
University of Pennsylvania
ScholarlyCommons

Departmental Papers (ESE) Department of Electrical & Systems Engineering

1-1-1985

The Controllability of Planar Bilinear Systems
Daniel E. Koditschek
University of Pennsylvania, kod@seas.upenn.edu

Kumpati S. Narendra
Yale University

Copyright 1985 IEEE. Reprinted from IEEE Transactions on Automatic Control, Volume AC-30, Issue 1, January 1985, pages 87-89.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the
University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by
writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

NOTE: At the time of publication, the author Daniel Koditschek was affiliated with Yale University. Currently, he is a faculty member of the School of
Engineering at the University of Pennsylvania.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/ese_papers/337
For more information, please contact repository@pobox.upenn.edu.

http://repository.upenn.edu
http://repository.upenn.edu/ese_papers
http://repository.upenn.edu/ese
http://repository.upenn.edu/ese_papers/337
mailto:repository@pobox.upenn.edu


IEEE TRANSACTIONS ON AUTOMATIC CONTROL. VOL. AC-30. NO. I ,  JANUARY 1985 87 

ACKNOWLEDGMENT where x E R2 - (0}, and the general bilinear system 

The  author is grateful to Prof. B. R. Barmish and the anonymous i = A x + u ( D x + b )  (2) 

where x E R2.  Let u be a piecewise continuous scalar function with 
referees for their valuable comments on an earlier  draft of this paper. 

REFERENCES 

R. W. Brockett and M. D. MesaroviC. “The reproducibility of multivariable 
systems,” J. Math.  Anal.  Appl.. vol. I I ,  pp. 548-563, 1965. 
A. J .  Preston and A. R. Pagan, The Theory of Economic  Policy. Cambridge: 
Cambridge University Press, 1982. 
M. Aoki, “On a generalization of Tinbergen’s condition in the theory of policy to 
dynamic models,” Rev.  Econ. Studies, vol. 42, pp. 293-296, 1975. 
H.-W. Wohltrnann, “Complete, perfect, and maximal controllability of discrete 
economic systems.” Zeitschrift fur Nationalokonomie, vol. 41, pp. 39-58, 
1981. 
M. Aoki and  M. Canzoneri, “Sufficient conditions for control of target variables 
and assignment of instruments in dynamic macroeconomic models,” Int.  Econ. 
Rev., vol.  20, pp. 605-616, 1979. 
R. W. Bmckett. Finite Dimensional LinenrSystems. Neu, York: Wiley. 1970. 
M. K. Sain and J.  L. Massey, “Invertibility of linear time-invariant dynamical 

V. Lovass-Nagy, R. J. Miller, and D. L. Powers, “On output control in the 
systems,’‘ IEEE Trans. Automat.  Conrr., vol. AC-14. pp. 141-149. 1969. 

servomechanism sense,” In[. J .  Contr., vol. 24. pp. 435-410, 1976. 
V. Lovass-Nagy and D. L. Powers, “On output control problems containing input 
derivatives,” in Proc.  Int.  Symp.  Operator  Theory  Networks and Syst., 

V. Lovass-Nagy, R. J. Miller, and D. L. Powers, “Funher results on output 
Montreal, Aug. 12-14, 1975, vol. I ,  pp. 118-121. 

control in the servomechanism sense,” Int. J. Contr., vol. 27, pp. 133-138, 
1978. 

Alternatives Multivariable Contr., Chicago, IL, Oct. 13-14, 1977, pp. 363- 
-, “Output control via matrix generalized inverse,” in Proc. Int. Forum 

375. 
-, “Output function control of decentralized linear systems via matrix 
generalized inverses,’‘ in Proc. 1978 IEEE Int.  Symp. Circuits Syst., New 
York, N Y ,  May 17-19, 1978, pp. 612-614. 
-, “An introduction to the application of the simplest matrix-generalii 
inverse in systems science.” IEEE Trans. Circuits Syst. (Special Issue on the 
Mathematical Foundations of System Theory). vol. CAS-25, pp. 7 6 7 7 1 ,  1978. 
H. T. Banks, M. Q. Jacobs, and  C. E. Langenhop, “Characterization of the 
controlled states in W$” of linear hereditary systems,” SJAM J.  Contr., vol. 13, 
pp. 611-649, 1975. 
S .  Kurcyusz and A. W .  Olbrot, “On the closure in Wp of attainable subspace of 

W.  T. Reid, -‘Some elementary properties of proper values and proper vectors of 
linear time  lag systems,” J.  Differential Equations, vol. 24, pp. 29-50, 1977. 

