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Application of a New Lyapunov Function
to Global Adaptive Attitude Tracking

Daniel E. Koditschek !
Center for Systems Science
Yale University, Department of Electrical Engineering

Abstract

The introduction of “error coordinates” and a “tracking potential”
on the rotations affords a global nonlinear version of inverse dynam-
ics for attitude tracking. The resulting algorithm produces “almost
global” asymptotically exact tracking: this convergence behavior is
as strong as the topology of the phase space can allow. A new family
of strict global Lyapunov functions for mechanical systems is applied
to achieve an adaptive version of the inverse dynamics algorithm in
the case that the inertial parameters of the rigid body are not known
A priori. The resulting closed loop adaptive system is shown to be
stable, and the rigid body phase errors are shown to converge to the
limit trajectories of the non-adaptive algorithm.

1 Introduction

This paper presents a sample application of a new family of strict
global Lyapunov functions for mechanical systems on finite dimen-
sional Riemannian manifolds. This new class of Lyapunov functions
was presented in a recent conference paper [10] wherein application
was made to a mechanical system on a Euclidean vector space. There,
the only nonlinearity in the dynamics arose via the kinetic energy. In
this paper we consider the problem of tracking a desired signal on 2
Non-Euclidean space — the Lie group $0(3) — via a completely ac-
tuated mechanical system with all states directly available. Neither
the dynamics nor the state space are linear.

A “mechanical system” is a Lagrangian dynamical system whose
geodesics arise from a Riemannian metric defined by the kinetic en-
ergy of a (possibly mutually constrained) set of rigid bodies. This
paper concerns the dynamics of a single rigid body. We take the
word “tracking” to mean the asymptotic coincidence of the output
of a controlled system with a perfectly known but entirely arbitrary
reference signal. For a linear time invariant system, the only means
of accomplishing such a task is by recourse to inverse dynamics —
plant stabilization via feedback; plant inversion via a precompensat-
ing filter — and this paper incorporates the same methodology in a
nonlinear context. Since the removal of any structural information
about the class of reference signals translates into the reliance upon
exact plant parameter values, it seems incumbent upon the designer
to deploy an adaptive version of the algorithm if possible. Thus, as its
central contribution, this paper offers an adaptive inverse dynamics
algorithm for a single rigid body powered by three independent ac-
tuators capable of delivering any desired force in the “wrench space”
of the body, T*SO(3), assuming perfect state information.

Since our system is completely actuated, we are free to prescribe
arbitrary acceleration. Thus, from the point of view of velocity con-
trol the problem admits a trivial implementation of the global exact
linearization techniques which have become so popular in the non-
linear control literature. Evidently, there is little new to be said
regarding the construction of time invariant feedback control laws,
v :IR? — IR?, which cause the actual angular velocity, a(t) € IR, to
track a desired angular velocity, d(t) € TR when, as in the present
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case, the control system is equivalent to & = u. However, the problem
addressed above is quite different: we are given a desired attitude
trajectory, D(t) € SO(3), and asked to construct a time invariant
controller which causes the actual attitude, to asymptotically ap-
proach D(t) from any initial configuration, A € 50(3).

So different is this problem from the trivial double integrator
tracking problem that it is unsolvable as posed in that context. For,
consider the particular case that D(t) = D* is some constant point.
We seek a controller which makes that point (at zero angular velocity)
a global attractor of the closed loop dynamics. Now the domain of
attraction of an attracting point is homeomorphic to some Euclidean
vector space [3]. But the state space of our mechanical system — the
cross product TSO(3) = SO(3) x R? — is clearly not homeomorphic
to any Euclidean vector space. Thus, it would be impossible for our
closed loop system to bring all initial conditions to the desired
attitude. Evidently, the control system arising from a single rigid
body is not globally linearizable by any technique since its state
space is not a vector space. Our problem statement must be refined.

