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Abstract—This paper addresses the coordinated navigation
of multiple independently actuated disk-shaped robots - all
placed within the same disk-shaped workspace. Assuming perfect
sensing, shared centralized communications and computation,
as well as perfect actuation, we encode complete information
about the goal, obstacles and workspace boundary using an
artificial potential function over the configuration space of the
robots simultaneous non-overlapping positions. The closed-loop
dynamics governing the motion of each (velocity-controlled) robot
take the form of the appropriate projection of the gradient
of this function. We impose (conservative) restrictions on the
allowable goal positions, that yield sufficient conditions for
convergence: we prove that this construction is an essential
navigation function that guarantees collision-free motion of each
robot to its destination from almost all initial free placements.
The results of an extensive simulation study investigate practical
issues such as average resulting trajectory length and robustness
against simulated sensor noise.

Index Terms—Artificial potential functions, feedback-based
navigation, coordinated motion, configuration spaces, reactive
systems, swarm robots, autonomous robots.

I. I NTRODUCTION

This paper addresses a geometrically simplified version
of coordinated motion planning [1]. A collection of disk-
like robots inhabits a two-dimensional disk-shaped workspace.
Each velocity-controlled1 robot can move simultaneously with
and independently of the other robots. Moreover, each has
a specified goal location in which it needs to end up. The
ensemble of these locations encodes the overall task. Departing
from the classical coordinated motion planning paradigm in
the manner of [5], [6], we further require that each robot’s
control strategy be reactive. By this, we mean that all motion
is generated by a vector field — a function of the instantaneous
ensemble of locations, parametrized (in part) by the fixed
ensemble of goals that returns at each instant a direction of
motion for each robot. In this reactive setting, each robot must
start from its arbitrary initial placement, confront the other
robots as required dynamically and eventually end up in its
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1The extension of our control solution beyond this ‘quasi-static’or ‘gen-
eralized damper’[2] to the dynamical setting of a second ordermechanical
system (a motion where controlled forces generate changes invelocity) is
almost immediate, according to the procedures discussed in [3], [4].

goal position. Reactive planners offer the usual benefits of
feedback relative to the traditional open-loop planners intheir
sensitivity to execution time disturbances and thus promise
more efficient and robust performance. Of course, improperly
designed feedback schemes can cause instability, hence the
central problem is to demonstrate convergence.

This paper presents a formulation of the problem nearly
identical to that of [5], [6] and proposes a similarly close
solution2. As before, we assume complete centralized infor-
mation about all the robots’ instantaneous positions as well as
a fixed goal location assigned to each one. Again, we use this
information to construct an artificial potential function and
apply its gradient as a centralized controller communicated
accurately and instantaneously to the fully actuated robot
ensemble. However, now we offer the missing convergence
proof, guaranteeing from almost every initial condition within
the connected component the movement of all robots to their
destinations without any collisions along the way. The coupled
closed loop gradient dynamics governing the motion of the
robot ensemble projects onto the coordinate slice correspond-
ing to each individual robot a vector field sensitive to its own
position as well as those of all the other robots. Although this
approach is in principle applicable with complete generality
to any navigation problem over a known configuration space
[7], [8], and the construction for this very specific class of
problems has essentially been in place for over two decades
[6], [9], the present paper offers the first formal demonstration
of its correctness. Analogous constructions have been shown
to be correct in simpler, related versions of the problem [5],
[10], [11]. But despite favorable simulation experience, the
possibility of spurious local minima on which the system
might get stuck has remained an open question. In summary,
this paper shows for the first time that the line of reasoning and
strategy originating in [8] can be extended constructivelyto
coordinated navigation of disk-shaped robots in a disk-shaped
workspace with complete information. Provided certain con-
straints on the allowed goal positions are satisfied, obstacle-
free navigation to the goal placements from almost every initial
placement of the robots lying in the connected component of
the configuration space is guaranteed.

A. Coordinated Motion Planning

Traditionally, the coordinated motion problem has been
viewed as a special case of the general open-loop motion plan-

2The major advance beyond [5], [6] in this present formulation is that we
can now handle a compact workspace via the imposition of an additional outer
boundary as defined by Eq. 2 that makes the problem more broadly applicable
but considerably harder.
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ning problem. In this tradition, the kinematics of planningare
separated from the dynamics of execution [12]. A geometric
planner produces a trajectory in the joint configuration space
of the ensemble of robots connecting a pre-specified initial
condition to the fixed goal configuration (the total degrees of
freedom are given by the sum of the individual machines’)
[13]. This plan is then ‘guarded’in real time execution by a
local tracking controller. In these open-loop approaches,the
focus is on developing computational geometric means that are
assured of finding a path in the configuration space that does
not violate any of the hypersurfaces encoding the constraints
on the robots’ degrees of freedom [14], [15]. Most geometric
approaches are based on roadmaps or cell decomposition [16],
[17]. Furthermore, depending on how the planning is achieved,
they are either classified as being centralized or decentral-
ized [18]. Unfortunately, the computational complexity ofthe
coordinated motion planning has proved to be PSPACE-hard
even in two dimensional environments where only translations
are allowed and when the final configuration specifying the
final positions of all movable objects is known [1], [19].
This result has been viewed as a guide to calibration of
problem difficulty and has led researchers to consider the
more tractable, but restricted classes of the problem [13],
[20], [21]. Against this backdrop, researchers have approached
the problem by proposing heuristic or approximate schemes
[13]. Centralized approaches propose various solutions such
as transforming the problem into a series of subproblems
[14], reducing the search dimensionality [22] or introducing
additional constraints [23], [24]. Alternatively, in decentralized
approaches, the path planner is distributed among the robots
that possibly communicate [18], [25]. Intermediate problem
formulations (mixing elements of centralized and distributed
planning) have also been considered [26], [27], [28]. For
all of these feedforward problem formulations, when there
is any change in the robots’ objectives or the environment,
complete recalculation of paths is required. Moreover, in
obvious consequence of the heuristic nature of these schemes,
there is no guarantee of completeness.

We take an approach within the extreme opposite paradigm:
purely feedback-based motion planning. Despite the long
established guaranteed existence of such planners in general
[7], [8], [10], specific algorithms with provable properties for
specific problem settings have been slow to appear. A good
summary account of the many heuristic vector field planners
that appeared in that decade (e.g., [29], [30], [31], [32], [8],
[33] ) can be found in [34], and a tutorial account of the
following decade’s work in this vein (all of which is heuristic
and suffers from possibility of local minima) can be found
in [16], [17]. A major boost to the theoretical foundations of
reactive planning has been contributed by the definition and
formal toolbox of topological complexity [35] (which has been
determined for this problem in [36], [37]).

In recent years, the construction of provably correct vector
field planners has progressed along two major axes. First, a
variety of general algorithmic approaches have been recently
advanced by assuming the availability of a convex (e.g., cubi-
cal [38], or simplicial [39]) cellular decomposition. Notably, in
[39], a smooth (Cr) global vector field is achieved by interpo-

lating local vector fields defined over each simplex, ensuring
asymptotic convergence to the goal position while guarantee-
ing collision avoidance. The forbidding complexity of even
algebraic [15], [40] much less convex cellular decomposition
in the setting of general motion planning problems must give
some pause in pursuing this direction. Some preliminary work
[41] suggests that the regularity of multi-body configuration
spaces such as arise in this problem may render convex cellular
decompositions viable for low numbers of cooperating robots -
but such computations must inevitably increase geometrically
with the degrees of freedom. In contrast, that same regularity
permits the use of the closed form expressions we study here,
entailing merely quotients of quadratic functions and their
gradients - a major benefit of the global analytical approach
of this paper3.

