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Abstract We address the synthesis of controllers for groups of multi-robot systems
that enable them to create desired labelled formations and maintain those formations
while travelling through an environment with obstacles, with constraints on commu-
nication. We assume that individuals in a group are capable of close coordination
via high bandwidth communication, but coordination across groups must be limited
because communication links are either sporadic or more expensive. We describe a
method for developing feedback controllers that is entirely automatic, and provably
correct by construction. We provide a framework with which navigation of multiple
groups in environments with obstacles is possible. Our framework enables scaling
to many groups of robots. While our paper mainly addresses groups of planar robots
in R2, the basic ideas are extensible to R3.

1 Introduction
There are many types of tasks which require multiple groups working on subtasks
concurrently. For example, building an automobile requires many subassemblies
which are built in parallel for efficiency. When building a house, each wall of the
wooden frame is built separately, then fastened together. These kinds of tasks require
coordination of groups on different levels: we want each group to work closely to
accomplish subtasks, but we also want them to coordinate on the inter-group level
to ensure that they accomplish the higher-level task.

These types of tasks often occur in cluttered environments, where it may be costly
(either in time, energy, or other currency) to allow groups to communicate large
amounts of information to other groups. Exchanging information with unnecessary
detail results in loss of time and energy, thereby increasing cost. It is imperative to
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exchange information between groups on a limited basis, while ensuring that ulti-
mately the task is accomplished. We address the problem of synthesizing controllers
for labelled robots working in multiple groups in the same workspace, merging and
splitting to form a group of desired size and formation shape for a specific task. We
will assume that individuals in a group are capable of close coordination via high
bandwidth communication but coordination across groups has to be limited because
communication links are either sporadic or more expensive.

The configuration space for an N robot system is the Cartesian product of each
robot’s configuration space, C = C1×C2× ·· ·×CN . Planning in a space of such
large dimension causes computational as well as combinatorial problems which are
challenging to address. To decrease complexity, constraints on desired inter-robot
distances or relative positions are typically added, reducing dimensionality. Instead,
we propose an approach which allows more flexibility. Our goal is to construct
controllers similar to navigation functions, which have desirable properties such
as safety and convergence guarantees [15], while allowing for larger group sizes.

1.1 Related Work
Similar problems have been studied in the mobile robotics literature both in large
and small groups of robots. In small sized groups we can provide guarantees and
formal proofs that specific formations can be achieved and maintained, even in the
presence of obstacles [2,4,5,14]. As the groups grow, however, formal proofs [4] or
controller synthesis [2, 15] become prohibitively complex.

In large groups, one cannot feasibly synthesize a specialized controller for each
robot, thus achieving specific, labelled formations is not addressed. Some works
use abstractions to control an entire group [3, 12, 19]; in this case, navigation and
obstacle avoidance is at the abstraction level, decreasing computation significantly.
However, we forfeit control over the network topology, which can change as the
group moves. In [3], safety is not guaranteed: robots can collide and escape from
the abstraction. Some limitations of [3] are addressed in [12], which still does not
enable us to specify formations in the sense of exact shape and topology. A partic-
ular formation can be sepcified in [19], but the number of moments which must be
supplied to specify a particular formation increases with the number of robots, and
the method is not entirely automatic.

Flocking or schooling strategies also enable control of large groups of robots with
relatively little computation [18]. These strategies stabilize the entire group’s veloc-
ity to a single velocity. However, like the above large scale controllers, they lack
the capability of specifying particular formations; the final shape of the formation
depends on the initial conditions, and cannot be controlled directly.

In [7], large groups of robots are stabilized to shapes. However, the presence
of obstacles in the workspace could cause local minima or deadlock. Additionally,
there is no ordering to the robots on the shape; this is a function of initial conditions.

With sizes between small and large groups, one can provide some guarantees
while taking advantage of some reduction in complexity. In [13], proofs are provided
for creating and maintaining formations, but collision avoidance is guaranteed only
in most cases, requiring careful parameter choices. In [10], undesirable local minima
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Fig. 1 The levels of hier-
archy in our controller. We
address group navigation at
the team level, decoupling it
from the formation problem.
This allows us to limit the
complexity of the problem.