Since SO(3) is a compact odd dimensional manifold without bound-
ary, its Euler characteristic is zero [7]. It follows from the Theorem
of Hopf [12] that any nondegenerate vector field on SO(3) with an
attracting equilibrium state has at least one other singularity which,
if it is the only additional equilibrium state, must be totally unsta-
ble. Excepting the complement of some open dense set — in this
case, the repelling point — trajectories of such a vector field are
guaranteed to asymptotically approach the attracting point. Thus,
although topological obstructions preclude a globally asymptotically
stable system, a practically equivalent formulation which respects
the underlying topology of the problem may be attainable. Say that
a dynamical system is almost globally asymptotically stable if all
trajectories starting in some open dense subset of the state space
tend asymptotically to a specified stable equilibrium state. This we
take as the criterion of convergence for our tracking algorithms on
50(3).

The paper is organized as follows. In Section 2 we first review
certain properties of SO(3) and its Lie algebra to arrive at “error
coordinates”, then present a global version of Lord Kelvin’s century
old result on energy dissipation leading to the notion of a tracking
potential function. Appropriate error dynamics having been tar-
geted, the obvious generalization of the inverse dynamics algorithm
is shown to achieve them, with almost global convergence in conse-
quence. Namely, all trajectories starting from some open dense sub-
set of the possible initial errors achieve asymptotically exact tracking;
trajectories starting from a nowhere dense set in the phase space ap-
proach one of three other isolated “antipodal” motions. In Section 3
we showcase the utility of the new family of strict Lyapunov function
presented in [10] by considering the adaptive version of the previous
tracking algorithm. This version of the problem arises when there
is uncertainty regarding the inertia matrix of the rigid body. After
reviewing and slightly extending our earlier constructive results for
general mechanical systems, we implement a particular choice from
this family of Lyapunov functions picked to admit a straightforward
analogy between linear time invariant adaptive control algorithms
and the present setting. The resulting closed loop adaptive system
is shown to be stable, and gives rise to trajectories whose projec-
tions onto the state space approach one of the four (one correct and



three spurious isolated “antipodal”) limit motions observed in the
previous section. Presumably, an appropriate notion of “persistent
excitation” would lead to guarantees concerning the practical impos-
sibility of ever ending up tracking one of the spurious motions, but
this question is deferred to a future paper.

In the interest of brevity, a variety of technical definitions and
results are used with little explanation. An attempt has been made
to provide a precise reference to the literature in such cases. Certain
of the new technical results are merely stated: the reader is referred
to the author’s two recent reports [8, 9] for detailed proofs.

2 Inverse Dynamics on the Spatial Rotations

In the linear time invariant setting, inverse dynamics amounts to the
use of a precompensator to make the errors between the plant state
and reference derivatives satisfy an asymptotically stable linear time
invariant dynamical system. For example, after stabilizing

&= u(t),

with ¥ = —Kyz — K2% + v, we may cause the plant to track an
arbitary reference signal, r, by pre-filtering, v = # — K1r — K7, since
this results in globally asymptotically stable error dynamics,

€= —Kle b Kzé.

When the state space is not a Euclidean vector space, we must first
determine a suitable notion of “error”, next find a globally asymp-
totically stable (or almost globally asymptotically stable in the sense
defined in the introduction) vector field that we would would wish
to govern the error dynamics, and only then look for a suitable pre-
‘compensator for the input signal. In Section 2.1 we review a number
of useful facts about the configuration space of the rigid body and
end up with a natural choice of error coordinates. In Section 2.2,
we introduce the class of mechanical systems and describe their re-
lationship to gradient dynamics, motivating the choice of a tracking
potential function in Section 2.3. Finally, in Section 2.4 we present
the inverse dynamics algorithm and show that it achieves almost
global asymptotically exact tracking.

2.1 Error Coordinates on SO(3)

The configuration space of a rigid body is the group of rigid trans-
formations, SO(3) x IR®. If we are concerned only with the attitude
of a rigid body, then it suffices to treat SO(3) alone, which we now
identitfy with a subset of R?,

50(3)& {R e R¥*®: RTR = I and |E| = 1}.
This Lie group has as its Lie algebra the skew symmetric matrices,
4 so(3)=skewé{JE]RS"S:J+JT=0},
which is isomorphic to IR® according to the linear bijection

0 —w3 we
J:iwre | w3 0 -w
— Wy w 0

The vector space of three by three matrices is the direct sum,

R3*® = sym @ skew,

of the symmetric and skew-symmetric matrices. Thus, we may define
a unique “pseudo-inverse” for J whose domain is extended to all of
IR3*3 by projection onto the linear subspace, skew.