A second direction of recent work on reactive planning has
re-examined versions of the multiple disk navigation problem
we treat here in response to the two decade old extension
[5], [6] of the original navigation function solution to the
single disk problem [8]. An excellent review of this more
contemporary literature is provided in the most recent of these
papers [43] and in [44] which also come the closest in their
aims and methods to those of this paper. The chief difference
of our work from [44] (and its extension to nonholonomically
constrained disks [45]) is their focus on a partially decentral-
ized problem version: all agents have global, instantaneous
knowledge of all others’ positions, but an agent’s ultimate
destination is known only to itself. Their navigation function
has much greater complexity, apparently in consequence. Both
this paper and [43] follow the original construction [6] and
analysis [8] in their concern to exhibit a provably correct
navigation function for multiple, fully actuated first order
disk navigation under the assumption of noise-free global
sensing and inter-agent communication, affording recourse to
a completely centralized computation and exact, deterministic
implementation of the associated gradient field as a control
law. In [43], the construction departs in significant ways from
that of [6], most notably by recourse to a continuous but non-
differentiable navigation function, yet the pattern of analysis
introduced in [8] is presented in nearly identical form, modulo
the introduction of methods from nonsmooth analysis [46]. In
this paper, our construction is similar to [6] with the addition
that the workspace is bounded by an a priori specified radius
in which all the robots are required to remain. Furthermore,
notwithstanding the major overlap with the mode of analysis
introduced in [8], we are forced to depart from that pattern at
certain essential junctures as explained throughout the paper.
In contrast to [43], our construction is smooth on the interior
of the free space but of course cannot be smooth on the (non-
smooth, sub-analytic) boundary4. Beyond the intrinsic interest
in smooth controllers articulated originally in [7], a parallel

3This tradeoff between analytically intricate, computationally simple vs.
analytically simple, computationally intensive global representations in reac-
tive motion planning seems to echo a more general pattern in computational
topology [42].

4Please see the discussion in Section I-D where we address this issue
by relaxing the requirement for nondegeneracy over the closed freespace to
merely over the interior.
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literature initiated around the same time [4] employs the lift
of a navigation function as a key component of obstacle-
avoiding controllers for second order plants: in some important
application settings this lift will require the jacobian ofthe
original gradient field —- for example see [47] for a very
nice recent example of this approach5 applied to the dynamical
version of the present setting of multiple coordinated vehicles6.

Fig. 1. (a) A coordinated navigation scenario; (b)-(f) Snapshots from a task.

B. Motivation

Consider the scenario depicted in Figure 1a where larger
circles represent individual robots and each circle with a cross
represents the goal position of its specified robot counterpart.
In this illustration, all robots except the top one are initially
located very close to their goal positions7. The robots are
very closely packed and need to move away from their goal
positions in order to let the top robot pass through. Our
feedback-based planner leads to emergent cooperation: allthe
robots nudge slightly away from the center enough to allow
the top robot to pass through as seen in Figures 1b-d, and then
move back as shown in Figures 1e-f while the top robot also
homes to its goal as well. It is important to emphasize that
these motions were not ‘planned’a priori in the conventional
sense. Rather, at each instant of time, each of the robots
is given a velocity vector that is a function of its present
position as well as the positions of all the others. The detailed
path followed by the ensemble of robots emerges from their
‘reactive’integration of this set of cooperative vector fields.
Our proof guarantees that all the robots will reach the specified

5Note that simple potential-dissipative controllers [3], [4] can lift an unmod-
ified gradient field to achieve an asymptotically stable second order system
with no need for further derivatives. However these simpler constructions do
not achieve the same performance as required in applications such as [47],
which follows a more aggressive approach originally proposed in [48], and
developed in the subsequent literature [49], [50]. Intuitively, the difference in
performance is akin to that between an underdamped vs. a critically damped
LTI system, and the ability to regulate the transients in thismanner is often
quite important in practical settings.

6In these cases, when performance considerations motivate controlling the
graph error [47]-[50], we know of no alternative to the sort of smooth
construction we pursue here since even Lipschitz continuous non-smooth
gradients yield unacceptable discontinuous lifts.

7The outer boundary which encloses an area four times that illustrated is
not shown so as not to lose the desired detail of visualization.

ensemble of goals from any arbitrary initial configuration in
the goal-connected component (excepting some set of measure
zero) with the guarantee of no collisions along the way.

C. The Problem Statement

Consider a collection ofp disk shaped robots lying on the
same two dimensional workspace bounded by an outer disk.
Each robot has two completely actuated degrees of freedom in
this workspace, is assigned to a goal position vector and can
move independently of the others. Thus each robot becomes an
obstacle – possibly moving – for the remaining other robots.
We assume8 that:

(i) Each robot has a ‘perfect’velocity controller that
can achieve exactly and instantaneously any desired
bounded planar velocity command vector;

(ii) At every instant, each robot has perfect real time
knowledge of its own position; and

(iii) At every instant, each robot knows exactly the sizes
and the locations of all the other robots at that instant.

(iv) For all time, each robot knows exactly its own goal
location as well as that of all the other robots.

If there arep individual planar robots, then letb ∈ R
2p

denote the augmented state vector of all robots andg ∈ R
2p

denote the augmented state vector of all goal positions. As
assumed in (i), above, we consider the simplest control setting
and model their change of stateḃ according to control law:
ḃ = u. As discussed above, we will set the control input,u,
to be the gradient vector of an appropriate smooth map,ϕ :
F → [0, 1] on thefree robot configuration spaceF ⊂ R

2p (to
be formally defined below) so thatu = −∇ϕ. The equilibria
b(∞) of this system constitute its fixed points. This task is
successfully completed ifb(∞) = g or successfully terminated
if b(∞) 6= g (i.e., the system cannot cycle but must eventually
converge to some critical point - the wrong one only from an
initial condition set of measure zero [7], [8]).

D. Navigation Functions

Since the basin of a point attractor is a topological ball
[51], and the free space is not contractible [52] there clearly
cannot exist vector fields that take every pointb ∈ F to
the goalg. However, there is no such obstruction to smooth
vector fields with a point attractor whose basin includes the
connected component of the goal inF excluding a set of
zero measure. We believe that the disadvantage of ‘losing
the way’on an ‘invisible’subset of freespace is offset by the
many considerable advantages that dynamical systems based
motion planning enjoy, as reviewed, for example in [10], hence
our interest in the following class of scalar valued functions,
originally defined in [7]. A mapϕ : F → [0, 1] is anavigation
function if it is9:

8While these assumptions do not require that any information about future
positions or motion be available in a given instant (beyond knowledge of the
final goals), they do embody the most extreme version of centralized control
with perfect information. We are pursuing in ongoing work theprospects for
weakening these strong control and communications requirements without
losing the theoretical convergence guarantees.

9Here and in the sequel we use notation from the standard literature in real
analysis and point-set topology, e.g., [53].
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1) Analytic onF ;
2) Admissible onF — that is, it attains its maximum on

the boundary∂F .
3) Polar onF — that is, its unique minimum occurs at the

goal configurationg ∈
◦
F ;

4) Morse onF — that is, all critical points are non-
degenerate;

If the negative gradient ofϕ is transverse on the boundary
and directed inwards, all solutions of the gradient system
approach the critical points where the gradient vanishes. If ϕ
is a Morse function (critical points are non-degenerate), then
critical points are isolated, and the unstable equilibria attract
a set of points whose measure is zero. In particular, ifg is a
unique minimum ofϕ, then almost all points in the connected
component of the goal,g, move toward it and asymptotically
achieve it. Thus, an appropriately constructedϕ solves the
geometric path planning problem. Moreover, ifϕ is interpreted
as an artificial potential function, then the gradient vector field
leads to the automated generation of robots’ control velocities.
Furthermore, within certain constraints, the robots’ limiting
behavior is identical to that of the vector field.
We will find it convenient to relax point 4) of the definition
above, and introduce the notion of anessential navigation
function, by stipulating instead thatϕ be:

4) Morse on
◦
F — All interior critical points are non-

degenerate;
While the freespace interior is smooth, its boundary cannot be
— there arises the familiar problem of ‘corner points’[54] over
which set the Hessian is undefined. Rather than introducing the
machinery of non-smooth analysis as in [43], we simply relax
the condition because it confers no advantage on the boundary.
In other words, while degeneracy might possibly occur on∂F ,
no open set of initial conditions can be attracted to such critical
points sinceϕ cannot increase along the motion of−∇ϕ.

E. Contribution of the Paper

The main contribution of the paper is to show that our
construction (Eqs. 4-5) is indeed an essential navigation func-
tion. For in the present case of disk-shaped robots all moving
independently in a disk-shaped workspace, this guaranteesan
exact coordinated navigation algorithm that employs feedback
to drive all robots to their respective goals with no collisions
along the way from almost every initial configuration in the
connected component of the goal. More precisely, we show
that with some conservative but readily computed restrictions
on the goal positions, the constructed artificial potentialfunc-
tion can be made to be an essential navigation function – by
suitable assignment of the parameters that we prescribe exactly
in Theorem 1 as a function of the known problem geometry.