Group

Inter-group
Rendezvous, 

Connecting groups

Intra-group 

Discrete

Discrete Formation Control

(Problem 2)

Intra-group

Continuous

Continuous Formation Control

(Problem 1)

Team

can occur if sufficient virtual leaders are not added. Additionally, the authors do not
provide a stable way to switch between formations. In [17] a method is proposed for
creating a formation and maintaining it during motion. However, no guarantees are
made in the presence of obstacles, and formations must be unlabelled.

1.2 Proposed Approach
The method we propose is for large but finite-sized groups with labels; it provides
global guarantees on shapes, communication topology, and relative positions of in-
dividual robots. We define a group of agents as a collection of agents which work
simultaneously to complete a single task. Two or more groups act in a team to com-
plete a task which requires completing multiple parallel subtasks [1]. Our contri-
bution is twofold. First, we provide a framework for synthesizing controllers for
multiple groups of robots in environments with obstacles with communication con-
straints. Second, we provide a method for automatically reconfiguring groups of
robots into desired labelled formation shapes without local minima.

A key feature in our approach is a hierarchical decomposition of the problem of
constructing feedback controllers (Fig. 1). This reduces the complexity of synthesiz-
ing individual robot controllers that meet such specifications as collision avoidance
and shapes of formations. We design multi-group navigation controllers at the team
level, and the control input for individual robots is derived by summing the inputs
from the feedback controller for the robot within its group and the feedback con-
troller for the group. The multi-group navigation problem is equivalent to the multi-
robot navigation problem, so we focus in this paper on merging groups of robots into
groups of arbitrary numbers of robots, and constructing desired formation shapes.

Our approach is as follows. First, the groups which are involved in the merge
convene at some negotiated rendezvous area. We abstract the groups by enclosing
them in deformable rectangles, centered at the group centroid and sized appropri-
ately (we address size in Section 4). When the groups are within a pre-specified
merging distance, they merge into one group and begin reconfiguration, ending at
the desired formation shape. In the case that there are more robots than required for
the task assignment, the extra robots split into a separate group. Once the desired
formation is achieved, the newly-formed group(s) navigates toward the task.

In Section 2 we formulate the problem. In Section 3 we develop controllers for
reconfiguration and formation maintenance. In Section 4 we describe and develop
controllers on the abstraction. In Section 5 we describe the process of merging and
splitting groups, and follow in Section 6 with MATLAB simulation results. We dis-
cuss complexity in Section 7, and conclude in Section 8.
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2 Problem Formulation
Consider a team with multiple groups, G i, i = {1, . . . ,m}, of Ni kinematic agents
V i

A = {ai
j| j = 1, · · · ,Ni}. A group consists of a small number of robots, which can

communicate with each other at high bandwidth, enabling centralization. While
communication is facilitated by having a complete graph, it is not necessary since
agents can exchange information about their neighbors. The team must form a group
of Ng ≤∑

m
i=1 Ni agents to accomplish a large task. Each agent has the configuration

or state xi
j ∈ R2 with the dynamics:

ẋi
j =U i

j, xi
j ∈ X i

j ⊂ R2, j = 1, . . . ,Ni. (1)

Within groups, communication of state information occurs very frequently, so
that control is centralized over the entire group. Communication across teams oc-
curs less frequently. Long-range communication occurs rarely if at all, requiring
decentralized control.

We use an abstraction on groups of robots to reduce the computational complex-
ity of the problem.

Definition 1. An abstraction of a group of robots is a surjection

S : C i
T → B, S(xi) = b (2)

so that the dimension of B is not dependent on the number of robots Ni.

The abstraction models the extent of the formation, which we call the boundary,
while the controllers on the robot level ensure that the boundary is satisfied. There-
fore, a group of robots can reconfigure from one formation to another knowing only
the limits of the abstraction, decoupling the agents from the physical space. The
specific abstraction we use is discussed in detail in Section 4.

Figure 2 is a graphical representation of the hierarchichal structure of our ap-
proach. At the top level, groups interact with limited knowledge of other groups. At
the middle level, there is interaction between individual robots in order to maintain
the formation. At the lowest level, individual robots execute the continuous con-
troller. In the examples we present, we assume that there are no obstacles within the
group boundary. However, should an obstacle appear within a group boundary, the
group can split appropriately, then rejoin in a location without obstacles.