JHA) & J(A - AT).

The maps J~! and Jt have distinct domains, and must not be con-
fused. On the other hand, we will be sloppy and not distinguish
between the version of the linear map J whose range is skew and the
version whose range is IR3%3,

The natural inner product on the vector space IR3%3 is
al
(My | My) & Sar {mm}.

Direct computation reveals that J is an isometry between R? with its
Euclidean norm, [[w||? = wTw, and skew with the norm correspond-
ing to this inner product. Note, as well, that sym is the orthogonal
complement of skew with respect to this inner product. Finally, the
norm associated with (- |-) defines a metric on the group SO(3)
after composition with a suitable comparison function. !

Proposition 2.1 ( [8] ) Consider the smooth comparison function
£ € Ko [[0,7],[0,4]] : x — 2(1 = cos x)-

The composition of its inverse with the natural Euclidean norm of
]R3x3
A
P(R1,R2)= € o (R~ Ry | Ba— R ),

defines a metric on SO(3).

On any Lie group, we may take the differential of left (or right)
inverse translation and this is the canonical means of identifying left
(or right) invariant vector fields with the Lie algebra. Thus,

TRSO(3) = {RJ(w) e R :w € R*},

is identified once and for all with so(3) = skew ~ R?, and we may
take the tangent bundle to be the set of pairs

TS0(3) = {(R,): R€ 50(3), r e R®}.

Now, given two curves, (4,a)(t),(D,d)(t) € TSO(3), assumed to
be second order [1, Def. 11.3.5.12] — e.g. A(t) = AJ(a(t)) — we
define their “error” to be the tangent map induced by left inverse
translation to the identity,

(E,e)(t) £ (DTA,a - ATDd)(1),

preserving the second order property, E(t) = EJ(e(t)).

2.2 Gradient and Lagrangian Dynamics

The geometry of classical physics has been extensively studied for
decades, and recent years have witnessed the publication of numerous
expository texts containing the background material required for the
present paper. We find it most useful to appeal to the notation and
presentation of the excellent text by Abraham and Marsden [1]. In
addition, we will adopt the language of vector bundle morphisms
[7][Ch. 4.1], M"[X, )] between two vector bundles, X', Y, over some
manifold, J. For example, a Riemannian metric on J,is induced
by every “positive definite morphism”, M € M"[TJ,T*7].

Non-degenerate gradient vector fields on the configuration space
have particularly nice limiting properties, as summarized by the fol-
lowing result.

!The comparison functions, the group K,(Z1,Z2), of monotone increasing C"
diffeomorphisms between two real intervals appears extensively in the engineering
stability literature [6)], as well as in this paper. Some properties are reviewed in
(8, 9.



Proposition 2.2 ( [9] ) Let¢ be a continuously differentiable Morse
function on the compact Riemannian manifold, J. Suppose that
grad @ is transverse and directed away from the interior of J on
any boundary of that set. Then the negative gradient flow has the
following properties:

1. J is a positive invariant set;
2. the positive limit set of J consists of the critical points of ¢;

3. there is a dense open set F C J whose limit set consists of the
local minima of ¢,

Still more important for the present purposes is the natural “lift-
ing” of gradient vector fields (considered as potential fields) into La-
grangian vector fields, fx, on TJ, [1, Ch. 11.3.7). By a dissipative
mechanical system we mean the dynamics associated with the vector

field A

f = f)\ + fdv (1)
where f; is a dissipative vector field [1, Def. 11.3.7.16). The crucial
result we require for this section of the paper is that the limit be-
havior of a dissipative Lagrangian system is a “copy” of the limit
behavior of its constituent potential energy gradient field. This will
be recognized as a global version of Lord Kelvin’s century old result
[14] concerning the dissipation of total energy on TJ

o) 2 2w lw) +por(w), @)

under the flow of f.

Theorem 1 ( [8] ) Let ¢ be a twice differentiable Morse function
on the compact Riemannian manifold, J . If J has a boundary, then
let  attain its mazimum, 7o, over J, ezactly on that boundary. The
set of “bounded total energy” states of 1 (2),

e 2 (weTT:n<m},

is a positive invariant set of any dissipative mechanical system (1)
whose positive limit set consists of those points in the zero section of
T.7 identified with a critical point of the potential function. All initial
conditions within £™ ezcluding a nowhere dense set tend toward a
point in the zero section of TTNE™ identified with a local minimum

of ¢.

