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Abstract 
Earlier  results of this  author  and  others  demonstrate  that 
a  broad  range of robotic  tasks  can be commanded  through 
relatively simple feedback  controllers with  a  guarantee of 
global asymptotic  stability. A weakness of such  meth- 
ods is the  requirement  that  exact values of all dynami- 
cal parameters  be available,  since  they are used to  can- 
cel the  disturbance  torques  introduced by gravity. An 
adaptive  strategy is reported here which guarantees  sta- 
bility and global boundedness of a  natural  controller in 
the  absence of ?I priori  information  regarding  dynamical 
parameters.  The  present  results, however, are  not yet 
satisfactory since they  cannot  assure convergence to  the 
correct  spatial  position. 

1 Introduction 

The  term natural  control refers to any control  strategy 
which relies upon  the unforced  response of a  time invari- 
ant closed loop system  to achieve a desired motion. In 
the  last few years,  a  number of researchers have begun  to 
develop robot  control methodologies  based upon  the use 
of pure feedback structures  to  encode  a variety of robotic 
tasks - controlled  impedances for performing  mechanical 
work [I] and  potential  functions for obstacle avoidance 
[2], [l] as well as trajectory  shaping  [3]: [GI, [7] .  \Yhile 
the goals of these researchers are  quite diverse and  their 
work has been largely independent,  a  common  theme  has 
been a  resort  to  the  natural  motion of the  compensated 
plant  to achieve some  desired behavior. 

A troubling flaw in the  "natural controllers" for which 
stability  has been  rigorously established  [3]. [8] is the 
reliance upon cancellation of the vector of gravitational 
torques.  This would require exact knowledge of load and 
link dynamical  parameters: while the  latter may be as- 
sumed  to  be known  more or less precisely from off line 
studies,  the  former  can only be known.  in general, in 
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the course of on-line manipulation  and  motion. In this 
paper,  an  adaptive technique is used to  estimate  and  can- 
cel the effect of gravity upon  the  robot  arm. Since the 
unknown parameters  enter linearly in the vector field, 
suitably modified sequential  estimation  algorithms  from 
linear time invariant theory  can be  shown to achieve a 
stable  and globally bounded closed loop system? however 
convergence to  the desired end point cannot yet be  guar- 
anteed. Research attempting  to improve these  results is 
currently in progress. 

2 Notation  and  Preliminary Re- 
sults 

In  the sequel we will refer to  the  standard rigid body 
model of robot  arm  dynamics, 

dl i (q)q  + B(q ,  q)g + k ( q )  = T :  (1) 

where  the generalized  positions take values in joint   space,  
q E J ,  B is linear  in q, and -11, B, X. all vary in q by polyno- 
mials of transcendental  functions. Since Xi is nonsingular 
for all robots of interest,  this  system is equivalent to 

x 1  = x2 

z'2 = -~~i-'(xl)[B(Jl:J~)J2 + k(Z1) - T ]  (2) 

where the generalized  positions and velocities take values 

in phase  space, x = A [ ] E P . \ye wil l  occasionally refer 

to the  output  map rg : J -+ W: where W 2 SO(3) x R3 
is the workspace. The differential of a  smooth  function, 
f :  or? (for our purposes) intechangeablg., its "jacobian" 
matrix, will be  denoted df: 
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K1, Kz > 0, may be shown t’o drive the  errors, 

e i  [ i;] - 2 ,  
to zero. This methodology is recognizable in the  robotics 
literature in  a  diversity of guises and is known most widely 
as the  method of “computed  torque” or “inverse dynam- 
ics“. 