The input to each agent is the sum

U i
j = ui

j +ui
b (3)

where ui
j is the formation shape controller (Section 3), and ui

b ∈R2 is the abstraction
controller (Section 4). As shown in Fig. 2, the two control inputs drive dynamics at
two different time scales. Group dynamics (motion within a group) must evolve on
a much faster time scale than the team dynamics (motion of the group). In other
words, time required for robots to converge to a target formation within the group is
much smaller than the motion of the group. This time-scale separation is necessary
to guarantee convergence at all levels.

The number of agents required for the task, the goal formation shape, and the en-
vironment are known to all agents. We assume each agent is capable of synthesizing
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Fig. 2 Hierarchical structure.
At the top level, groups inter-
act with limited knowledge
about other groups. Within
each group, formations must
be maintained. At the low-
est level, individual robots
implement the continuous
controllers. As the number of
robots increases, the spatial
resolution required for plan-
ning and control decreases,
and the time scale increases
so that dynamics get faster.
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controllers (both for group navigation and reconfiguration), its group’s abstraction,
and whether certain criteria are satisfied (such merging criteria). This information
propagates through the group rapidly through explicit communication, therefore we
are not concerned with which agent is responsible for these calculations. Agents
observe relative state of their neighbors and exchange this information with other
neighbors to construct a complete group configuration. Groups are capable of long-
range communication in short bursts to determine a rendezvous point. Once the
rendezvous point is determined, they no longer use long-range communication.

3 Formation Shape Controllers
In this section we develop the formation shape controllers, which both reconfigure
the robots and maintain the formation once it is achieved.

Let the set of all agents be VA ≡ V 1
A ∪V 2

A ∪ ·· · ∪V m
A . (Hereafter, for simplicity,

where we describe a property for ∪m
i=1∪Ni

j=1 ai
j, we will drop the superscript i.) Con-

nectivity between all agents VA is modeled by a robot formation graph. Agents must
maintain proximity constraints, which are represented by edges on the robot forma-
tion graph and the collision graph. Recall that a graph is a pair of sets G=(V,E),
where V ={v1, ...,vn} is the set of vertices or nodes and E⊆ [V ]2 is the set of edges
on the graph. Pairs of vertices for which (vi,v j)∈E are called adjacent. A graph in
which all pairs of vertices are adjacent is called a complete graph.

Definition 2. A robot formation graph is a graph Gρ

N = (VA,EN) where EN is the set
of edges which denote pairs of agents which directly communicate state informa-
tion, and ρ is a metric for determining inter-agent distances. To enable communica-
tion, pairs (a j,ak) ∈ EN must be within a maximum distance |x j− xk|ρ ≤ δmax. The
constraint can be written

ν
ρ(x j,xk)≤ 0 ∀(x j,x j) ∈ EN . (4)

We call pairs of agents which are adjacent on this graph neighbors.

Definition 3. The collision graph on a group Gi of agents is a static graph Gi,ρ
L =

(V i
A,E

i
L) where E i

L is the set of all pairs of agents in V i
A which cannot occupy the same

coordinates simultaneously. Pairs (ai
j,a

i
k) ∈ E i

L must maintain a nonzero minimum
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(a) (b) (c) (d) (e)

Fig. 3: The annulus in relative space of a pair of robots (a) and a few approximations
(b)-(e). The dark blue center corresponds to the collision constraint, while the light
green area depicts allowable configurations. Note that in panels (b)-(e) the dark blue
polygons are overapproximations of the unsafe region (encircled in white), while
the large green polygons underapproximate the safe region (shaded blue circle).
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Fig. 4: Proximity constraints for pairs of robots. Shaded area indicates illegal con-
figurations. (a) Neighbors with collision constraints. (b) Neighbors with no collision
constraint. (c) Collision constraint on non-neighbors.

distance |xi
j− xi

k|ρ ≥ δmin. The constraint can be written

λ
i,ρ(xi

j,x
i
k)≥ 0 ∀(xi

j,x
i
k) ∈ E i

L. (5)

For homogeneous agents occupying the same space, this graph will be complete.