2.3 An Attitude Tracking Potential Function

We are now ready to search for a potential function on SO(3) whose
lift into the physical Lagrangian system of the actuated rigid body
will define almost globally asymptotically stable error dynamics. Ac-
cording to Theorem 1, we need merely ensure that ¢ is a Morse
function with a unique minimum.

In a very nice report, Meyer [11] attempted to generalize PD
techniques to the global control of spacecraft attitude. His point of
view is very close to the spirit of this paper, and, in some sense, this
application might be seen as a continuation and extension of that
earlier work. Meyer chose for his potential law on SO(3) the metric,
p, itself. This will not suffice for the present purposes since, as seen in
Proposition 2.1 , p is a composition with the trace function on skew.
The latter is unfortunately not a Morse function since it has a critical
point at every symmetric rotation: the symmetric rotations — an
embedding of real projective two-space, RIP?, in SO(3) — comprise
a connected set; the critical points are not isolated [5]. Instead we
will use a “modified trace” function according to the following result
of Marsden and collaborators.
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Lemma 2.3 ( Chillingworth, Marsden, and Wan [4] ) IfP €
sym has distinct eigenvalues, 7y, 72,3, and
(w1 + mw2)(m1 + w3)(m3 + m3) £ 0,
then there are ezactly four rotations, R € SO(3) at which PR € sym
These are ezxactly the critical points of
(P|R)= tr {PR}

with Morse index specified by the number of positive eigenvalues of

PR2 tr {RP}I-PR

SO(VK;e are thus led to define as a tracking potential function on
3

@(R)E tr {(PI-R)}=(P|I-R). &)
If P € sym™, a positive definite symmetric matrix, which we now
assume, then the eigenvalue assumptions of the previous Lemma are
assured. Since di is a scalar multiple of Marsden’s modified trace,
¢ is also a Morse function with four critical points specified in the
same fashion. Moreover, ¢ takes its values on R¥, vanishing only
at R = I. Thus, ¢ is indeed a candidate tracking potential function
on SO(3). In fact, it is the best we can do as the following result
indicates.

Proposition 2.4 ( [8] ) Any Morse function on SO(3) has at least
four critical points.

To finish this section, we display the following computation.

Lemma 2.5 The action of the co-vector, dp, on a tangent vector,
w € TrSO(3)

is given by cTw where
¢ =2JY(PR).

Proof: Consider a smooth curve, through R whose tangent
vectoris w at t = 0,

R(t) = Rexp {tJ(w)}.
The action of the co-vector field dp on w is exactly

4¢(R) o = - tr {PRI(w))
= 2uwTJH(PR)

since sym is ?rthogona.l to skew, and J! is an isometry between
(skew, (- | -)7) and (R, [} - [}).

m]

Thus, the gradient vector field of ¢ with respect to a Riemannian
metric, (w’ | w) = wTMw on TSO(3) is

grad ¢ =2 M~ JY(PR).

2.4 Almost Global Inverse Dynamics

Now suppose (D(t), d(t)) is a reference trajectory in TSO(3). Sup-
pose, moreover, that the rigid body has moment of inertia, M, so
that its Lagrangian vector field on TSO(3) admits the expression
(using body coordinates to obtain left translation back to so(3)) are
given, for example, as in [2], by



a=M"1[u-J(e)Md, 4)

where u € s0(3)* & IR? is the control input in “wrench space”.

Since .

¢ =a-E%-[EJ(a-E"d) d
=a— E%d+ J(a)E"d,
the feedback law
2 T T
up £ M (E%d - J(a)E"d) 5)

+J(a)ME™d + J(ETd)Me —~ Kye ~ grad ¢ (E),
results in the closed loop system
a=E' - J(a)E"d — M~'[J(e)Me + Kse + grad ¢ (E)],
or, in the “error coordinate system” of phase space, TSO(3) = SO(3)x
R3,
E =EJ(e)

¢ =-M-1[J(e)Me+ Kze+ grad p (E))]. ®)

tric matriz then all

Theorem 2 If K, is a positive definite sy tré :
trajectories of (6) tend toward one of the four critical pomts-oj: @. A
dense open set of initial conditions has its limit set at the minimum,

(Bye) = (1,0).