II. T HE CANDIDATE POTENTIAL FUNCTION

A. Notation

We will index the collection ofp ∈ Z
+ robots by the set

P = {1, . . . , p}. Each roboti ∈ P is located by its center point
bi ∈ R

2, parametrized by its radiusρi ∈ R
+ and assigned a

goal positiongi ∈ R
2. The stateb ∈ R

2p of all the robots

is defined as10 b
4
=
∑

i∈P bi ⊗ ei, wheree1, e2, . . . , ep ∈ R
p

are the unit base vectors inRp. The aggregate goal vector

g ∈ R
2p is defined byg

4
=
∑

i∈P gi ⊗ ei.
Now, define the index set of robot pairsQ =

{(i, j) |i, j ∈ P, i < j }. The cardinality ofQ is denoted by

q
4
= |Q| =

(
p
2

)
= p(p − 1)/2. For all robot pairs(i, j) ∈ Q,

define their distance differencedij ∈ R
2 as dij

4
= bi − bj .

Note that by definitiondij =
(
I2 ⊗ cTij

)
b, whereIn is then

dimensional identity matrix andcij
4
= ei−ej . The robots’ pair-

wise relative distance isδij
4
= ‖dij‖. Similarly, their relative

pairwise distance difference at the goal isgij ∈ R
2 defined by

gij
4
= gi − gj . Again, by definitiongij =

(
I2 ⊗ cTij

)
g. Let Q0

denote the index set of robot pairs including the workspace

boundary as azerothdisk, that is,Q0 4
= Q∪{(0, i) |∀i ∈ P }.

The robots cannot overlap, so we require that:

δij ≥ ρij
4
= ρi + ρj ∀(i, j) ∈ Q (1)

Differing from the original construction [6], the workspace is
bounded by radiusρ0 ∈ R

+, hence each roboti must remain

inside a disk of radiusρ0i
4
= ρ0 − ρi, that is:

‖bi‖ ≤ ρ0i ∀i ∈ P (2)

The free robot configuration spaceF , is defined as the subset
of robot positions inR2p which satisfy (1) and (2).

F 4
=

{
b ∈ R

2p |(∀i ∈ P, ‖bi‖ ≤ ρ0i) ∧ (∀(i, j) ∈ Q, δij ≥ ρij)
}

(3)
In other words, we are concerned with the closure of non-
contacting placements. For the reader’s convenience, we have
included in the Appendix a summary table of the principal
notation introduced in this section as well as in Section III.

B. Construction

Following the recipes in [8] and [6], the candidate function
ϕ : F → [0, 1] is constructed as the composition:

ϕ(b) = σd ◦ σ ◦ ϕ̂(b) (4)

The functionϕ̂ : F → [0,∞) encodes the goal point and the
obstacles of all the robots using the quotient of two functions
γ : F → [0,∞) andβ : F → [0,∞):

ϕ̂(b)
4
=

γk(b)

β(b)
k ∈ Z

+ (5)

The numeratorγ(b)
4
= (b − g)T (b − g) encodes the Eu-

clidean distance from the goal. The denominator encodes the

distance from freespace boundary and is defined asβ(b)
4
=

∏

(i,j)∈Q0 βij(b), where∀(i, j) ∈ Q, βij(b) = δ2ij − ρ2ij and
∀i ∈ P , β0i(b) = ρ20i − ‖bi‖2. The freespace boundary∂F
is the zero level set ofβ−1(0) and entails robots touching
each other or the workspace boundary. The parameterk is a
design parameter that determines the relative weight of these
two terms. As will be seen in the sequel,k plays a critical

10Here, ⊗ denotes the Kronecker product, where, ifA ∈ Rn×m, B ∈

Rp×q , thenA ⊗ B ∈ Rnp×mq with an ijth block of sizep × q specified
by aijB.
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role in ensuring that the functionϕ is an essential navigation
function.

Since ϕ̂ blows up on∂F , it is not admissible. In order to
makeϕ̂ admissible, it is squashed by the functionσ : [0,∞] →
[0, 1], defined byσ(x) = x

1+x . The resulting function be-
comes admissible but the goal pointg is a degenerate critical
point. In order to restore the goal point’s non-degeneracy,the
sharpening functionσd : [0, 1] → [0, 1] is applied, given
by σd(x) = x1/k. Thus, the resulting functionϕ becomes
admissible and has non-degenerate minimum atb = g.

C. Restriction on Goal Locus -g

Our proof requires a few natural restrictions on allowable
goal positionsg. Similar constraints have been introduced for
the different, but related versions of the problem in earlier
studies. For example, to retain the geometry as well as the
topology of a ‘sphere world’in the freespace, the robot is
defined as a point mass object in [8]. In [55], the minimal gap
between any pair of obstacles is restricted to be larger thanthe
diameter of the robot and the mated object. Our assumptions
constrain how closely the robots may be commanded to locate
finally with respect to each other and to the outer boundary in
their goal positions. The goalg is allowed to be chosen from
a subset ofF subject to two assumptions given in the sequel.

First, it is helpful to introduce a classification of the
freespace that isε away from the boundary by defining a
notion of robot neighborhoods and their associated ‘clusters’.
Much past research on the coordination of multiple robots has
encountered the need to decompose a neighborhood of the
configuration space boundary into a hierarchy of variously
arranged clusters, the earliest mention of this idea known
to us having been contributed in [56]. Most closely related
to our present formulation of robot neighborhoods and their
associated ‘robot clusters’is the introduction in [44] of afamily
of ‘relation verification’functions whose members roughly
correspond to each of these different possible ‘clusters’and,
like ours, are indexed over all possible partitions of the set of
agents. The cardinality of the collection of partitions grows
super-exponentially in the cardinality of the base set. Fortu-
nately, in our problem formulation, these clusters do not enter
into the controller itself but only play a role in the analysis
of correctness, specifically in Prop. 3.6. In contrast, likely
because of their focus on the more challenging decentralized
version of the problem, the obstacle term in the navigation
functions that generate the controllers of [44] explicitlyinclude
each of these super-exponentially many factors.

Robot Neighborhoods: Let ε ∈ R
+ be an arbitrarily

small design parameter that determines robot neighborhoods.
In particular, its value is set as to ensure that

0 < ε < ρ′′ where ρ′′ = min
i∈P

{ρ0i} (6)

∀i ∈ P , define anε-neighbor setNε(b, i) ⊆ P to be

the indices of its closest neighbors – namelyNε(b, i)
4
=

{j ∈ P |0 < βij(b) ≤ ε} 11. Now, recursively define thenth

11We will denote by an overbar the complementary index set so that, for
example,N̄ε(b, i) = P −Nε(b, i).

ε-neighbor setsNn
ε (b, i) ⊆ P asN0

ε (b, i) := {i} and

Nn+1
ε (b, i) :=




⋃

j∈Nn
ε (b,i)

Nε(b, j)




⋂

l≤n

N̄ε
l
(b, i)

According to this definition, each(n+1)st neighbor of robot
i is ε close to somenth neighbor of roboti, but no closer -
i.e. it is notε close to any(n− 1)st neighbor. The process is
stopped whenNn+1

ε (b, i) = ∅.
Robot Clusters: Specify a partition

{
P1(b), ..., Ps(b)(b)

}

where Pi(b) ∈ 2P and s(b) is the number of cells in this
partition using a recursively defined functionPi(b) and its
complementary function̄Pi(b) as follows: The base step is
given by

r1 := 1, P1(b) :=

p−1
⋃

j=0

N j
ε (b, r1)

and the recursive step is given by

rn+1 := min




⋂

j≤n

P̄j(b)



 , Pn+1(b) :=

p−1
⋃

j=0

N j
ε (b, rn+1)

stopping when
⋂

j≤n P̄j(b) = ∅. At each configuration this
partition divides up the robots into distinctive clusters of
”closest neighbors”. For convenience, we wish to keep track

of the partition cell index setS(b)
4
= {i ∈ P |i ≤ s(b)}. It can

be verified that
∐

i∈S(b) Pi(b)
12 is a partition over the robot

index set [57].
Next, consider an arbitrary clusterP ′ ⊆ P containing at

least two elements|P ′| ≥ 2. Associate with itF ′ ⊆ F

F ′ 4
= {b ∈ F |∃i ∈ S(b), Pi(b) = P ′ }

Let Q′ ⊆ Q be the corresponding pair index set defined as:

Q′ 4
= {(i, j) ∈ Q |i, j ∈ P ′ } (7)

Finally define two derived problem parametersΛ′ and Λ′′

defined as follows:

Λ′ 4
= max

b∈F ′







∑

(i,j)∈Q′

δij +
2|P ′| − 2

ρ′

∥
∥
∥
∥
∥

∑

n∈P ′

J (bn − ḡ′)⊗ en

∥
∥
∥
∥
∥

2






(8)
and

Λ′′ 4
= max

b∈F ′,i=argmaxn∈P ′ ‖bn‖







∑

j∈P ′

δij






(9)

where ρ′
4
= min(i,j)∈Q {ρij}, J

4
=

[
0 1

−1 0

]

is the 90◦

planar rotation matrix and̄g′
4
= 1

|P ′|
∑

i∈P ′ bi is the centroid
of the robots in the cellP ′.