The proximity constraints specified by the robot formation graph Gρ

N = (VA,EN)

and the collision graph Gi,ρ
L = (V i

A,E
i
L) are realized using metric ρ . For pairs of

agents (ai
j,a

i
k) ∈ EN ∩ E i

L the intersection of these constraints corresponds to an
annulus in the relative space of two agents. One can choose any underestimation
of the annulus, with a tessellation consisting of convex regions, and call this the
metric ρ . A few options are shown in Fig. 3. Our metric of choice is the infinity
norm, in Fig. 3e since it has fewer regions, decreasing complexity and allowing
more flexibility in the formation. Hence, the proximity constraints become a square
annulus in the relative space of two agents as in Fig. 4a (the shaded region denotes
illegal configurations). Pairs (ai

j,a
i
k) ∈ EN −E i

L have only the maximum distance
constraint (Fig. 4b), and pairs (ai,a j) ∈ EL−EN have infinite annuli (Fig. 4c).

To accomplish the task, a specific formation shape is required of the new group.
The formation shape can be provided in exact, continuous form, or approximate,
discrete form. In defining the discrete robot formation shape, we desire a non-
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Fig. 5: The shape descriptors (regions) for discrete robot formation shapes. (a) For
pair (ai

j,a
i
k) the shape descriptor represents the location of ai

k with respect to ai
j.

Here, the region is 1. (b) We can use this discrete system to build an adjacency graph.
(c) Overlapping proximity regions of a group of three robots. Dashed (dotted) lines
correspond to boundaries of proximity regions for ai

1 (ai
2). Letters A-E correspond

to possible polytopes through which ai
3 would pass to get to F i

d = (1,1,1).

overlapping partition of the square annulus whose union is the entire region. The
description must also contain information about connectivity.

Definition 4. A robot formation shape F of N robots describes the relative loca-
tions of the set of robots, specified exactly using continuous shape variables. F is a(

N
2

)
-tuple of vectors F = {r(1,2),r(1,3), . . . ,r(N−1,N)} where r( j,k) = xk− x j. We use

a superscript (F i) to refer to the subset corresponding to group G i.

Definition 5. The discrete robot formation shape Fd of N robots describes approx-
imate relative locations of the set of robots using discrete shape descriptors. The
shape descriptors are integers corresponding to regions of the tessellation of the an-
nulus. Fd is a

(
N
2

)
-tuple of these integers, Fd = { f(1,2), f(1,3), . . . , f(N−1,N)}. For

each pair of robots (a j,ak) j < k, f( j,k) describes the position of ak with respect to
a j, according to Fig. 5a. Regions 1-4 correspond to communication between the pair
(i.e. (a j,ak)∈ EN). Regions 5-8 correspond to no direct communication between the
pair ((a j,ak) 6∈ EN). We use (F i

d) to refer to the subset corresponding to group G i.

An example discrete formation shape for a group of three robots is shown in
Fig. 5c. Here, f i

(1,2) = 1, f i
(1,3) = 2, and f i

(2,3) = 3, so that F i
d = (1,2,3).

To build the space on which we develop the controllers, we combine the proxim-
ity constraints with the configuration spaces of the robots.

3.1 The Task Configuration Space
Definition 6. The configuration space C i

j of an agent ai
j is the set of all transforma-

tions of ai
j. The free space C i, f ree

j of ai
j is the set of all transformations of ai

j which
do not intersect with obstacles in the configuration space.
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In this work, navigation (and therefore obstacles), are dealt with on the abstrac-
tion level. The abstraction constrains the free space of a group so that C i

j 6= C i, f ree
j .

In fact, C i, f ree
j is a local space, whose origin is the center of the abstraction.

Definition 7. The group configuration space is the Cartesian product of the free
spaces of each agent in a group,

C i
all = C i, f ree

1 ×C i, f ree
2 ×·· ·×C i, f ree

Ni

xi = [xi
1, . . . ,x

i
Ni ] ∈ C i

all .
(6)

Thus the configuration of a group G i of Ni agents is described by a single point in
C i

all ⊂ Rd , d = 2Ni.

Definition 8. The task configuration space C i
T for the group G i is the set

C i
T = C i

all ∩L i
ρ ∩Nρ , (7)

L i
ρ ≡{xi|xi ∈ C i

all ,λρ(xi
j,x

i
k)≥ 0 ∀(ai

j,a
i
k) ∈ E i

L},

Nρ ≡{xi|xi ∈ C i
all ,νρ(xi

j,x
i
k)≤ 0 ∀(ai

j,a
i
k) ∈ EN}.

C i
T is a polytopic space in which robots cannot collide or lose communication.