D. G.  Luenberger. Optimization by Vector Space Methods. New York: 
m a t r i x  functions.” SIAM J. Appl.  Math., vol.  18, pp. 259-266, 1970. 

J.  Tinbergen, On the Theory of Economic  Policy. Amsterdam, The Nether- 
Wiley, 1969. 

H.-W. Wohltmann. “A note on Aoki’s conditions for path controllability of 
lands: North-Holland, 1952. 

continuous-time dynamic economic systems,” Rev. Econ. Studies, Vol. 51, pp. 

M. Aoki, Dynamic  Analysk  of  Open Economies. New  York: Academic, 

H.-W. Wohltmann and W. c o m e r ,  “A note on Buiter’s sufficient condition for 
1981. 

perfect output controllability of a rational expectations model,” J. Econ.  Dynam. 
Contr., vol. 6,  pp. 201-205, 1983. 
W. H. Buiter. “Unemployment-inflation trade-offs with rational expectations in an 
open economy,” J. Econ.  Dynam. Contr., vol. I ,  pp. 117-141, 1979. 

343-349, 1984. 

The Controllability of Planar Bilinear Systems 

unconstrained magnitude, a n i  assume A and D to be nonzero. Most 
significantiy, we present succinct necessary and sufficient conditions for 
the complete controllability of both systems. All results are stated in terms 
of algebraic conditions on system parameters which are effectively 
computable. 

Sufficient conditions for controllability of bilinear systems in R” have 
been given by Jurdjevic  and Kupka [5] and Jurdjevic  and Sallet [4], while 
a general approach to  the controllability of linear analytic systems has 
been explored by Hunt [3]. The strength of the results reported here is a 
consequence of insight and algebraic facility which depend heavily upon 
geometric properties  of  the  plane.  The extent to which such problems 
have equally succinct solutions in higher dimensions is not clear. 
However, the techniques and results afforded by such detailed attention in 
this special setting suggest a general approach to systems of higher 
dimension and degree. 

II. PRELIMINARY DISCUSSION 

A few definitions and preliminary results of an algebraic nature will 

Define the skew symmetric matrix 
facilitate the presentation to follow. 

L 

and let x I  P Jx. A close relationship between inner products, 
determinants, and quadratic forms in R2 will be used continually: 

yTx,  =yTJx= [x, yl 

where the last symbol denotes the determinant of  the matrix [x y] . Given 
a matrix A ,  let A, denote its symmetric part,  tr ( A }  denote its trace, and 
A‘ 6 P A  rJ denote its transposed cofactor matrix. Two matrices A and 
D are [ineariy dependent in R2 x if there exists a scalar y such that A = 
yD, and independent otherwise. Given a, b, and c E R2,  the 
relationship 

a + p b = k  

holds for the scalars p and h if and only if 

As an immediate consequence there follows the very useful relation 

[A + @ ( X ) D ] X  = X(x)x (3) 

when p(x) 2 - [Ax, X I  /[DX, x(  and h(x) & - (Ax, Dxl/(Dx, x(  are 
well defined. 

It will be helpful to introduce some algebraic results concerning 
homogeneous quadratic  transformations of the plane, 

DANIEL E. KODITSCHEK AM) KUMPATI S. NARENDFU x TGx 
Q(x) I x ~ ~ x  I . 