With these definitions in place we are now ready to
introduce the assumptions that restrict the allowable goal
configurations. The first states that for any robot cluster, the
goal positions of the robots in this group are separated from
each other by a value ofΛ′. This term is the maximum value

12The symbol
∐

denotes disjoint union [54].
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Fig. 2. Sample goal configurations. Left: A goal configurationfailing
Assumption 1. Right: A goal configuration failing Assumption 2.

of a function of the pairwise distances between the robots and
their centroid.This maximization is over any cell containing
these robots. Figure 2(Left) shows a workspace configuration
containing three robots (big circles) which might block the
way of each other while navigating to their goal positions
(dark points) since the goal points are not separated enough
according to Assumption 1.

Assumption 1:∀P ′ ∈ 2P where|P ′| ≥ 2

∑

(i,j)∈Q′

‖gij‖ > Λ′

whereQ′ andΛ′ are calculated according to the Eq. 7-8.2
The second assumption states that for any robot group,

each goal position is not allowed to be located closer to the
workspace boundary more than a value ofΛ′′. This term
is the maximum value of the sum of the distances between
the closest robot to the workspace boundary and the other
robots. This maximization is over any cell containing these
robots. Figure 2(Right) illustrates a disconnected free space
as the robot radii are too large with respect to that of the
workspace which is an infeasible goal position according to
Assumption 2.

Assumption 2:∀P ′ ∈ 2P where‖P ′‖ ≥ 2

|P ′|
√

ρ′′2 − ε− Λ′′ −
∑

i∈P ′

‖gi‖ > 0

whereΛ′′ is calculated according to the Eq. 9. 2

These assumptions, introduced to facilitate the proof as re-
marked above, are sufficient for the desired result, but involve
bounds that have proven to be conservative in the simulations.
For example, it seems clear that they guarantee a completely
connected freespace, but the dependence of the homotopy type
of F (including the conditions for its connectedness) on the
disk radii is a delicate issue of great importance — indeed
touching on such longstanding questions as the ancient sphere
packing problem13 [58] — whose characterization goes far
beyond the scope of the present paper. Nonetheless, for formal
guarantees to hold, the goals would need to satisfy the two
assumptions and the tuning parameterk, would indeed need
to be set as a function of these bounds.

13For example, authors of [58] point out that determining conditions on the
disk radii yielding a non-empty free space (e.g. the smallest radius precluding
any free placement of movable uniform disks) restates the sphere packing
problem in a bounded region. See [59] for a nice overview of the history of
this problem which, as the author shows, stretches back at least a millennium
prior to Kepler’s famous conjecture in 1611 [60].

III. T HE CANDIDATE IS AN ESSENTIAL NAVIGATION

FUNCTION

A. Statement of Main Theorem

If ϕ is a navigation function, then its associated gradient
field automatically generates velocity control policies for each
of the robots under whose joint influence they all achieve
the desired goal,g, from almost all initial conditions in its
connected component of the freespace with the guarantee of
no collisions along the way [61].

Theorem 1:For any goalg satisfying assumptions 1 and 2,
there exists a positive integerK∗ ∈ Z

+ such that for every
k > K∗, the real-valued function,

ϕ(b) = σd ◦ σ ◦ ϕ̂(b) =
(

γk(b)

γk(b) + β(b)

)1/k

(10)

is an essential navigation function.
Proof: By definition,ϕ is analytic and admissible onF . By

Proposition 3.1, assumptions 1 and 2 imply that there exists
a positive integerK ∈ Z

+ such that for everyk > K, ϕ is
polar in F . By Proposition 3.2, assumptions 1 and 2 imply
that there exists a positive integerN ∈ Z

+ such that for every

k > N, ϕ is Morse on
◦
F . TakingK∗ = max{K,N}, the result

thus follows.2

B. Proof of Correctness

Consider the partition of the free configuration spaceF into
five disjoint subsets - following a line of reasoning inspired
by that of [8]:

1) the goal point{g}
2) the boundary of the free space∂F = β−1(0)
3) the set near the outer boundaryF0(ε) =

{b ∈ F |∃i ∈ S(b), ∃j ∈ Pi(b), 0 < β0j(b) ≤ ε} −
({g} ∪ ∂F)

4) the set near the internal obstaclesF1(ε) =
{b ∈ F |∃i ∈ S(b), |Pi(b)| ≥ 2} − ({g} ∪ ∂F ∪ F0(ε))

5) the set away from the obstaclesF2(ε) = F −
({g} ∪ ∂F ∪ F0(ε) ∪ F1(ε))

Note that because the goal is held away from∂F , ε is

a design parameter as stated in Section II-C. LetCϕ 4
=

{b ∈ F |‖Dϕ(b)‖ = 0} denote the set of critical points of the
functionϕ. LetT : F → 2Q

o

denote the pair touching function
– that is

T (b)
4
= {(i, j) ∈ Q |δij = ρij }

⋃

{(0, i), i ∈ P |‖bi‖ = ρ0i }
The following proposition shows the absence of the local
minima of functionϕ.

Proposition 3.1:For any free robot configuration spaceF
constrained by Assumptions 1 and 2, there exists a positive
integerK ∈ Z

+ such that for everyk > K, the real-valued
function,

ϕ(b) = σd ◦ σ ◦ ϕ̂(b) =
(

γk(b)

γk(b) + β(b)

)1/k

(11)

has unique minimum point atg, that is,ϕ is polar onF .
Proof: The polarity ofϕ is analyzed in each subset ofF . Note
that the functionsϕ and ϕ̂ have the same critical points with
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the same type (minimum, maximum or a saddle) except at
∂F .

1) By definition,ϕ(g) = γ(g)

(γk(g)+β(g))1/k
. Taking the gra-

dient ∇γ(b) = 2(b − g) and noting thatγ(g) = 0 and
∇γ(g) = 0,

∇ϕ(g) = 1

(γk(g)+β(g))2/k
×

((
γk(g) + β(g)

)1/k ∇γ(g)− γ(g)∇
(
γk(g) + β(g)

)1/k
)

= 0

Theng is a critical point ofϕ. Sinceγ(g) = 0, ϕ(g) = 0.
Furthermore, by construction,ϕ : F → [0, 1], theng is
a minimum point ofϕ.

2) Next, considerϕ on ∂F . By definition, at least two
robots must touch to each other or one robot must
touch to the workspace boundary. Partition∂F = {b ∈
∂F : |T (b)| = 1} ∪ {b ∈ ∂F : |T (b)| > 1}. There
are no critical points in{b ∈ ∂F : |T (b)| = 1}
by Proposition 3.3 given in Section III-C. The critical
points in {b ∈ ∂F : |T (b)| > 1} are maxima by
Proposition 3.4.

3) ϕ̂ has no critical points inF0(ε) by Proposition 3.5 -
which asserts that for a given design parameterε, there
exists a lower bound on the parameterk, K3(ε) > 0,
such that, ifk > K3(ε), thenCϕ̂ ∩ F0(ε) = ∅.

4) The critical points inF1(ε) are not minima by Propo-
sition 3.6 – which asserts the following: For a given
design parameterε, there exists a lower bound on the
parameterk, K2(ε) > 0, such that, ifk > K2(ε) thenϕ̂
has no minimum in any setF1(ε).

5) ϕ̂ has no critical points inF2(ε) by Proposition 3.7 –
which asserts that for a given design parameterε there
exists a lower bound on the parameterk, K1(ε) > 0,
such that ifk ≥ K1(ε) thenCϕ̂ ∩ F2(ε) = ∅.

The proof of Proposition 3.1 is completed by choosing lower
boundK > 0 on the parameter k as follows,

K = max {K1(ε),K2(ε),K3(ε)} (12)

2

Non-degeneracy, the Morse property, is established by the next
result, Proposition 3.2.

Proposition 3.2:For any free robot configuration space
◦
F

subject to Assumptions 1 and 2 and for a given design
parameterε, there exists a positive integerN(ε) ∈ Z

+ such
that for everyk > N(ε), the real-valued function,

ϕ(b) = σd ◦ σ ◦ ϕ̂(b) =
(

γk(b)

γk(b) + β(b)

)1/k

(13)

has non-degenerate critical points, that is,ϕ is Morse in
◦
F .