Proof: This is a direct application of Theorem 1 using
the information in Lemma 2.3 to determine the number and
stability properties of the critical points of .

a

3 Application of Strict Global Lyapunov Func-

tions

The new family of strict global Lyapunov functions introduced in
[10] requires the same setup as in Section 2.2 with a few extra as-
sumptions. We now assume the existence of a second Riemannian
metric on 7, ||+ ||, which is uniformly equivalent to the kinetic energy
metric, { - | - )3, in the sense that there exist two constants, &, K2,
such that for all w € TJ,

1
raflwlly < (w|w)i < wsflwll,.

‘We similarly assume that the Riemannian connection, V , generated

by the kinetic energy gives rise to a covariant derivative which is
bounded with respect to || - ||. It may be readily verified in the
present application that

(w|w)éwTM'w; |[w||éw'rw,

are equivalent, and that the connection corresponding to (- | -)
gives rise to a bounded covariant derivative. Finally, for the sake of
technical simplicity in this paper, we will assume that the dissipative
field, fs, takes the form of Rayleigh damping [1, Exc. IL3.7A].

In the earlier work cited above, [9, 10}, the author has introduced
a new Lyapunov function formed from the addition of an “angle
measurement” between the true and desired velocity, followed by a
consequent rescaling of the total energy, 7. We first review these
results in the next section, and apply that general analysis to the
case at hand in the following section.
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3.1 Previous Results and an Extension

The Riemannian metric is a symmetric isomorphism in M“[T'7, T*J).
By choosing a morphism in the other direction one obtains an “angu-

lar comparison” between the true velocity and the desired potential

co-vector field, as follows. Say that a morphism, F € MY[T*T,TT),

is a pre-metric if its symmetric part is a “positive definite” opera-

tor on each fiber. Given a a manifold, 7 , with a Riemannian metric,

M, on the tangent bundle, r : 7.7 — J, a pre-metric, F, and a

scalar valued map, ¢ € C1[J,RR], define the potential angle map,

a € CYTJ,R] by

o(v) & (Fdpor(v)|v). (7

Lemma 3.1 ( [10] ) The Lie derivative of the potential angle map,
a,along the dissipative mechanical system, f, (1), is a scalar valued
map on TJ which may be expressed as

Lya(v)=(Bv|v)~(Fdpor(v)| Kyv) - (dp - Fdy)o r(v).
where B € M“[TJ,TJ) denotes the morphism,
B:vwV, Fdy.

Since Lya has a term which is negative definite on J, it is in-
tuitively reasonable to hope that a strict Lyapunov function might
result from adding o to 7. This idea works after an an appropriate
rescaling of 7 which serves to dominate the indefinite terms of L fa.
In the sequel, we will make free use of the notion of lower and up-
per comparison functions, Ay, vy, for scalar valued maps, ¥, on J,
as well as lower and upper magnitude functions, VM, M, for mor-
phisms, M, over T.7, their associated scalar functions, Apr,vps, and
their constant lower and upper bounds — Var, M- These are defined
in the appendix, and they are critical components in the construction
of the new Lyapunov function.

Theorem 3 ( [10] ) Let f be a dissipative mechanical system (1).
For any valid potential angle map, a, (7), define the comparison
function, v € K4,

1) 2rox+m- (v3, 0 A1) (x)
+72 - [ (vaus), 0 377) (o)do],

where y; are non-decresaing functions satisfying

®)

—1__}q2 -1.
T > 11+ (4vr.m) VpTak, © M
n o> FlifivFTM oL

Y2 >ﬁ.

O

Then
19%7017 + a

is a positive definite function which has a derivative along trajectories
of f, bounded by
¥ =Lg(9) < —z'Qz

z(v) S [

and Q is the 2 X 2 positive definite matriz valued function

where
lldpor| |
el )°

1
HFTMK,
VK,Y007

VF,

Q)2 [

1
2HFTMK,

We will now offer a slight extension to this construction suitable
to the problem at hand — adaptive control using ¥ in the parameter
adjustment laws. If the metric morphism, M, is unknown, yet some
portion of ¥ which depends upon it remains after the construction of
the adjustment laws, then we obviously have a fatuous algorithm. It
turns out that the derivative of the rescaling function, ¥’ o7, remains



a part of any adjustment law based upon presently understood meth-
ods of parameter adaptation. Thus, we must find conditions under
which 7 is a multiple of the identity comparison function, ¥(x) = 7x,
so that 4" will be the constant function . We proceed to investigate
this possibility.