I. INTRODUCTION 
L _I 

The notion of a singular linear transformation may be extended to 

This note will summarize  some recent results concerning the controlla- purposes of this paper, if its constituent forms 
arbitrary homogeneous polyilomial transformations ofthe plane [6]. For 

have a common linear or quadratic factor-that is, if there exist a c E R2 bility of planar bilinear systems. We consider the homogeneous system 

X=Ax+uDx (1) and B E R Z x 2  such that 

Manuscript received November 8, 1982; revised April 3, 1984. This work  was 
Q(x) = c ‘XBX 

Engineering. Yale Universiry, New Haven, CT 06520. 
. .  

dently, none are injective). 
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Lemma 2-I: A homogeneous  quadratic  transformation  of  the 
plane  Q, is surjective if and  only if ldQxl = IGx, Hxl is a sign 
definite  quadratic form. ‘ 

Proof: See [6].  
This algebraic criterion for surjectivity has a useful geometric 

Lemma 2-2: The quadratic  transformation  of  the  plane 
interpretation. 

r 

has a sign definite  derivative,  dQx, if and  only if 
i) both G and H are indefinite; 
ii) their  distinct  zero  lines  alternate  around the plane-i.e., xTGx 

= 0 has  a  solution both  in  the cone  defined  by xTHx > 0 and xrHx 
< 0. 

Proof: See [6]. 

m. MAIN RESULTS 

We will use the ideas from the previous section to characterize the 
controllability behavior of the homogeneous and general bilinear system 
in R2.  The behavior of interest is addressed by the following definitions. 
Given a control system, say that apoint y is reachable from a point x if 
there exists an admissible control u and a finite time T, such that the 
trajectory with initial condition x of the vector field specified by u passes 
through y at time T. Denote the  set of points reachable from x as @(x). If 
@(x) is equal to  the  state space for every point, x ,  in the state space, then 
the system is completely  controllable. If @(x) is open, then the system is 
said to be accessible  at x. If the system is accessible at every point, then 
the system is completely accessible or has the accessibility property. 

Accessibility is a necessary condition for complete controllability [2]. 
but it is certainly not sufficient, as has been long known. It has been 
shown [9] that the accessibility property obtains when the lie algebra 
generated by the family of vector fields of a control system parametrized 
by control input values spans the tangent space at every point of the state 
space. Pursuing the computational aspects of this result for bilinear 
systems amounts to asking which matrix pairs in R””“ generate transitive 
lie algebras. These have been completely classified by Boothby [l], and 
that classification becomes simple in R 2 x 2 .  

Proposition 3-1 [7]: The lie  algebra  generated by  two linearly 
independent  mutrices  in R 2 x 2  spans R2 at every  point of R2 - (0) i f  
and  only if the matrices do not have  a real eigenvector in common. 

This condition is quite simply expressed in t e r n  of the singularity of an 
appropriate quadratic transformation. 

Corollary 3-1: The homogeneous bilinear system (1) fails to have 
the  accessibility  property if and only if the quadratic  transformation 
of  the  plane 

r 

is singular. 
The common factor is a quadratic form if and only if A and D are 

linearly dependent, and  linear form(s) if and only if A and D share an 
eigenvector(s). We now proceed to characterize the controllability of 
planar bilinear systems. 

The state space of system ( l ) ,  R2 - {O}, is not simply connected; thus, 
complete controllability must entail an ability to transfer any  ray to any 
other ray of R 2 .  If, in addition, radial control-the ability to move toward 
or away from  the  origin  on a given ray-is available, then it is reasonable 
to expect that complete controllability holds. 

Proposition 3-2: Let A and D be  linearly independent.  If  there exist 
real numbers, p, f o r  which A + p D  has  nonreal eigenvalues  and 
eigenvalues  with both  positive  and  negative real parts,  then  systems 
(2) and (I) are both completely  controllable. 

’ Thanks are  due Prof. C. Bymes for a discussion leading  to  this  statement. 