Since it “linearizes” the  equations of motion by ex- 
act cancellation of thousands of nonlinear terms  from 
the rigid body model of robot  dynamics (l) ,  the ques- 
tion arises as to  whether  the met’hod may be  applied in 
practice  at all: can  the  computation be effected quickly 
enough;  can  it be effected accurately  enough? A number 
of researchers  have  persuasively argued  that  the answer 
to  the first  question is (or may soon be) yes [11],[12], 
which conclusion we will accept with  no  further discus- 
sion here.  In  the absence of reported empirical  experi- 
ence or analyt,ical study, however, the second question 
remains  open.  Caution seems  justified  in  light of (i)  the 
inaccuracies  in the rigid body model upon which such 
computation would be  based; (ii) numerical  inaccuracies 
in computation  resulting  from  quantizat’ion effects; and 
(iii) uncertaintly  regarding  the values of t’he link dynam- 
ical parameters,  and (in  general) total ignorance of the 
load dynamical  parameters. It’ seems well worth explor- 
ing control  strategies which avoid exact  cancellation as 
much as possible. 

2.2 Control of Natural  Motion 
For a broad  range of mechanical systems,  the Hamilto- 
nian is an  exact expression for tot’al energy. In a conser- 
vative force field this  scalar  function is a const’ant (de- 
fines a  first  integral of the  equations of motion)  and, in 
the presence of the  proper dissipat’ive terms:  it  must de- 
cay [13]. If the  potential energy is ”useful”,  the dissi- 
pation of total energy, will be associated with a natural 
motion which converges around a  desired end  point in 
W [3]. Strictly  speaking, such motion satisfies  a  regula- 
tion  criterion  rather  than  the more  general tracking or 
disturbance rejection criteria which are t,he hallmark of 
linear time  invariant control  theory. In exchange for this 
limitation, we gain the  assurance of global st,ability  with- 
out a  complete  reliance upon exact  cancellation as in the 
previous section. Moreover, there is good reason to be- 
lieve that  the  transient  natural response  caused by such 
feedback regulators  can effect motion in the large  in  a 
manner  appropriate  to a particular  robotic  task.  The 
range of tasks for which a useful potential  function may 
be found - i.e.,  one which shapes useful natural  motion 
in t,he large - is the  topic of extensive  research by this 
author  and  others [SI, [2],[6], and will not  be discussed 
further  here.  Instead, we concentrate  upon  the feedback 
controllers which achieve simple  end point regulation in 
J .  

These  are based upon  the  joint  space  potential func- 
tion, 

E = - [qd - g]T1cl[gd - 91; 
A 1  

2 
where K1 is a  positive  definite symmetric  mat’rix,  and 

qd E J is some  desired end  point of motion.  The  joint 
space  regulator for (1)  is based  upon cancelling the grav- 
itational field and  matching  the desired gradient  with a 
dissipative  term, 

P = k ( g )  - K z q  - dET (4) 

(Kz is also symmetric  and positive definite), yielding the 
following result. 

Theorem 1 (Takegaki   and   Ar imoto  [8], Koditschek 141) 
The  closed loop s y s t e m  of equation (2) under  s tate   feed-  
back algorithm (4) 

2’1 = 22 
z2 = -M-‘ [ ( B  + I<Z)zZ f Icl(qd - zl)] 

i s  globally  asymptotically  stable  with  respect  to  the  equilib- 
r ium  s ta t e  [ 2 3 E P for   any   pos i t ive   de f in i te   symmetr ic  
matrices ,  K1, Kz. 

Proof: Define the Lyapunov function? 

= A 1  5(2:Mz2 + [qd - zlITIcl[qd - zl]), 

whose time derivative is  given by 

‘b = -2:Mz2-2:[(B+l<z)2z+I<l(Qd-Z1)]+[Qd-Z1]TK1Z2. 1 .  
2 

It  has been  shown  [3] that, B = ;[A? + J ]  where J 
is skew-symmetric,  hence we have 

i, = -z:I<Zx2 5 0, 
and  it  remains  to  demonstrate  that { [ y ] }  is the 

only positive invariant  set in the  subspace C = A {z E 
P : i, = O}. The vector field on f is given by 

while its  tangent  space is Tf = Im [ 1. Thus 

ff e Tf, except at [ ] (since M-’K1 is non- 
singular), which is consequently the only  positive 
invariant set in f. The result follows according to 
LaSalle’s invariance  principle [9]. 