Note that each group’s task configuration space is independent of other groups;
that is, robots in a group rely only on each other’s positions. Thus, reconfigurations
of a group from one formation to another is entirely decoupled from other groups.

Each discrete group formation corresponds to a unique polytope in C i
T . By plan-

ning and synthesizing controllers on C i
T , we drive the robots to the desired formation

and keep them there as the group navigates the space.

Problem 1. For any initial group formation F i
0, consider the system (1) on R2Ni

,
with goal formation F i

g and metric ρ . Find an input function ui : [0,T0]→ U for
any xi

0 ∈F i
0 ⊂ C i

T such that

1. for all time t ∈ [0,T0], xi ∈ C i
T and F i

T0
= F i

g,
2. ẋi

j = ui
j,

3. xi(t) ∈L i
ρ ∩Nρ , ∀t ∈ [0,T0].

3.2 Shape Controllers on C i
T

In this section, we synthesize feedback controllers to solve Problem 1. We follow
closely [2], specifying our modifications for the present problem. We choose to
use a centralized version, since state information is shared among all connected
agents. Unlike [2], we simultaneously build a discrete representation of the task
configuration space and find a path in this representation. We then translate the path
into feedback controllers. The key step in the first stage is to define an adjacency
graph on the set of polytopes.
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Definition 9. The polytope graph Gi
P = (V i

P,E
i
P) on the polytopes in C i

T is the pair
of sets V i

P = {ci
1, . . . ,c

i
n}, where ci

q is the Chebyshev1 center of the q-th polytope Pi
q,

and E i
P, the set of all pairs of polytopes which share a facet.

By using the discrete group formation shape notation, we build the polytope
graph online, on an as-needed basis. For example, in the three robot group for-
mation F i

d = (1,2,3) in Fig. 5c, we use the graph in Fig. 5b to generate adjacent
formations by moving to adjacent regions. By changing the region corresponding to
the location of ai

2 with respect to ai
1, we get F i

d = (2,2,3) and F i
d = (4,2,3). By

changing the integer corresponding to the location of ai
3 with respect to ai

1, we get
F i

d = (1,1,3) or F i
d = (1,3,3). Using this method, we build an adjacency graph

online while concurrently minimizing cost via a graph search algorithm.
In Fig. 5b we have included separate weights wpq for each edge. Thus the cost of

moving from one formation2 F r
d to another adjacent formation F r+1

d is

C
(
F r

d ,F
r+1
d

)
=

N

∑
j=1

N

∑
k=1
k> j

w f r
( j,k) f r+1

( j,k)
. (8)

This induces a heuristic cost for going from the initial to the goal formation. If F 0
d

and F g
d are the initial and final formations, the minimum cost of reconfiguring is

h
(
F 0

d ,F
g
d

)
=

Ni

∑
j=1

Ni

∑
k=1
k> j

w f 0
( j,k) f g

( j,k)
.

In our simulations, we choose to minimize the number of transitions, and thus set
all weights wpq = 1.

It is important to note that not all nodes will be valid. From Fig. 5c it is obvious
that F i

d = (4,2,3) is an invalid formation: it is impossible for ai
2 to be in region 4

of ai
1 and simultaneously have ai

3 in region 3 of ai
2. Therefore, while we anticipate

nodes by using the graph in Fig. 5b, before adding nodes to Gi
P we check if the

polytopes are empty, corresponding to invalid formations. Thus the cost heuristic
can be used as an underestimate for the cost-to-goal in a best-first-search algorithm.

Problem 2. For the initial discrete group formation shape F i,0
d , find a path t =

{ci
t1 , · · · ,ci

tg} on Gi
P to the goal discrete formation shape F i,g

d , such that we min-
imize the actual cost

h∗
(
F 0

d ,F
g
d

)
=

g−1

∑
r=0

C
(
F i,r

d ,F i,r+1
d

)
.

Theorem 1 (Necessary and Sufficient condition). Problem 1 has a solution iff
Problem 2 has a solution.

Proof. C i
T contains every allowable configuration xi in our polytopic world model.

Gi
P contains all the information about the connectivity of C i

T . Thus, if there is a

1 The Chebyshev center of a polytope is the center of the largest inscribed ball.
2 Although this applies to a group G i, here we drop the subscript i for clarity.
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solution to Problem 1, there must exist a path from the start node in Gi
P to the goal

node. Conversely, if there is no path on the graph Gi
P between the start node and the

goal node, there is no solution to Problem 1. ut

Corollary 1 (Completeness). Problem 2, and therefore Problem 1, has a solution
if the start and goal nodes on the polytope graph Gi

p are connected.