Pro03 Suppose it is desired to reach x2 from x]. for any two 
arbitrary points in RZ. Let Mo 2 A + @ have complex conjugate 
eigenvalues, and consider solutions to the linear homogeneous time 
invariant system (2) that obtains when U(T)  = h. For some finite integers 
n and m ,  either a curve of n fonvard “logarithmic spirals” through x], 

(where w is the “natural frequency” of the system). encircles x2, or of m 
backward spirals, 

{e-”O’x21rE[~, rnw/2z]} ,  

through x>, encircles xI. Considering the former  case, choose a value pl 
for which M I  A + plD has an eigenvalue with negative real part. 
Since the backward trajectory e-”lrx2 connects x2 to the point at infinity, 
and cannot run “parallel” to the encircling spiral, it must intersect that 
spiral at a finite point. In the latter case choose a value p, for which MI 
has an eigenvalue with positive real part, and the fonvard trajectory 
through XI of the linear homogeneous time invariant system resulting from 
u(r) = F~ must intersect the spiral for the same reason. 0 

In fact, as intuition might suggest, the conditions of Proposition 3-2 are 
necessary as well for the complete controllability of system ( I ) .  To show 
this, we require an algebraic characterization of when the conditions of 
that proposition fail. 

Simple algebra demonstrates that A + pD fails to  have eigenvalues in 
both the positive and negative half of the complex plane if and only if D 
has pure imaginary eigenvalues, and [D7JA], is sign definite or 
semidefinite [7]. In such a situation the integral curves of a linear time 
invariant differential equation defined by D are ellipses containing 
periodic solutions. It  is shown in [7] that the condition on [DTJA], implies 
that either the interior of each such ellipse or the complement of i t s  closure 
is a positive invariant set;  hence, the system is  not completely controlla- 
ble. 

The necessity that A + p D  have complex conjugate eigenvalues 
follows readily after a little more algebra. Recall that (3) expresses the 
range over which A + pD has real eigenvalues by considering p to be a 
scalar valued function on R 2 .  It follows that A + pD has no nonreal 
eigenvalues if and only if p is surjective, or, if and only if the quadratic 
map 

is sujective or is singular due to a common linear factor. In the singular 
case the bilinear system is “degenerate” in a sense made precise above. 
Otherwise, we appeal to  the geometric description of nonsurjective, 
nonsingular quadratic transformations given by Lemma 2-2. 

Proposilion 3-3: Zf A + p D  has no complex  conjugate eigenvalues 
for  any real p, then  system (I) is not completely  controllable. 

Pro03 Defining G 2 [JA], and H 2 [JD],, Lemma 2-2 indicates 
that A + p D  fails to have any complex conjugate eigenvalues only in the 
case that A and D have two distinct eigenvectors which “interweave” on 
the plane. On  the boundary of a cone defined by the eigenvectors of D, 
control may be affected in only a radial direction. Either this cone or the 
complement of its closure contains the eigenvector of A whose eigenvalue 
has the greater (algebraic) real value. The resultant of Ax with DX on its 
boundary lines must always be oriented toward the interior of that cone, 
which must therefore be a positive invariant set. 0. 

Taken together, these results imply that the converse of Proposition 3-2 
holds for  the homogeneous system ( I ) .  

Theorem I: System (I) is completely  controllable on R2 - (0) i f  
and  only if A and D are  linearly independent, and A + pD has 

llnearly  Independent. If A and D are linearly  dependent.  with complex conjugate 
2 MI yields a different  linear system from M,  under the hypothesis that A and D are 

eigenvalues. then we require b # 0 to emure two different  constant values of u yield 
trajectories  which  intersect at a finite  point: cf. Theorem 2. 
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nonreal eigenvalues and eigenvalues with both  positive and negative 
real parts. 

Necessary conditions for complete controllability of the general 
bilinear system (2) are very close to the sufficient conditions given in 
Proposition 3-2 as well. In the sequel, when referring  to (2), assume that b 
is nonzero. The nonzero additive control term does not relieve the 
necessity of reaching every ray on the plane using the homogeneous 
portion of the field alone, as shown by the following. 

Proposition 3-4: If there is no real value p for  which A + ,uD has 
complex conjugate eigenvalues, then system (2) ~ not completely 
controllable. 