Proof: The functionϕ is analyzed in each disjoint region of
◦
F .

1) The goal pointg is a non-degenerate minimum point by
Proposition 3.8.

2) There are no critical points inF0(ε) by Proposition 3.5
3) By Proposition 3.9, there exists a lower boundN(ε) > 0

on the parameterk such that ifk > N(ε), thenD2ϕ̂
restricted toF1(ε) is non-singular.

4) There are no critical points inF2(ε) by Proposition 3.7.
If the parameter k is chosen accordingly, the result follows. 2

Proposition 3.1 and Proposition 3.2 follow mostly a line of rea-
soning similar to their counterparts in [8]. However, they also
depart from the respective analysis. First, in Proposition3.1,
we define partitions over the robot index set and use the
robot clusters to ”find” the unstable tangent direction. Second,
Proposition 3.2 invokes Proposition 3.9 wherein we depart
necessarily from the approach taken in [8]. In that problem
setting, every saddle is associated with two complementary
subspaces where the Hessian matrix is sign-definite with the
corresponding negative and positive cones explicitly revealed
by computation [7]. In contrast, the present problem introduces
a configuration space of dimension2p (with p > 1), which is
known to have nonzero Betti numbers [62] for every intermedi-
ate dimension [58]. Hence, according to the Morse inequalities
[63], there must now be saddles of every index and the hope
of explicitly revealing the corresponding positive and negative
cones of each different type seems hopeless. Instead, here we
abandon that geometric approach and instead focus directlyon
satisfying algebraic conditions for nonsingularity by appeal to
notions of diagonal dominance. Specifically, we use a theorem
to this effect by Sherman, Morrison and Woodbury [64] along
with some related results in linear algebra [65].

C. Polarity

The details of proof of Proposition 3.1 are presented in
this section. Due to space restrictions, some of the very most
detailed computations supporting the proofs of some of the
constituent lemmas cannot be included in this paper. However
they are available in [61], [57].

1) The Free Space Boundary:∂F = β−1(0): Referring
to the definition of the pair-touching function T (defined in
Section III-B), |T (b)| = 0 means no robots are touching each
other and none of them is touching the workspace boundary.
The free space boundary∂F will be investigated for two cases:
(i) Case 1:|T (b)| = 1, (ii) Case 2:|T (b)| ≥ 2. The following
proposition proves that there are no critical points on∂F for
Case 1.

Proposition 3.3: If |T (b)| = 1, thenCϕ ∩ ∂F = ∅.
Proof: If |T (b)| = 1, then only one of the terms ofβ is zero.
Call this termβln, (l, n) ∈ Q0. Then, all the summation terms
of ∇ϕ vanish except the ones that containingβ̄ln 6= 0 and
∇βln 6= 0. Hence,∇ϕ|∂F = − 1

kγk

(
β̄ln∇βln

)
6= 0. 2

The following proposition proves thatϕ admits maximum
valued critical points on∂F for Case 2.

Proposition 3.4: If |T (b)| ≥ 2, thenCϕ∩∂F contains only
maximum valued critical points.
Proof: Since |T (b)| ≥ 2, ∃(i, j), (l, n) ∈ T , such thatβij =
βln = 0. Then, all the summation terms of∇ϕ vanish except
the ones containinḡβij 6= 0 or β̄ln 6= 0, resulting in∇ϕ|∂F =
− 1

kγk

(
β̄ij∇βij + β̄ln∇βln

)
= 0. But ϕ : F → [0, 1] and

ϕ|Cϕ∩∂F = γ
(γk+β)1/k

= 1, which means that those critical
points achieve the maximum value ofϕ. 2

2) The Set Near the Outer Boundary:F0(ε): The following
proposition shows that there are no critical points inF0(ε) -
the subspace ofF that is close to the outer boundary.
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Proposition 3.5:For a given design parameterε, there
exists a lower bound on the parameterk, K1(ε) > 0, such
that, if k > K1(ε), thenCϕ̂ ∩ F0(ε) = ∅.
Proof: (By contradiction) By definition,∀b ∈ F0(ε) if φ(b) =
∐

i∈S(b) Pi(b) is the corresponding partition then∃i ∈ S(b)
such that∃j ∈ Pi, β0j ≤ ε. In other words, there exists at least
one cell consisting of at least one robot close to the workspace
boundary.

First, denote the cell which is arbitrarily chosen from the
cells consisting of at least one robot close to the boundary by
Pz. Let z′ refer to the index of the closest robot to the bound-
ary in the cellPz, that is,z′

4
= argmaxi∈Pz,β0i≤ε{‖bi‖}. If

b is a critical point, thenkβ∇γ = γ∇β. After expanding
the terms∇γ and∇β, using the definitionsb and g, letting

αij
4
= γ

kβij
∀(i, j) ∈ Q0, Qz

4
= {(i, j) ∈ Q |i, j ∈ Pz } and

Qz
4
= Q \ Qz, decompose the summation overQ and P

respectively and simplify as:
∑

n∈Pz

(1 + α0n)bn =
∑

n∈Pz

gn +
∑

(i,j)∈Qz

αijdij

After taking the magnitude of both sides and applying the
triangle inequality, usingbn = bz′ +dnz′ on the left-hand side
and maximizingδij/βij , taking minimum of left-hand side
and finally using∀n ∈ P , α0n > 0

∑

n∈Pz

(‖bz′‖ − δnz′) ≤
∑

n∈Pz

‖gn‖+
γ

kε

∑

(i,j)∈Qz

√

ρ2ij + ε

Recall that ρ′′ = mini∈P {ρ0i}. Using
minb∈F0(ε) {‖bz′‖} =

√

ρ′′2 − ε and minimizing left-hand
side,

|Pz|
√

ρ′′2 − ε−∑n∈Pz
δnz′ −∑n∈Pz

‖gn‖ ≤
γ
kε

∑

(i,j)∈Qz

√

ρ2ij + ε

Using Assumption 2, ifg is chosen appropriately the left-hand
side of the above inequality will be positive. Ifk is chosen as,

k >

max∀b∈F0(ε)

{
γ
∑

(i,j)∈Qz

√
ρ2
ij+ε

[

|Pz|
√

ρ′′2−ε−∑

n∈Pz
δnz′−

∑

n∈Pz
‖gn‖

]

ε

}

4
= K1(ε)

thenb cannot be a critical point. Thus,̂ϕ has no critical points
in F0(ε). Further details can be found in [61] or [57].

2

3) The Set Near the Internal Obstacles:F1(ε): The fol-
lowing proposition shows that̂ϕ has no minimum inF1(ε) -
the subset ofF that is close to the internal obstacles.

Proposition 3.6:For a given design parameterε, there
exists a lower bound on the parameterk, K2(ε) > 0, such
that, if k > K2(ε) then ϕ̂ has no minimum in any setF1(ε).
Proof: It is sufficient to show that forCϕ̂ ∩ F1(ε), ∃v ∈ R

2p

such thatvTD2ϕ̂v < 0. By definition,∀b ∈ F1(ε), there is a
partition

∐

i∈S(b) Pi(b) such that∃i ∈ S(b) where|Pi(b)| ≥ 2.
Pick arbitrarily a cell consisting of at least two robots and
denote it byPz – that is|Pz| ≥ 2. Now consider the following

vector, vz
4
=
∑

n∈Pz
J(bn − ḡz) ⊗ en where ḡz denotes the

centroid of the robots in the cellPz, ḡz
4
= 1

|Pz|
∑

n∈Pz
bn. We

have chosen this vector based on our following observation
in the simulations: When the robots are getting close to each
other, each starts moving in a direction perpendicular to line

between their center and the cell centroid. Recall thatQz
4
=

{(i, j) ∈ Q |i, j ∈ Pz } andP ′
z

4
= P \ Pz. Let

A
4
=




∑

(l,n)∈Qz

‖gln‖ −
∑

(l,n)∈Qz

δln − 2pz − 2

ρ′
‖vz‖2





Doing some manipulations and grouping the terms on the
right-hand side as follows,

β
2γk v

T
z D

2ϕ̂vz ≤

− k
γ








ρ′

2pz − 2
A− γρ0ρ

′

2kε
[(p− pz)(p− pz − 1) + pz]

︸ ︷︷ ︸

σ1








+
∑

j∈Pz

(

2

β2
0j

[
bTj Jḡz

]2
+

1

β0j
‖bj − ḡz‖2

)