0 

More interesting  candidates for E are  compositions of 
the  kinematic  map, rg(q)  with a potential  function  on W, 
a construction affording automatic inverse kinematic so- 
lution  and  trajectory  shaping in Cartesian  coordinates as 
discussed  in IS]. Unfortunately, in this case, trajectories 
may “stall” at  a critical  point of rg before reaching the de- 
sired  spatial  position. Research  devoted to  an exact char- 
acterization of the global at’tracting  set for these  more 
sophisticated  regulators is currently in progress. It. is im- 
portant  to  add  that a theoretically  informed  methodology 
for choosing the  “damping”  matrix, Iiz, to  insure  non- 
oscillatory transients  remains t,o  be dereloped as well. 

In contrast  to  the inverse dynamics procedure, a  re- 
liance upon  natural  motion obviates the need to cancel 
any portion of the  robot  dynamics beyond the  “desta- 
bilizing”  vector field due  to gravity - k(q). R’hile k ( g )  
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typically has  a much  simpler srructure  than  the  moment 
of inertia  matrix. - V ( q ) ,  or the Coriolis and  certripetal 
force matrix, B(q,  q ) ,  the  procedure is still  subject  to  the 
criticism raised previously. Of greatest  concern,  exact 
knowledge of the  plant  and load dynamical  parameters 
would still  be required to  permit  its  implementation. \Ye 
now attempt  to  dispense  with  this  requirement. 

3 Adaptive  Natural  Control  with 
Unknown  Dynamical  Parame- 
t ers 

Theoretical  understanding  within  the field of adaptive 
systems  theory  remains  concentrated  upon  systems which 
are 

linear time  invariant: 

of bounded dimension and known relative  degree; 

minimum  phase; 

for these  comprise  what is in some  sense the most  general 
class of systems  admitting  adaptive  control techniques 
whose stability may be guaranteed [14]. The  standard 
formula for updating  parameter  estimates is based upon  a 
sequential version of the  ordinary least squares  algorit,hm 
[IS] and while its  application (or a generalization)  may 
often be  apparent in settings which depart  from  these as- 
sumptions.  its efficacy is not. In this section we will apply 
the  standard  updating  algorithm  to  the robot, equations 
(1) and  indicate  the  problems  that  arise. LYhile stability 
and global boundedness is assured. it will be seen that 
convergence properties  are less than  desirable,  and  that 
more research will be required to afford a useful result. 

3.1 A Special  Nonlinear  Adaptive Algo- 
rithm 

\Yhile little progress has been made in the  adaptive con- 
trol of general nonlinear  systems.  the  robot  equations (1) 
are sufficiently well structured  that  insights  from  the lin- 
ear t'ime invariant case are of considerable  value. This 
intuition is most easily given formal expression by stat- 
ing the following result. 

Lemma 1 Consider   the  control   system 

x = a(z .p )  + D ( z . p ) [ H ( r ) p +  u ]  (5) 

where a is   a   smooth  vector   f ie ld   on  the  s tate   space X >  
parametrized  by a constant? p E Rq, with  the  property   that  
f o r   every   va lue  of p in some  known  open   subse t  Q c Rqt 

x = a ( x , p ) ,  has  a  globally  asymptotically  stable  origin; 
and D :  H are s m o o t h   m a t r i x   v d u e d   f u n c t i o n s  of the  ap- 
propr ia te   d imens ion   on  X .  T h s n   f o r   e v e r y  p E Q ,  there 
exists  a  dynamical  compensator,  

p = z ( z .  I;. p )  
: A  

such  that  under  the  feedback  control 

A u = -Hp. 

every  solut ion of the  closed  loop  system 

x=a + D H [ p  - r j ]  
p = z  

converges   to  a l imi t   se t  in the  subspace 

r q  ; ] E X x R ' : r  = 0 )  

Proof: Since a ( x ,  p )  is globally asymptotically  sta- 
ble,  for every p E Q. there exists a positive  definite 
Lyapunov Function, v ( r , p )  with  the  property 

d c ( l . p )  ~ ( ; c , p )  5 0.  

with equality only at  the  unique  equilibrium  state, 
z = 0, for all p E Q ?  according to  the converse 
Lyapunov theorems [lo].  Define the  adaptive law 
as 