Proof: If D is nonsingular, then system (2) may  be written in the 
form 

j = ( A + ~ D ) y - k  (4) 

where y P x + D - ’ b  and k g AD-’b.  As in Proposition 3-3, on the 
boundary of a cone defined by the eigenvectors of D through the origin of 
the translated plane, the vector sum of A y  with Dy is oriented toward the 
interior of that cone. Since k is a constant, it cannot be oriented toward the 
exterior of this cone in one half plane without having an interior 
orientation with respect to  the portion of  the  cone in the other half plane, 
which must, therefore, be a positive invariant set. Otherwise, k is an 
eigenvector of D, and is tangential to the boundary of the cone, which is 
positive invariant in its entirety. 

If D is singular? then D = deTJT for  some d, e E RZ. If d is an 
eigenvector of A ,  then an entire half-plane is positive invariant. If d is in 
(b) ,  then an argument identical to the previous paragraph may be given to 
show uncontrollability. Otherwise, an affine line can be shown to define a 
positive invariant half-plane [8]. 0 

However,  the guarantee of an additive control term does afford a slight 
relaxation of the necessary conditions in Theorem 1.  If the conditions of 
Theorem 1 hold with the exception that A + pD has eigenvalues 
exclusively in one half of the complex plane, then (2) is still completely 
controllable provided that [DTJA], is semidefinite. This may be seen, as 
shown in [ 8 ] ,  by noting that the portion of the field due  to Ax is tangential 
to the ellipses defined by trajectories of the vector field DX on the zero 
eigenvector of [DTJA],. On this line,  the additive term ub may be used to 
drive  the  state away or toward the origin. 

If A and D are linearly dependent with real eigenvalues, then 
Proposition 3-4 precludes the possibility of complete controllability of (2). 
On the other hand, if A = 6D has complex conjugate eigenvalues, then 
the proof in Proposition 3-2 applies here (see footnote in that proof), and 
the system is completely controllable. These considerations permit a 
statement of the second major result in this note. 

Theorem 2: System (2) is  completely controllable if and  only if 
either 

i) A and D satisfy  the  conditions for  complete controllability of 
system (I);  or 

ii) fo r  all real values, p ,  A f pD has eigenvalues exclusively in 
one half of the complex  plane but [DTJA], is semidefinite; or 

iii) A and D are linearly dependent matrices with nonreal 
eigenvalues. 
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A New  Algorithm for the  Design of Multifunctional 
Observers 

CHIA-CHI TSUI 

Abstract-This  paper  presents a general algorithm for low-order 
multifunctional observer  design  with  arbitrary eigenvalues. The  feature of 
this  algorithm is that it can  generate a functional observer with different 
orders  which  are no larger  but  usually  much less than m(v - l), where rn 
is the  number of functionals and Y is the  observability  index of (A,  C). 
Since the order  needed for the observer  varies  with  the  Punctionals  besides 
other system  parameters, this design  approach should be  practical.  The 
resulting  observer  system  matrix  is in its Jordan form. The  key step of this 
algorithm is the generation of the basis for the transformation matrix 
which  relates the system and observer states. The computation of this 
algorithm is quite  reliable. It is based on the  block  observable  lower 
Hessenberg form of (A,  C), and  all its initial  and  major computation 
involves only the orthogonal operations. 

I. INTRODUCTION 

This paper deals with the problem of designing an observer for 
estimating several linear functions of the state variables. This is a very 
practical problem since  the state feedback is a linear function of the sptes, 
say Kx(t). Because the estimation of a function of the states does not 
necessarily require the estimation of all states, the  order  of a functional 
observer can be significantly less than that of a state observer [41. 

The necessary and sufficient condition for the functional observer, as 
proposed by Fortman et al. [7l and restated by Kimura [5]  from the 
geometrical point of  view, is that the  observer state z(t)  must approach a 
linear transformation of the states T d t )  and that K must be within the 
union of range spaces of T and C. In other words, it is required that the 
equations 

TA -FT= GC 

N= TB 

and 

be satisfied if the  observer equation is defined as 
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