After a path to the goal is determined, we want to be able to synthesize feedback
controllers to drive the system through those polytopes to the goal. We choose to
use a controller developed by Lindemann and Lavalle which is applicable in high
dimensions and results in smooth feedback [11].

We set the vector field on each facet except the exit facet to be a unit inward
normal; on the exit facet, we set the vector field to the unit normal pointing outward.
By using a bump function, vector fields on the faces of each transitional polytope
are smoothly blended with an attractor field on the Generalized Voronoi Diagram
(GVD) of the polytope. For each polytope on the path to the goal formation, we
implement the controller using the Chebyshev center of the exit facet as the attractor.

In the goal polytope, if an exact formation shape is prescribed, we decompose the
polytope so that the vertices of each polytope in the decomposition are the vertices
of a facet along with the goal point. Then we set all facet vector fields to be pointing
inward, and the field on the faces of the decomposition always pointing to the goal.

If a discrete formation shape is prescribed, we set the attractor field to always
point to the Chebyshev center of the polytope (not the exit facet), satisfying the re-
quirements set in [11] to guarantee convergence. There are several advantages to
using the Chebyshev center. First, it allows a minimum radius around the attractor,
providing some robustness (for disturbances or feedback linearization for nonholo-
nomic robots). Second, the Chebyshev center lies on the GVD, so we do not need
to use a separate decomposition that would force us to enumerate the vertices of the
polytope, which is computationally expensive.

To smoothly stabilize the system at the Chebyshev center, we normalize the at-
tractor field until it is within the radius of the Chebyshev ball. Once within the
Chebyshev ball, we use a second bump function to drive the input to zero as we
approach the center.

We use the controller for the goal polytope to maintain the desired group forma-
tion of the group as it moves through the space, inside the bounds of the abstraction.

4 Geometric Abstractions for Groups
The abstraction enables robots to operate in an obstacle-free (but limited) environ-
ment, while group navigation is handled by a higher-level controller for the abstrac-
tion. This controller is then summed onto the individual controllers as in (3). .

Definition 10. The group abstraction Bi is a pair

Bi =
(
xi

b,s
i(Ni)

)
∈ R4 (9)

where si(Ni) is a shape vector, and
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Fig. 6 The limits of the size
of the abstraction. (a) The
upper bound for number of
robots in a group is a function
of the ratio (δmax/δmin). (b)
The minimum size of the
square is a function of δmin
and Ni.

δ
max

(a)

δ
min

(b)

xi
b =

1
Ni

Ni

∑
j=1

xi
j.

The center of the group abstraction is xi
b, and the shape vector si(Ni) represents the

boundary and size of the abstraction which encloses the group of robots.

Although any boundary can be chosen for the group, we choose a rectangle for all
groups boundaries since a rectangle corresponds well with our choice of the infinity
norm. Therefore, the shape vector is a pair si(Ni) = (si

w,s
i
h) where si

w corresponds to
the width and si

h to the height of the rectangle. Knowing the shape of the abstraction,
we can determine the minimum size of the abstraction so that the rectangle is large
enough to contain the number of robots in the group,

Ni ≤
(
bsi

w(N
i)/δminc+1

)(
bsi

h(N
i)/δminc+1

)
. (10)

To ensure graph completeness in the abstraction, we can also enforce {si
w(N

i),si
h(N

i)}≤
δmax. This induces a limit for the number of robots which can be in a group with a
complete graph using our abstraction

Nmax = (bδmax/δminc+1)2 . (11)

An example of the maximum number of robots in a group is shown in Fig. 6a. Here,
δmax/δmin = 4, so that Nmax = (4+ 1)2 = 25 is the maximum number of robots in
the group. An example of the minimum of si(Ni) is in Fig. 6b. Here, b

√
Nic= 4, so

the minimum width is 4δmin.
We treat the abstraction as a single robot. Because multiple abstractions share

one workspace, we need a multi-robot controller to ensure they do not collide.
To emulate the cost of sharing information across large spaces, we place restric-

tions on communication between groups of robots on three levels based on inter-
group distances. The lowest level of communication occurs at the largest distances,
above the threshold γmax,

|xi
b− xk

b|ρ > γ
max.