Say that ¥ has unscaled energy if 4 is a multiple of the identity
comparison function. Say that ¢ is a uniform potential if the ratio

yoc(t)
J— 10
14 |29 a0

is bounded for any smooth curve in the configuration space and if
there can be found a lower comparison function for ¢, Ay, and an
upper comparison function for [|de||, va, such that

vip 0,

is a scalar multiple of the identity map of K.

Proposition 3.2 If ¢ is a uniform potential function then there ez-
ists a a strict Lyapunov function, ¥, for f with unscaled energy.

Proof: We must exhibit a morphism, F', for which the com-
positions in (8) are all multiples of the identity, and for which
the gain inequalities (9) are satisfied by constants. Define the

morphsim, F, to be L

T el =
where I : T*J — TJ is the isomorphism which is isometric
with respect to || - || It is shown in [8] that following the recipe
for J using this choice of F' leads to a function with unscaled
energy.

3.2 Adaptive Inverse Dynamics on SO(3)

We now suppose that it is desired to implement (5) but that M is
unknown and the control is realized with an estimate, M, which is
to be tuned in response to the observed error. Namely, we apply the
control law urp + n(t) where

n(t) = M (E%d - J(a)E"d) + J(a) M E"d + J(E"d) Me.
This is linear in the parameter errors, M, so we wili write instead,
n(t) = H(E,e,a,d,d)p,
where H is a known matrix valued function of available data, and p

is a vector of unknown inertia parameter errors.

The reflex procedure in linear-in-parameter adaptive control the-
ory is to now adaptively adjust p according to the rule

p=—HT[o,M| (D3), (12)

where 4 is a strict Lyapunov function for the homogeneous plant (6)
(the array of partial derivatives of a function, f, with respect to the
specified coordinates is denoted D f), since this leads to a closed loop
system of the form

El _ EJ(e) Loy

¢ | | -M1[J(e)Me+ Kze + grad o (E)] M- [P

p  =—HT[0,M (DY),

(13)

for which a Lyapunov function is

1
9+ 50'p. (14)

But this is absurd on face value, since we have already assumed that
the actual value of M is unknown and cannot be used in (12).

Now examine the particular form of 9 in the present situation,

¥ =qon+a
=70 (3eTMe + 9(E)) + €™M (Fdo(E)),

and observe that
0 0 ' T T
D9 [ -1 ] = [89/6E, 89/De] [ [y ] = (7 on)e’ +(Fdo(E)) .

Clearly, if 9 has unscaled energy, 7(x) = X, then this expression is
free of dependence upon M, and it follows that (12) is readily realiz-
able. Of course, Proposition 3.2 provides a recipe for constructing a
strict Lyapunov function with unscaled energy for (1) provided that
¢ is a “uniform” potential in the sense defined above.

Lemma 3.3 The modified trace function (3) is a uniform potential
on SO(3).

Proof: It is shown in [8] that A, = 3up¢, is a lower compar-
ison function for ¢, and

vd, = [ud + #%] £

is an upper comparison function for ||de]|, £ having been defined
in Proposition 2.1 . It follows that

uh+ud
Vg 0 Ae(X) = 2'[—',,—]'X

is a multiple of the identity element, 1x,. Moreover, since
S0(3) is compact, the hessian of ¢, being smooth, has a bounded
norm and the second derivative to first derivative ratio in the
denﬁnition of a uniform potential (10) must be bounded as well.

