et al. (41 introduced the problem of a robot 
registering itself against a set of 3 beacons. A smooth 
change of coordinates (h : W3 + W3) maps the projection 
of each beacon on the image plane to the robot's location 
in SE(3)  (for detailed information on h see [IZ]). A 
navigation function p is built in the image plane taking 
into account the two types of vision constraints: 

1) Field of view obstacle: the coordinates of the pro- 

2) Self-occlusion: the coordinates of the projected ha-  
jected beacons are bounded. 

cons are not allowed to intercept. 
Consider the following potential function: 

Where ( M  and c,,, are the Field of View obstacles and cd  
is introduced to limit the distance away from the set of 
beacons. k is a "shaping" parameter. p by construction 
explodes at the obstacles and is zero at the goal. The 
resulting navigatioi function is a squashed version of +: 

The final system uses the pullback of, h to bring the 
velocities Vp back to SE(3):  

q = DhT(q) . Vp o h(q) (18) 

The previous navigation function was developed for a fully 
actuated body and implemented on the robot RHex [191. 
However, the strength of empirical experience suggests that 
RHex's horizontal plane behavior is modeled by a quasi- 
static unicycle. Figure 2 illustrates a simulation of the 
system (3) using the following set of controllers, where 
M and A are de6ned for the unicycle in (16). U is given 

by a 1st order approximation of W E .  

The numerical simulations show that the navigation 
function introduced by Cowan can be reused with no 
modifications. Notice that on the plane the robot executes a 
parallel parking maneuver. Although it is well known that 
for the unicycle the parallel parking motion is required 
to move sideways, the trajectory obtained on the plane 
is a natural consequence of moving on a level set of the 
navigation function. The navigation function enforces that 
the robot does not hit the obstacles, since doing that would 
require puncturing the level sets away from the goal. 

B. Example 2: regisfraiion of mbot using a single beacon. 
Kantor and Rizzi [SI solved the problem of positioning 

a robot in relation to a single engineered beacon by 
using the notion of Sequential Composition of Controllers 
[31. The final approach to the goal is implemented using 
Ikeda's Variable Constraint Control. Let h be a change of 
coordinates from SE(2)  to double polar coordinates: 

Obstacles are introduced on the field of view so that the 
robot maintains a range of distances to the beacon and 
keeps facing it: 

P L ~  < P < P M ;  dm < d < dnr 

Consider the following potential function: 
k (2 - cos(T) - q*)  - cos(p - p* )  + (d - P)* )  

(1 - C 0 4 P  - Pm))( l  ~ 4 P  - PM)) 
$0 := 

1 
(d - dm)(d ~ d ~ )  
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-3 -2 -1 0 1 2 3 
(a) (b) 

Fig. 3. Simulation of a unicycle on the visually consmined setup invodueed by Kantor and Riui.  The initial pasition is to.  The controller w i t h e s  
al t .  and Ihe final position is tf. A 1st order appmrimalion of the slable manifold W s  is used Due to the low curvature of W‘ the robot reaches 
lhc p r i m i t y  of the goal in two S ~ C ~ S .  a) Top view. The &on is represenled by the large black dot. h) Configuration space p l o l ~ d  in (I, y,p) 

A squashed version of +, as in (17), is used on the 
controllers (19). Figure 3 illustrates the resulting numerical 
simulations. Once again, the robot executes the paral- 
lel parking maneuver. Simulations suggest that the robot 
reaches the stable manifold W s  more efficiently if it moves 
on a level close to the obstacle. 

v. CONCLUSIONS AND FUTURE DIRECTIONS 

This paper introduces the idea of reusing navigation 
functions developed for fully actuated bodies on motion 
constrained systems. The resulting switching control law 
guarantees that the system converges to the goal, even 
if an approximation of the stable manifold is used. Due 
to the nature of the switching controller, the obstacles 
encoded on the navigation function are guaranteed to be 
avoided. Remaining work includes the implementation of 
the algorithms presented on the robot RHex on navigation 
applications. 
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