At this level, groups communicate as necessary to negotiate rendezvous points.
The mid-level of inter-group communication occurs below the threshold γmax,

|xi
b− xk

b|ρ ≤ γ
max,

where groups perceive position relative to each other (xi
b− xk

b).
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Once two groups are close enough that explicit inter-group communication is
established (i.e. a member from one group is able to communicate directly with a
member of the other group), groups can share both the number and position of each
group’s agents (xi

j, j = 1, . . . ,Ni) by passing this information through the robot for-
mation graph. Once the group is within a pre-specified distance of the other groups,

|xi
b− xk

b|ρ ≤ γ
min, ∀ i,k ∈ {1, · · · ,m} (12)

the groups are able to commence the merging process.
As discussed in Section 1.1, there are many controllers applicable to multi-robot

problems. However, the inter-group communication restrictions as well as the real-
time nature of this problem require a decentralized controller to bring the groups to
the rendezvous area. (In our simulations, we have used path-planning to determine
a path for each group to the rendezvous point.) Once the groups are close enough to
know relative position (xi

b−xk
b≤ γmax), a more demanding controller may be used to

drive them close enough to communicate and merge (until they satisfy (12)). Then,
they must reconfigure into the desired formation, and continue to the task location
while maintaining that formation.

5 Merging and Splitting Groups
In this section we describe the process of merging groups. Once the groups have
satisfied (12), they combine their boundaries into the smallest boundary of the spec-
ified shape that contains all of the groups’ boxes. This will now be the boundary for
the reconfiguration discussed in Sec. 3.2.

The desired formation can be either connected or disconnected. If we have just
the right number of robots, the resulting graph is connected. If we have too many,
the formation graph is disconnected, and a group of robots break away.

If we have the exact number of robots required for the task, once they have
reconfigured into the desired formation, the boundary size must be adjusted. The
boundary is resized to within some small ε of the smallest rectangle centered at
the centroid of the group and enclosing all the robots. If it is possible to resize di-
rectly to the desired size (in the case of a rectangle, si

w(N
i)× si

h(N
i)), then we are

done, and the group can continue to the task. If not, we allow the robots to stabilize
to the Chebyshev center of the formation using the new boundary size. Then, we
re-evaluate the boundary size, and iterate until we get to the desired size.

If we have more robots than required, the group reconfigures into a formation
shape such that the required robots’ subgraph is that required for the task, and the
rest of the robots are connected to that subgraph by one edge. An example of this
is shown in Fig. 7. The dotted line in the example depicts where the group will
split. The desired formation is achieved after reconfiguration in Fig. 7a. The discrete
formation shape integer relating a1

3 to a1
7 is f 1

3,7 = 1. In Fig. 7b, the groups separate,
until f 1

3,7 = 5, meaning there is no direct communication between a1
3 and a1

7. This is
when the group splits into two as in Fig. 7c.

In summary, the algorithm for our approach involves the following six steps.
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Fig. 7: An example of a desired robot formation shape and the splitting process
when the task requires less robots than the total number in all groups.

Algorithm 1

1. Construct the goal controller for formation maintenance in C i
T for each group of

robots.
2. Drive the groups toward each other in the space.
3. When (12) is satisfied, solve Problem 2 while selectively constructing the task

configuration space for the joint group of robots.
4. Solve Problem 1 on all polytopes on the path, and solve for a goal controller in

the goal polytope.
5. If ∑

m
i=1 Ni > Ng, break the team into two separate groups and construct the task

configuration space and goal polytope controller for the new groups.
6. Drive the newly formed group(s) to the task location while using the new goal

polytope controller to maintain the formation.

6 Simulations
We simulate a two-group example where the groups merge into the correct number
of robots required for the task, and a three-group example where there are more
robots than necessary to complete the task. The simulations run on MATLAB, using
the Multi-Parametric Toolbox for polytope computations [9].

Although our simulations run on MATLAB, by using a MATLAB interface for
PLAYER and GAZEBO, we can transition this controller directly to a three-dimesional
dynamic simulator (GAZEBO) or perform experiments on robots using PLAYER,
parts of the PLAYER/STAGE/GAZEBO project [6]. As in [2], we can use feedback
linearization to provide controllers for nonholonomic robots.

