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Analysis of a Simplified Hopping Robot 

M a r t i n  Bi ihler  and Daniel  E. Koditschek * 

Abstract 

Center for Sys tems Science 
Yale University, D e p a r t m e n t  of Electr ical  Engineering 

We offer some preliminary analytical results concerning simpli- 
fied models of Raibert’s hopper. T h e  motivation for this work is 
the  hope t h a t  i t  will facilitate the development of general design 
principles for “dynamically dexterous” robots. 

1 Introduction 

This paper presents a preliminary analysis of the limiting behav- 
ior of a “hopping ball” controlled by simple sensory feedback t o  
achieve a stable periodic motion in the earth’s gravitational field. 
We take as inspiration and as point of departure, the pioneering 
work of Marc Raibert whose successful implementation of sim- 
ple yet appropriate control procedures has resulted in working 
physical prototypes of stable hopping, running, and cantering 
gaits [4]. T h e  most striking feature of these control algorithms 
is their minimal dependence on ”higher level intelligence” and 
elegant reliance upon the intrinsic physical characteristics of ac- 
tuators  and masses. An understanding of the  capabilities and 
limits of such approaches t o  robot task specification and con- 
trol seems essential t o  the reliable construction of “dynamically 
dexterous robots” in general. This last phrase we understand t o  
mean the problem of robotic interaction with incompletely actu- 
ated environments (i.e., the  absence of a continuous control input 
at every mechanical degree of freedom) whose dynamical struc- 
ture  changes in response t o  the robot’s actions. I t  is our hope 
t h a t  a formal accounting for the success of a particular s t ra t -  
egy may suggest control procedures and even design parameter 
values which generalize t o  other problems of robotic “dynamical 
dexterity.” 

Our  present contribution may be summarized as follows. Stu- 
dying the changes in an energy-like quantity (whose form de- 
pends upon the details of the  dynamical model selected) brought 
about by collisions between the robot and environment leads t o  
a discrete dynamical system. The  limiting properties of the de- 
screte dynamics describe the  salient characteristics of the robot’s 
performance, and may be compared with the t rue physical setup. 
This paper concentrates upon the global stability of a unique 
periodic orbit - a formalization of our intuitive sense of what 
would constitute a successful hopping strategy. Simulations are 
then used t o  validate the particular models investigated. 

2 Modeling 

Our  abstraction of the vertical hopper consists of a body of unit 
mass in the gravitational field and a leg of zero mass subject t o  
viscous friction, 7 .  T h e  leg is “actuated” by a pneumatic cylin- 
der which simultaneously acts as an  energy storage mechanism. 
While the  pneumatic cylinder gives rise t o  an  inverse spring law 
’pni (x)  - 1 / x ,  we will also examine a linear spring ’ppl(x) - x .  
T h e  actuator is “controlled” by a n  adjustable “spring constant” 
q ( x , x , t )  which multiplies the spring law, p. q ( x , x , t )  imple- 
ments a s  closely as possible the feedback strategy as described 
in Raibert’s book. He divides the time of one complete verti- 
cal hop into compression, thrust, decompression and flight phase 
which begin at touchdown ( td) ,  bottom (b) ,  end-of-thrust (et) 
and liftoff (lo), respectively. 

For the nonlinear[linear] robot, ’pnqij, the  effective feedback 
control law may be specified as 

t o  otherwise. 

We will find i t  useful t o  make a conceptual distinction be- 
tween the  “robot” - the  nature of the spring mechanism, ’p, 

and i ts  feedback control strategy, q - and the “environment” 
- the  friction in the  leg, the force of gravity, the  location of 
ground, etc. T h e  forces exerted by the robot upon the environ- 
ment and the interaction of the environment with the  robot may 
now be written as F, e x - q ( x , x ) . p ( x )  and Fe = - g - o ( x , x ) 7 .  
o ( x ,  x )  switches off friction during flight. Coupling the  dynami- 
cal structure of the environment t o  the robot, Fr = Fe now gives 
our model, 

a 

‘This work is supported in part by the National Science Foundation under 
grant DMC-8552851. 
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3 Analytical Results 

The  chief motive for the  simplifications of the t rue physical set-up 
which lead t o  this model is tha t  the  resulting continuous dynam- 
ical sytem (1) may be integrated in a piecewise fashion. Defining 
a suitable “PoincarC section” in the  continuous phase space thus 
leads t o  an  explicit discrete “return map” [3]. We may now sum- 
marize some preliminary analytical results concerning the  limit- 
ing behavior of the  discrete return map dynamics. For a more 
detailed explanation of the  equations as well as the  proofs of the  
following Propositions, see reference (21. 

First, we offer the  results of an  analysis of the  linear spring 
version of (1) in the  complete environment, Fe. A “simplified” 
version of the  control law, r,q, where the  spring constant is un- 
changed before and after the  thrust phase, and the touchdown 
and liftoff points lie on the same axis, leads t o  the following dis- 
crete dynamics, 

Proposition 2 The dynamical system (5’) has a unique fized 
point, x’, on the domain D = ( O , x l o ) ,  which is locally asymp- 
totically stable if and only if x’ E D1 = (x10/e2,xlo). If x* is not 
a local attractor, i.e., X* E (0,xlo/e2) 5 Do, then there ezists at 
least one orbit of period two, i.e. afized point of g = f o f ,  which 
is not a fized point off. 