︸ ︷︷ ︸

σ3

+
∑

i∈P ′
z

j<i
∑

j∈Pz

(

2

β2
ji

[
dTjiJ(bj − ḡz)

]2 − 1

βji
‖(bj − ḡz)‖2

)

︸ ︷︷ ︸

σ′

2

+
∑

i∈P ′
z

j>i
∑

j∈Pz

(

2

β2
ij

[
dTijJ(bj − ḡz)

]2 − 1

βij
‖(bj − ḡz)‖2

)

︸ ︷︷ ︸

σ′′

2

Let σ2
4
= σ′

2 + σ′′
2 . Note thatQz

4
= Q \ Qz. If g is chosen

according to Assumption 1, then termA > 0. If k is chosen
as,

k > max∀b∈F1(ε){

γ(pz−1)ρ0[pz+(p−pz)(p−pz−1)]
[

∑

(l,n)∈Qz
‖gln‖−

∑

(l,n)∈Qz
δln− 2pz−2

ρ′
‖vz‖2

]

ε

}

4
= K21(ε)

thenσ1 > 0. Thus, a sufficient condition to makevTz D
2ϕ̂vz <

0, is

k > max
∀b∈F1(ε)

{
(σ2 + σ3)γ

σ1

}
4
= K22(ε)

Finally, the proof is completed by choosing,K2(ε) =
max{K21(ε),K22(ε)}.

2

4) The Set Away From the Obstacles:F2(ε): The following
proposition shows that for sufficiently largek values, there are
no critical points inF2(ε).

Proposition 3.7:For a given design parameterε there exists
a lower bound on the parameterk, K3(ε) > 0, such that if
k ≥ K3(ε) thenCϕ̂ ∩ F2(ε) = ∅.
Proof: ∀b ∈ Cϕ̂, kβ∇γ = γ∇β. Taking the norm of the both
sides and re-arranging terms in2kβ =

√
γ‖∇β,

k =

√
γ‖∇β‖
2β

(14)
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If k is selected to have value,

k > max∀b∈F2(ε)

√
γ

ε ×
(
∑

(i,j)∈Q

√
2
√

ρ2ij + ε+
∑

i∈P

√

ρ20i − ε
)

4
= K3(ε)

then, Eq. 14 does not hold which in turn implies that there are
no critical points inF2(ε). 2

D. Nondegeneracy

The details of Proposition 3.2 are given in this section. Again,
due to space restrictions, some of the very most detailed
computations supporting the proofs are available in [57].

1) Goal point{g}:
Proposition 3.8:The goal point, g is a non-degenerate

minimum ofϕ.
Proof: It can be shown that

D2ϕ
∣
∣
Cϕ

=
1

(γk+β)2/k

(
(γk + β)1/k2I2p − γD2(γk + β)1/k

)

Noting that γ|g = 0 and ∇γ|g = 2(b− g) = 0;

D2ϕ
∣
∣
g

=
2

β1/k
I2p

implies thatg is a non-degenerate minimum ofϕ. 2

2) The Set Near the Internal Obstacles:F1(ε): There
are no critical points in{b ∈ ∂F : |T (b)| = 1} by
Proposition 3.3 given in Section III-C. The critical pointsin
{b ∈ ∂F : |T (b)| > 1} are maxima by Proposition 3.4.̂ϕ
has no critical points inF0(ε), F2(ε) by Proposition 3.5 and
Proposition 3.7 respectively. Now let us consider the critical
points of ϕ̂ that are inF1(ε).

Proposition 3.9:∃N(ε) such that fork > N(ε), D2ϕ̂
restricted toF1(ε) is non-singular.

Proof: Define L0i
4
= − 1√

β0i

(
I2 ⊗ eTi

)
, ∀i ∈ P and Lij

4
=

1√
βij

(
I2 ⊗ cTij

)
, ∀(i, j) ∈ Q.

Let L0 be the2p × 2p matrix L0
4
=
[
LT
01 . . . L

T
0p

]
andL1

be the2p × 2q matrix L1
4
=
[
LT
12 . . . L

T
p−1,p

]
. Let L be the

2p × 2(p + q) matrix L
4
= [L0L1] and o be the(q + p) × 1

vectoro
4
=



−1 . . . − 1
︸ ︷︷ ︸

p

, 1 . . . 1
︸ ︷︷ ︸

q





T

. Note thatL has rank2p

in F1(ε). Let M be the2(p + q) × (p + q) block diagonal
matrix,

M
4
=









L01b 0 · · · 0

0
.. .

...
. ..

0 Lp−1,pb









It can be shown that (Lemma E.13 [57])∀b ∈ Cϕ̂ ∩ F1(ε)

β
2γkD

2ϕ̂ =

k
γ I2p + 2LMMTLT − 2

kLMooTMTLT − L1L
T
1 + L0L

T
0

Letting A =

[
I 0
0 −I

]

, we may re-write the previous

equation as:

β
γkD

2ϕ̂ =

k
γ I2p + L

(

2M

(

Iq+p −
1

k
ooT

)

MT +A

)

LT

︸ ︷︷ ︸

B

Next considerIq+p − 1
koo

T . By construction,

Iq+p −
1

k
ooT =

[
Ip 0
0 Iq

]

− 1

k

[
1p×p −1p×q

−1q×p 1q×q

]

Now let V = 2
(
Iq+p − 1

koo
T
)
. We show thatV is full rank

via considering its elements:

|vij | =
{

2
(
1− 1

k

)
if i = j

2
k otherwise

Note that for each row ofV ,
∑

j 6=i

|vij | = 2
p+ q − 1

k
(15)

Hence, ifk > p+ q, then for everyi, every diagonal element

|vii| = 2

(

1− 1

k

)

> 2
p+ q − 1

k
=
∑

j 6=i

|cij |

Hence, sinceV is strictly diagonally dominant, it follows
thatV is of full rank by Levy-Desplanques theorem [66] and
we have,

rank(2

(

Iq+p −
1

k
ooT

)

) = p+ q

Hence the result holds for its inverse. It can be shown that
eachv−1

ij entry of V −1 has the following form:

v−1
ij =







1
2
k−(p+q)+1
k−(p+q) if i = j

1
2

1
k−(p+q) if i, j ≤ p and i 6= j

1
2

1
k−(p+q) if i, j > p and i 6= j

− 1
2

1
k−(p+q) otherwise

Now considerrank(MVMT + A). According to a theo-
rem by Sherman, Morrison and Woodbury,MVMT + A is
invertible iff MTA−1M + V −1 is invertible [64]. Namely,

rank(MVMT +A) = 2(p+ q)
iff
rank

(
MTA−1M + V −1

)
= p+ q

Now, considerMTA−1M . Note that by constructionA−1 =
A andrank(A) = 2(p+ q). Let M be represented as a block
matrix as

M =

[
M11 M12

M21 M22

]

whereM11 is a2p×p, M12 is a2p× q, M21 is a2q × p and
M22 is a 2q × q matrix respectively. Hence, it can be shown
that

MTAM =

[
MT

11M11 0p×q

0q×p −MT
22M22

]



JUNE 2014 – IEEE TRANS. ON ROB. 10

By construction, bothMT
11M11 and−MT

22M22 are diagonal
matrices. Furthermore, ifS is the ordered set of permutations
of P and ι denotes the lexicographic order of a given per-
mutation ln, each diagonal entry̆mii of MTAM is defined
as

m̆ii =

{
‖L0ib‖2 if i ≤ p

−‖Llnb‖2 if i = p+ ι(ln)

where it should be recalled that‖L0ib‖2 =
bTi bi

bTi bi−ρ2
0i

and

‖Llnb‖ = (bl−bn)
T (bl−bn)

(bl−bn)T (bl−bn)−ρ2
ln

.