6.1 Two Groups Merging and Continuing to Task Location
The goal in this example (Fig. 8) is to join groups of four and three robots into a
single group for a task which requires seven robots. Once the groups are merged and
in the desired boundary shape and size, they proceed to the task location. We used
as parameters δmax = 2.5, δmin = 0.2, γmax = 5, γmin = 0.2, ε = 0.1, and si

h = si
w =

2.5−2/Ni.

6.2 Three Groups Merging and Splitting
In this example (Fig. 9), two tasks require seven and two robots each. Nine robots
are available across three groups of three. The three groups merge, then split into
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8: A two group simulation. Dashed lines represent communication links (omit-
ted in (h)), dotted lines represent the path, and the star represents the task location.
(a) Initial condition. (b) Direct inter-group communication established. (c) Merging
criterion satisfied. (d) A single group is formed. (e) Mid-reconfiguration. (f) At the
desired formation. (g) The box is reshaped. (h) At the task location.

two groups of seven and two robots. The groups now proceed to their respective task
locations. Here we used the same parameters as above (except γmin = 0.5).

7 Complexity
In this section we discuss the complexity of our method. For each pair of agents with
collision constraints we have one annulus with 8 regions, resulting in a maximum

Pmax = 8Ni(Ni−1)/2

polytopes in C i
T . Although this scales exponentially with the number of robots in the

group, we only construct the polytopes as we expand nodes in the polytope graph.
To solve Problem 2, we use an A∗ algorithm. In an A∗ algorithm, the number

of nodes expanded is exponential in the actual path length, unless the error of the
heuristic grows no faster than the logarithm of the actual cost [16]∣∣h(F 0

d ,F
g
d

)
−h∗

(
F 0

d ,F
g
d

)∣∣≤ O(logh∗(n)).

Although we do not have a bound for our heuristic error, empirically we have found
that there exists a path to the goal of the heuristic cost. If there exists a path to the
goal, then there likely exist other paths of the same length to the goal (though in the
case of differently weighted transitions, equal length may not correspond to equal
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9: A three group simulation. Dashed lines represent communication links (omit-
ted (g)-(j) where graphs are complete), dotted lines represent the path, and stars
represent task locations. (a) Initial conditions. (b) Inter-group direct communication
established. (c) Merging criterion satisfied. (d) One group is formed. (e) Prior to
disconnection. (f) Groups split. (g) Boxes are resized. (h) At the task locations.

cost). For example, if the start formation is F 0
d = {1,2,3} and the goal formation

F g
d = {1,1,1}, h(F 0

d ,F
g
d )= 3, there exist three paths (ABE, CBE, CDE in Fig. 5c),

with cost h∗(F 0
d ,F

g
d ) = 3. In general, since the graph is cyclic, it is likely that a path

exists with the exact cost of the heuristic. (If the graph is weighted such that each
edge is not of equal cost, this is not generally the case).

We construct a controller in each polytope in t = {ci
t1 , · · · ,ci

tg} to solve Prob-

lem 1. The vector field can be computed in O(∑2Ni

d=0 Φd) time, where Φd is the total
number of d-dimensional cells in the GVD [11]. For bounds on Φd for a certain
class of polytopes, see [8].

The complexity increases linearly in the number of concurrent merging and re-
configuring processes, since each group computes its own controllers.

8 Conclusion
We have presented a method for controlling multiple groups of robots to create, re-
configure, and maintain formations under communication constraints. We provide
guarantees of safety, preventing inter-robot collisions and collisions with obstacles
in the workspace. Our controller is entirely automatic, and requires information
about the space, the desired formation, and the task location. We have discussed
briefly the complexity of our approach, which in the worst case scales exponentially
in Ni and h∗

(
F 0

d ,F
g
d

)
.
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The algorithm is complete based on the choice of abstraction boundary. Since the
abstraction is an overestimate of the area occupied by the robots, it is possible that
some solutions will be lost. This is especially the case when fixing the boundary of
the abstraction while the group is navigating through the space. It should be possible
to enforce a minimum area of the space inside the boundary, and maintain discrete
formations under some deformations. Further study is required for the case where
the abstraction can be reshaped to allow for navigation through cluttered spaces.

Finally, our approach lends itself to planning and control for heterogeneous
teams. This is an issue of future research.
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