A 

A 

A 

The  latter s ta tes  tha t  an  inverse-spring-law based hopper, 
when subjected t o  a closer approximation of the t rue Raibert 
control scheme in a trivialized version of the  environment, will 
always have a periodic trajectory, but t h a t  this may be unstable, 
and, if i t  is, must evince a “doubly looped” trajectory in phase 
space (i.e. there must be a period-two orbit of the  discrete dy- 
namical system). In other words, depending upon choice of the  
design parameter xio, initial conditions at s tar tup time might 
lead t o  a doubly periodic “limping” gait. 

4 Simulations 
121 
\ - I  

Here, x, represents the  height of the robot at the  bottom point of 
the  “jthn hop. T h e  parameters +f and & represent, respectively, 
the  change in hopper position and velocity in a normalized coop 
dinate frame and are set by the operator. The  parameter -K. is a 
system parameter depending on the spring constant and viscous 
friction, and is not under the operator’s control. 

Simulations carry a great deal of importance for these investiga- 
tions. In the  absence of physical experiments on the  real appa- 
ratus, they provide the  only verification of the relevance of the 
simplified model (1) described above. In this section we present 
a number of simulations which serve to  validate the model with 
respect t o  the  real hopper’s trajectories. These plots illustrate 
the  formal results, Propositions 1 and 2, as well. 

Proposition 1 The dynamical system (2) has a unique, globally 
attractingfized point on the domain D = ( 0 , ~ ) .  

A 

This s ta tes  t h a t  the  linear-spring based hopper, when sub- 
jected t o  a simplified version of the  Raibert control scheme in 
a fairly accurate version of the t rue environment, is guaranteed 
t o  have a globally attractive stable periodic limiting trajectory. 
In other words, a stable periodic gait develops from any initial 
conditions at s ta r t  up. 

Second, we consider a nonlinear spring which is much closer 
t o  the  physical apparatus described in Raibert’s book. In or- 
der to  retain piecewise closed form integration of the continuous 
model, we remove the  viscous friction forces and gravity during 
the  stance phase, let the  time of thrust go to  zero and again, 
assume t h a t  touchdown and liftoff points lie on the same axis. 
The  new discrete dynamics are  given by 

(3) 

Again, xi represents the height of the robot a t  successive 
bottom points and the  design parameter xio represents the  fixed 
height where both robot liftoff and touchdown occur, as chosen 
by the operator. 

As a first check on the  validity of our model, we compare the 
simulations of the  linear simplified model Figure 3 and of the  
full nonlinear model Figure 2 with a plot of the physical system 
lifted straight out of Raibert’s book [4] - Figure 1. Starting a t  
top, the  vertical hopper goes through touchdown (note the coun- 
terclockwise direction) and compression t o  bottom. Until liftoff, 
some par t  of the  trajectory constitutes the thrust phase, which 
is not clearly distinguishable in this plot. After liftoff, the  hop- 
per completes the cycle a t  the  top. The  same sequence of events 
attaches t o  our simulation plots - Figures 2 through 4 - with 
the  exception tha t  they evolve in a clockwise fashion. Our fig- 
ures also depict transient trajectories: a dashed trajectory leaves 
from initial conditions outside the closed curve and a solid line 
trajectory leaves from inside a t  the  solid dot. These three plots 
exhibit significant similarity. Figure 4 shows the  stable period 
two orbit of the  full nonlinear model as predicted by Proposition 
2 using the  simplified nonlinear model. If we restrict ourselves t o  
the stable period one orbits, we can see, tha t  both the  linear and 
the  nonlinear models reveal similar qualitative behavior which is 
maintained for a large range of parameter settings. 

’This term was coined by Raibert in a personal communication. 

818 



Figure 1: Raibert’s hopper 
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Figure 2: Stable Period 1, full nonlin. model 

5 Conclusion 

We construct a simplified model of a “dynamically dexterousn 
robot, Raibert’s Hopper, and investigate the effect of his ele- 
gant, physically based control strategies. Analysis of induced 
discrete dynamics leads to  strong conclusions concerning global 
limiting properties. These conclusions are then verified by com- 
puter simulation of the simplified models, whose correspondence 
to  the true physical apparatus is seen to  be acceptable as well. 

This analytical approach seems to  enjoy a more fundamental 
generality than apparent in the present paper. For example, 
in the design of control algorithms for another member of this 
class of “dynamically dexterous robots” - a simple prototype 
juggling robot - a very similar point of view appears to  result in 
successful performance [ 11. These insights suggest the existence 
of a larger unified body of general analytical tools and control 
algorithm design principles for this class of robotic tasks tha t  
await further exploration. 
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Figure 3: Simplified, linear model 
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Figure 4: Stable Period 2, full nonlin. model 
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