-p = 5 = -HTDTdUT. . . A  

A where 5 = p - p ,  and a Lyapunov candidate, for the 
closed loop system (6) 

b'e now have 

u: = d e .  a + dc - DHI; - jTHTDTduT = dv * a 5 0 

with  equality only on f. which must  therefore con- 
tain  a globally attracting positive  invariant set ac- 
cording to LaSalle's invariance  principle 191. 0 

If p is interpreted as an unknown parameter vector 
appearing in a known vector field the  lemma  amounts  to 
a  nonlinear  adaptive  control  procedure for the exact can- 
cellation of a  (presumably destabilizing) portion of the 
system  dynamics. Of course.  this  interpret'ation is fatu- 
ous if z depends explicitly upon p :  an  adaptive  adjust- 
ment law is completely impracticable if its  computation 
requires the unknown parameters. In any c*e the result 
requires a very special  nonlinear system whose fortuitous 
structure affords the  st'rong  assumptions implicit in the 
lemma's  hypothesis, namely: that 

all state variables are available: 

the reference  signal to be  tracked is a  constant  (zero 
in this  case); 

the vector field to be cancelled is known and linear 
in the unknown parameters. 

Fortunately,  the  robot  equations (I). in the  contest of a 
"regulation" problem fulfill these requirements. 

3.2 Adaptive  Cancellation of Gravitational 
Torques 

In  the  appendix  to  this  paper wil l  be found a brief deriva- 
tion of system (1) wherein it is  sl1on.n that  the vector of 
gravitational  disturbance  torques  at each  generalized  po- 
sition, q: may be  written in the form 



H ,  being  a matrix which depends  upon  the  jacobian of 
the  kinematic  transformation, is completely known and 
computable; p is the  constant vector of unknown dynam- 
ical parameters. We may now attempt  to use the  lemma 
developed  above to cancel  adaptively the destabilizing 
vector field, [ " I  -M- 'Hp 
By setting  the control input  to  be 

A r = -u - K2xz - KlXl 

A (with x1 = qd - q)  we will identify 

and 

According to  Theorem 1, a defines a globally asymptoti- 
cally stable  system as long as ,I1 is non-singular,  thus we 
identify 

Q { p  E Rlon : Vq E J ,  I M ( q , p ) I  # 0 } ,  

(where n is the  number of degrees of freedom),  and  sim- 
ply assume  that every real robot  has a set of dynamical 
parameters, p E Q.  

According to  the  lemma,  the  construction of the  adap- 
tive law requires use of a  Lyapunov function for a. Un- 
fortunately, t,he  only  presently available candidate is the 
total energy function, 

2, = -(x:A1xz + ZTKIZl]: A 1  
2 

whose time derivative  along trajectories of that  system 
was shown to  be negative  semi-definite.  Proceeding any- 
way, as in the proof of the  lemma, we set 

(recall, x1 is  now defined to  be q d  - q)  and  the  adaptive 
law as 

Xotice that  this is a practicable  procedure, since all ex- 
plicit  dependence upon p is cancelled. The closed loop 
behavior is governed by the  equation 

x1=z2 

i z=-M- ' [ (B  + K 2 ) ~ z  + K l ( ~ 1 )  + Hfi] ( 8 )  
$ =HTx2. 

Corollary 1 For all qd E J ,  p E Q, the  closed loop 
adapt ive   robot   system (8) has  a  stable  origin  and  gives 
rise  to  bounded  solutions  whose  l imit   set   is   contained in 
the  subspace 

f i { [ f ] E P x Rlon : z2 = 0 } ,  

Proof: Define the positive  definite  Lyapunov can- 
didate, 

whose time derivative is given by 

6 = ~ T K l z z  - z:[(B + K 2 ) ~ z  + K l ~ l  + Hfi] 
+z:lkz2 + fiTHTs2 

= - x : K ~ x ~  5 0. 

The  result follows according to LaSalle's  Invariance 
principle [9].  