Let X = MTA−1M +V −1 wherexij denote the elements
of x. Next, we show thatX is a nonsingular matrix via
diagonal dominance. First, note that each diagonal element
xii, l = 1, . . . , p+ q is equal to:

xii =

{
1
2
k−(p+q)+1
k−(p+q) +

β0i+ρ2
0i

β0i
if i ≤ p

1
2
k−(p+q)+1
k−(p+q) − βln+ρ2

ln

βln
if i > p and i = p+ ι(ln)

On the other hand, each off-diagonal elementxij , i 6= j is
equal to:

xij =







1
2

1
k−(p+q) if i, j ≤ p and i 6= j

1
2

1
k−(p+q) if i, j > p and i 6= j

− 1
2

1
k−(p+q) otherwise

Consider
∑

j 6=i |xij |.
∑

j 6=i

|xij | =
1

2

p+ q − 1

k − (p+ q)

First consideri ≤ p. It can shown that

|xii| −
∑

j 6=i

|xij | =
1

2

k − (p+ q) + 1

k − (p+ q)
+

β0i + ρ20i
β0i

−1

2

p+ q − 1

k − (p+ q)

=
−p2 − p+ k + 2

−p2 − p+ 2k
+

β0i + ρ20i
β0i

Since the first term on the rhs is is an increasing function of
k and β0i+ρ2

0i

β0i
> 1, ∃ K4(ε), such that fork > K4(ε)

|xii| >
∑

j 6=i

|xij |

Now consideri > p. First note that either0 < βln ≤ ε
(Case 1) orε < βln ≤ (2ρ0 − ρln)

2 − ρ2ln (Case 2). The first
case holds for all robot pairs that are withinε neighborhood
of each other while the second case holds for all the other
remaining pairs since the workspace is bounded. Of course,
by assumption, as we consideringF1(ε), there exists at least
one (l, n) ∈ Q such that0 < βln ≤ ε. Hence

−∞ < −βln + ρ2ln
βln

≤ −ρ2ln
ε

It can be shown that
|xii| is bounded as:

∣
∣
∣
∣

1

2

k − (p+ q) + 1

k − (p+ q)
− ρ2ln

ε

∣
∣
∣
∣
≤ |xii| < ∞

Now let us consider|xii| −
∑

j 6=i |xij | with the lower bound
on |xii| which is equal to

∣
∣
∣
∣

1

2

k − (p+ q) + 1

k − (p+ q)
− ρ2ln

ε

∣
∣
∣
∣
− 1

2

p+ q − 1

k − (p+ q)
(16)

Sinceε is an arbitrarily small design parameter as discussed in
Section II-C, the termρ2

ln

ε will dominate in Eq. 16 and hence
|xii| >

∑

j 6=i |xij |. Now consider the second case where the

bound on−βln+ρ2
ln

βln
is as:

−ε+ ρ2ln
ε

< −βln + ρ2ln
βln

≤ − ρ2ln
(2ρ− ρln)2

Hence,|xii| is bounded as:
∣
∣
∣
∣

1

2

k − (p+ q) + 1

k − (p+ q)
− ρ2ln

(2ρ0 − ρln)2

∣
∣
∣
∣

≤ |xii| ≤ ∞

Let us now consider with|xii| −
∑

j 6=i |xij | with |xii| at its
smallest value as:

∣
∣
∣
∣

1

2

k − (p+ q) + 1

k − (p+ q)
− ρ2ln

(2ρ0 − ρln)2

∣
∣
∣
∣
− 1

2

p+ q − 1

k − (p+ q)

This is an increasing function ofk. Hence fork ≥ K5i(ε) > 0,
|xii| −

∑

j 6=i |xij | > 0 which implies that|xii| >
∑

j 6=i |xij |.
Now let K5(ε) = maxi≥pK5i(ε). Hence, sinceX is strictly
diagonally dominant, hence according to Levy-Desplanques
theorem [66]:

rank (X) = rank
(
MTA−1M + V −1

)
= p+ q

This in turn implies that

rank
(
MVMT +A

)
= 2(p+ q)

Recalling thatB = L
(
MVMT +A

)
LT , sincerank(L) =

rank(LT ) = 2p, according to lower and upper bounds on the
rank of product of matrices [65], the following holds true :

2p ≤ rank(B) ≤ 2p

Hence,B is ensured of being full rank and hence non-singular.
If B = DΛD−1 be an eigendecomposition ofB where theΛ
is a diagonal matrix with eigenvaluesλi andU is the matrix
of eigenvectors, then

∣
∣
∣
∣
B +

k

γ
I2p

∣
∣
∣
∣

=

∣
∣
∣
∣
UDU−1 +

k

γ
I2p

∣
∣
∣
∣

= |U |
∣
∣
∣
∣
D +

k

γ
I2p

∣
∣
∣
∣

∣
∣U−1

∣
∣

=

∣
∣
∣
∣
D +

k

γ
I2p

∣
∣
∣
∣

=

2p
∏

l=1

(λl +
k

γ
) (17)

Recall that by Prop. 3.6, there exists at least one negative
eigenvalue. Ifb ∈ Cϕ, then by definition

kβ∇γ = γ∇β (18)

Thus, Eq. 18 is equivalently expressed as:

∇γ =
γ

kβ
∇β
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Recall that sinceγ(b)
4
= (b − g)T (b − g) by definition,

equivalentlyγ(b) = 1
4∇γT∇γ. Hence, at a critical point,γ is

equal to:

γ =
γ2

4k2β2
∇βT∇β =

γ2

k2
Ω (19)

with Ω
4
= ∇βT∇β

4β2 which implies that

γ =
k2

Ω
(20)

Rewriting k
γ after substituting forγ using Eq. 20 and simpli-

fying
k

γ
=

Ω

k

Thus, for b ∈ Cϕ, B + k
γ I2p is equal toB + Ω

k I2p. Using
Eq. 17

∣
∣
∣
∣
B +

k

γ
I2p

∣
∣
∣
∣

=

2p
∏

l=1

(λl +
Ω

k
)

F1(ε) can be partitioned into two subsets -F0η andF0ε =
F1(ε) − F0η. Now consider the negative eigenvalue ofB
having smallest magnitude and denote it byλ′(B). Consider
the closure ofF0ε - namelyF̄0ε. As F̄0ε is compact, let

λ∗ = inf
b∈F̄0ε

|λ′(B)|

Finally, choose

k > sup
b∈F̄0ε

Ω

λ∗
4
= K6(ε)

Thus, if b ∈ Cϕ ∩ F1(ε), then γ
k I2p + B is nonsingular. The

proof is completed by choosing

N(ε) = max{K4(ε),K5(ε),K6(ε)} 2

IV. SIMULATIONS

We now report on simulations of the flows associated with
the construction to suggest the nature and quality of the motion
planning resulting from the artificial potential functionϕ. A
workspace tightness measuretight is defined as:

tight =
100

log10

(
∏

(i,j)∈Q ‖gij‖2 − ρ2ij

)

Note that this measure of tightness captures the difficulty of the
task. The closer the robots need to be packed together the more
careful and precise the robots have to be in their movements.
We will summarize performance by means of the measures
originally introduced in [6]. The first performance measureis
the normalized robot path length measurenrl which is the
total distance traveled by the robots normalized by the sum of
the Euclidean distances between initial and final positionsof
the robots,

nrl =

∑

i∈P

∫ tf
0

‖ḃi(t)‖dt
∑

i∈P ‖bi(0)− gi‖
Here, tf denotes the duration of a simulation,bi(t) denotes
the position vector of roboti at time t and bi(0) denotes the
initial position of roboti. The second measure is the design

parameterk of functionϕ. Recall in case of accurate positional
data, the robots are ensured of moving without any collisions
along the way.

Fig. 3. Circular formations of increasing tightness: a)tight = 2.44, b)
tight = 2.63, c) tight = 2.87, d) tight = 3.30 and e)tight = 3.45.

A. Circular Formations

We first study a problem involving six robots and five differ-
ent randomly chosen goal configurations of circular formations
with increasing tightness as shown in Figure 3. Figure 4(left)
shows the variation ofnrl as a function of goal tightness
measuretight. In this graphic, each bar represents the mean
and the standard deviation of 30-40 sample runs with random
initial configurations.k is taken to be60. The effect ofk is
discussed in the following section. Unlike [6], we observe that
the general trend and the deviation ofnrl values increase with
increasing workspace tightness. This result is expected since
the closer the robots need to pack together, the more times will
encounter each other, thus requiring longer paths that move
around each other in order to reach their goal positions. It is
seen that in the most complex workspace, path length is on
average 1.25 - 25 percent longer than the (typically infeasible)
Euclidean straight line between initial and final configurations.
In the easiest workspace, this value decreases to 1.08.

Fig. 4. Left:Normalized robot path length vs workspace tightness for circular
formations; Right: Normalized robot path length vs.k.

Figure 4(right) shows the dependence ofnrl values onk
parameter. The graphic presents the mean and the standard
deviation values of 30-40 sample runs for the goal config-
uration given in Figure 3 and starting from random initial
configurations. It is observed that the general trend ofnrl
values agree with those presented in [6] and decreases with
the increasingk parameter.