‘We may now apply Proposition 3.2 and define a morphism F,
according to the construction (11) to get

1
F:T3SO(3) - TrSO(3) : w' s ———————w. 15

This yields the angle map

a(E,e) = ETMJY(PE),

2
1+ 2||JH(PE)|

following the prescription (7). The complete Lyapnov function is
now given as

2
HE,e)=7(e*Me+ tr {PE}) + ——irmmre MJ
(E,e)=7 ("Me+ tr { })+1+2"Jf(PE)"eMJ(PE),
where the constant,
¥ > max {1+ Faok,,om/4,1/7153} 5 o4 g %_4,

is chosen to satisfy the inequalities (9). The adaptive law, (12),

. _ 2
p=-HT (‘ye + TSR " 2"Jf(PE)”JT(PE)) , (16)

is clearly realizable with no knowledge of M except an upper bound
on its largest magnitude eigenvalue and a smallest bound on its small-
est magnitude eigenvalue required in the definition of 7.

Theorem 4 The adaptive procedure (16) results in a stable closed
loop state-parameter error system (18). If the reference signals,
D,d,d, are bounded then the rotation error, E, tends asymptotically
toward one of the four critical points of ¢ with zero velocity error,
e=0.



Proof: The positive definite Lyapunov function 9 + —%pr
has the derivative L;(9) along trajectories of the full closed
loop adaptive system (13), and this is bounded above by a
negative definite quadratic form, Li(9) < ~2TQ(E)z, z =
[llde(E)l, llelll, according to Theorem 3 . This demonstrates
the stability of the closed loop system.

Since SO(3) is compact, Q(E) admits a non-zero constant lower
bound, 73, so that Ly(¥) < —vgzTz < 0. Since Lg(V) is the
derivative of a scalar function which remains bounded for all
time, we have

00 {v 0]
0 > / L) (0)dt > f vgzTedt.
1] 0

Thus z is an £? function of time. Now & is governed by (E, ¢),
which is bounded as long as the reference signals, (D, d, d) are
bounded. Since an £2 function with bounded derivative tends
to zero [13], the boundedness of the reference signals ensures
to convergence of e and dy to zero. Since there are only four
critical points of ¢ in SO(3) according to Lemma 2.3 , the
conclusion follows.
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A Comparison Functions

Given two real open intervals, I;, T, C IR, define the group of com-
parison functions ,

K2, T} & {n €CT I, T: tim w(t) =infTyandth <ty = k() < n(tz)},
~+inf I}

to be those C" diffeomorphisms between the two intervals that take
the lower boundary point of Z; to the lower boundary point of Zs.

Given a manifold, X, a group of comparison functions may be
“applied” to that set by composition (“pullback”) through its scalar
valued maps, C[X,IR], or at least to the open set @ C X where
particular maps have an image in Z;. In the case that X has a
metric, p, with radius p - SUP;, ex P(1,22), then taking I, E
(0, 5) implies that any & € K.[Z,Z,] may be applied to any fived
point, z4 € X’ by

PR
R(z) = ko p(zq,z),

for any interval, Z,.

Now consider the collection of smooth scalar valued maps, onto
some specified interval, C[X, T,]. We may use K,[Z;,Z;] to compare
these functions as follows. For any map ¢ € C'[X,T;] which is
proper at least on the lower boundary of I, — that is, one which
attains its infimal value on some compact subset B8 ] Y infL) Cc X
— say that vy, Ay € K,[T;,T))] are, respectively, upper and lower
comparison functions for  on the open set y~}I,] C X, if

Ay 0 p(B,2) < ¢(z) < vy 0 p(B, 2),

where N
o(B,2)= ;g{,ﬁ(v,t)
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Now assume that the metric, p, is induced by some Riemannian
metric, || - ||. This induces a metric on every vector bundle, V, over
X, s0 that the magnitude of any morphism, M € MV, V), may be
well defined. For our purposes this is best accomplished. by recourse
to the scalar valued maps vy, pups € C7[ X, RF],

mu(e) £ sup (1Mol 20 € 4), and folly, =1} o)
vm(a) 2int (Mol : 0 € O4), and folly, = 1}.

If a compact “reference set” of interest, B C X has been chosen, then
these upper and lower magnitude maps generate a non-decreasing
scalar function,

a2
vm(X) = sup ppg(z),
#(B.z)<x

and a non-increasing scalar function,

()R int (),

nf
2)<
which may be thought of as comparison functions for yps, vy, but, of
course, are not in K,[Z}, -] since they may not be invertible (and, even
il invertible, the second function is monotone in the wrong direction).
Finally, denote the largest and smallest magnitude of M by

. ¥
BM S om(supTh); T 2 Am(sup ).
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