0 

Thus, each  physical trajectory will converge to some 
spatial  position qo E J ,  and  the  parameter  estimate, p ,  
will converge to some constant p o  E R"".Unfortunately, 
the  result says nothing  about  the  relation of these con- 
stants  to  their desired  values. In fact,  the  most likely 
result of this  procedure would be  entirely unsatisfactory. 
For all those positions qd E J at which H(qd) has full 
rank,  the origin of system (8) lies in the  interior of a 
smooth  submanifold of L specified by 

which is a set of equilibrium  states.  Thus,  not only is 
the origin non-attracting,  but  solutions will converge to 
constants in M however distant  from  the origin that  man- 
ifold extends. Physically, this  corresponds to a command 
torque  based  upon a spatial  error whose corruption by the 
parameter  error exactly balances  the  gravkational force 
vector at a particular  point in W .  

While Theorem 1 guarantees  the existence of alter- 
native Lyapunov functions for a possessed of a negative 
definite time derivative  along that vector field, none  have 
been  explicitly constructed  to  date  (to  the  best of this 
author's knowledge). h.loreover, there is no  guarantee 
that  the  adaptive vector field, z resulting  from  such a 
construction will be  found free of p dependence.  These 
questions  are  the  subject of current research. 

It is worth  making one final remark  about  the tech- 
nique  considered here. Since all three  nonlinear pieces, 
M ,  B: k, of the  robot  equations (1) are shown to  be lin- 
ear in p in the  appendix,  it is intriguing  to imagine an 
adaptive  implementation of the inverse dynamics algo- 
rithm, which  cancels all nonlinearities. Kote, however, 
that M - ' ~  which appears in the  phase  space  formulation 
(2) to which the  lemma above  might  be applied is not 
linear  in p .  

4 Conclusion 
It is proposed  to cancel gravitational  torque  disturbances 
using an  adaptive technique  reminiscent of the  standard 
linear time invariant procedures.  Preliminary  results, 
while guaranteeing global boundedness,  are  unsatisfac- 
tory since they  cannot  assure convergence to  the  correct 
end  position. KO other  adaptive laws for robot  control 
have been  proposed in the  literature (to the  best of the 
author's knowledge) which achieve global stability, hence 
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this approach would seem to deserve further investiga- 
t ion. 

A Lagrangian  Formulation of Dy- 
namical  Systems 

Here we show that  the  robot  equations of motion  are 

linear  in the  dynamical  parameters. Let ' p  = A I!] be 

a  point in the  body of link i, expressed in, homogeneous 
coordinates,  with  respect  to  a  frame, Ri, in that  link. 
The  matrix  representation of this  frame  with respect to 
an  inertial  system in the  robot  base may be  written as 
ORi, and is a function of all joint variables more proximal 
than link i . 

Since the velocity of the point in the  base  frame is 
given by op,  = OR, ' p  it follons  that  the kinetic  energy 
contributed by link i is given as 

P ( T ~ ?  ~ 2 ,  ~ 3 ) d j ~ l d ~ 2 d ~ 3  

T 
= $trace{okiP,oki 1 

where E is the  matrix of dynamical  parameters for link 
1 ,  - 

A M i  ssr; 
pi= -T - [ ) l I i  I-1, ] 

with mass: E,  (three-space)  centroid m/z, and moment, 
of inertia=. It follows, then  that  the  total kinetic  energy 
of the  arm is given by 

n 

T = trace{0kiPi0k1 } = I I ~ ~ ~ ~ ~ [ o ~ ~  0ki1pi 

where IItraec is a projection onto  the  subspace of R16 cor- 
responding to  the diagonal  elements of its  matrix  repre- 
sentation, @ is the Kronecker product.  and pi E R16 is 
the vector  formed by "stacking"  each successive column 
of Pi below the preceding one. Similarly: the  potential 
energy, U is given as a  sum 

T "  

i=l i = l  

U 2 r[3Ripi4 

where IIz is the projection onto  the  third  coordinate of 
R'. and pi4 is the  fourth  column of Pi. 

i = l  

A 
PI4 = [ ; j - 

Thus,  the  Lagrangian. f = 7 - U is linear in the  dynam- A 

and  it follows immediately  that  the  dynamical  equations 

are linear in those  parameters a well. 
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