This result can be attributed to these facts:
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1) For smallk values, in the constructed potential function,
the term for obstacle avoidance dominates. The robots
attempt to increase their proximity to nearby robots as
much as possible. Consequently, the paths taken by the
robots get longer. Still, the maximum meannrl value
is 1.68 whenk = 20. Furthermore, the moving task
is not accomplished fork values smaller than 20 in
the simulations starting from some initial configurations.
This fact is expected since there is a lower bound onk
for convergence to the goal positions.

2) For largek values, the robots are concerned with point-
ing towards their goal positions rather than avoiding each
other. In this case, a robot may try to pass through the
spaces between the other robots which are only 1-2 cm
larger than its diameter. Therefore, the paths taken by
the robots become shorter.

Fig. 5. Array-like formations of increasing tightness: a)tight = 0.504, b)
tight = 0.538, c) tight = 0.569, d) tight = 0.611.

B. Array-like Formations

We next study a problem involving ten robots and four
different randomly chosen goal configurations of array-like
formations with increasing tightness as shown in Figure 5. The
variation ofnrl with respect to goal tightness is as shown in
Figure 6. Again, it is observed that with increased tightness,
there is a tendency for the path lengths traveled by the robots
to increase as well. In this simulation, we then consider the
tightest goal and assume that sensor measurements are subject
to noise14. The noisy state observationsb̂i are generated as

b̂i = bi + ηs

where ηs represents the position measurement noise. It is
assumed to be Gaussianηs ∼ N(0,Σs) where the covariance
Σs are known. In our simulations, different noise levels are

14With a strict, smooth (essentially) global Lyapunov function in place,
standard results immediately yield local (in this setting: away from interior
saddles and boundary) persistence: e.g., small sensor or model noise results
in controllably small errors [67], [62], [63], or alternatively, for statistical
disturbance models, integral formulations yield analogous persistence results
[61]. Of course, these standard arguments are generally veryconservative,
and it is of interest to see how well such formal disturbance immunity
properties translate practically in particular instances. Note that we we have
not addressed formally the global version of this question (e.g., just how
”close” one can come to the interior saddles or obstacles while maintaining
guarantees), but these numerical results give the reassuring suggestion that
the controller remains reasonably robust relative to small disturbances over
large volumes in the freespace, including regions close to the boundary.

Fig. 6. Normalized robot path length vs. workspace tightnessin array-like
formations.

Fig. 7. Normalized robot path length vs. noiseσ in array-like formations.

considered: Low(σ = 0.1), moderate (σ = 0.5) and high
(σ = 1). Figure 7 showsnrl vs σ– where it is observed
that althoughnrl increases dramatically, the tasks still can
be completed. However, it should be noted that with higher
levels of noise, the probability of collisions between the robots
increase as expected since there is a discrepancy between
where each robot is actually and where it thinks it is. Let
us note that in this case, the performance of robots can be
improved by resorting to state estimation methods as has been
shown in a different, but related task of parts’ moving [68].

Low Packedness − R20 Medium Packedness − R20 High Packedness − R20

Low Packedness − R30

Medium Packedness − R30 High Packedness − R30

Low Packedness − R40 Medium Packedness − R40 Low Packedness − R40

Fig. 8. Random goal positions for varying packedness (low, medium, high)
and for varying population (20,30,40) robot teams.
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C. Random Goal Positions

Finally, we consider randomly positioned goal locations of
varying tightness for robot populations of 20, 30 and 40 as seen
in Fig. 8. The variation ofnrl with respect to the number of
robots is as given in Fig. 9 where the results are average values
for 20 runs with random initial positions. It is observed that
increase in the number of robots does not affectnrl much.
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Fig. 9. Normalized robot path length vs. number of robots in random goal
positions.

Finally, despite a large number of numerical experiments
with goals, g ∈ F that violate Assumptions 1) and 2) of
Section II-C conditions we have not been able to find goal
configurations that are not attainable, bolstering our strong
sense that these assumptions, while convenient to our proof,
are pessimistically conservative and not necessary for the
desired result. Numerous successful simulations run on very
”tight” goal configurations certainly belie their difficulty and
we suspect that only very specific goal ”shapes” may give
trouble. Provided thatk is set high enough and numerical
overflow/underflow problems are eliminated, the goals have
always proven to be attainable. However, even in the worst
case, if some goals ”tight” enough to violate Assumptions
1) and 2) do not yield a successful navigation function, our
construction (4) gives rise to safe (guaranteed no collisions)
non-degenerate gradient systems which have only isolated
point attractors. Hence ”blocked” initial conditions would
reach unacceptable equilibrium positions rather than exhibiting
oscillatory (some more exotic, undetectable) behavior.

V. CONCLUSION

This paper extends the navigation function methodology
[7] to the coordinated navigation of independent disk-shaped
robots moving in a disk-shaped planar workspace as first
proposed over two decades ago [6]. Intuitively, the source of
difficulty that characterizes this problem arises because each
robot becomes a dynamic obstacle for the remaining robots.
Since this is a real time dynamical systems based planner,
there can be no a priori knowledge of robots’ trajectories.
However, by making assumptions i) - iv) in Section I-C,
we adopt the framework of encoding complete information
about the goal, dynamic obstacles and workspace boundary.
The main contribution is to establish that our proposed con-
struction is indeed an essential navigation function - namely
it satisfies the properties 1) - 4) listed in Section I-D. The
analysis yields closed-form expressions that depend on the
goal configuration and thek parameter of this construction.
First, lower bounds constrain the allowable goal proximityof
among robot pairs as well as to the workspace boundary to
be “reasonable”. Next, suitable parameter values are found

sufficient to ensure the construction indeed holds the required
properties. As a consequence of its defining properties, the
gradient field resulting from an essential navigation function
yields a flow guaranteed to bring almost every initial condition
in the connected component to the goal with no collision
along the way. The recourse to an online feedback based
planner lends robustness against the unanticipated changes in
workspace configuration (state stability) and inevitable sensor
and actuator inaccuracies (structural stability). Even ifdisk-
shaped robots treated here constitute a very small portion of
the general coordinated navigation problem of arbitrary robots
in arbitrary workspaces, we expect that this construction will
advance the design of artificial potential functions for scenarios
that are progressively more realistic respecting geometry,
actuation, sensing and distributed information.
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APPENDIX

The following list presents the most commonly used the
definitions in the paper where the third column indicates the
place of first introduction.

Symbol Definition Section

p ⊂ Z
+ The number of robots II-A

P = {1, . . . , p} Robot index set II-A
bi ∈ R

2 Center of roboti II-A
ρi ∈ R

+ Radius of roboti II-A
gi ∈ R

2 Goal of roboti II-A

b ∈ R
2p 4

=
∑

i∈P bi ⊗ ei II-A

g ∈ R
2p 4

=
∑

i∈P gi ⊗ ei II-A

ρij
4
= ρi + ρj II-A

Q
4
= {(i, j) |i, j ∈ P, i < j } II-A

Q0 4
= Q ∪ {(0, i) |∀i ∈ P } II-A

In n dimensional identity matrix II-A

cij
4
= ei − ej II-A

dij ∈ R
2 4

= bi − bj =
(
I2 ⊗ cTij

)
b II-A

δij
4
= ‖dij‖

gij ∈ R
2 4

= gi − gj =
(
I2 ⊗ cTij

)
g II-A

γ(b)
4
= (b− g)T (b− g) II-B
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βij(b)
4
= δ2ij − ρ2ij II-B

β0i(b)
4
= ρ20i − ‖bi‖2 II-B

β̄ln
4
=

∏(i,j) 6=(l,n)

(i,j)∈Q0 βij II-B

β(b)
4
=

∏

(i,j)∈Q0 βij(b) II-B

ϕ̂
4
= γk

β
II-B

∐

i∈S(b) Pi(b) A partition defined onP as a
function of b

II-C

Cψ The set of critical points ofψ III-B

L0i
4
= − 1√

β0i

(
I2 ⊗ eTi

)
III-D

Lij
4
= 1√

βij

(
I2 ⊗ cTij

)
III-D

L0 ∈ R
2p ×R

2p 4
=

[
LT01 . . . L

T
0p

]
III-D

L1 ∈ R
2p ×R

2q 4
=

[
LT12 . . . L

T
p−1,p

]
.

L ∈ R
2p×R2(p+q) 4

= [L0L1] III-D

o ∈ R
q+p 4

=



−1 . . . − 1
︸ ︷︷ ︸

p

, 1 . . . 1
︸ ︷︷ ︸

q





T

III-D
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