
Robot Control in a Message Passing Environment:
Theoretical Quest ions and Preliminary Experiments

Louis L. Whitcomb and Daniel E. Koditschek

Center for Systems Science
Yale University, Department of Electrical Engineering

1 Abstract

The performance of real-time distributed control systems is shown
to depend critically on both communication and computation
costs. A taxonomy for distributed system performance mea-
surement is introduced. A roughly accurate method of perfor-
mance prediction for simple systems is presented. Experimental
results demonstrate the effects of communication protocols on
real-world system performance.

2 Introduction

intuition in the simple ten-node networks described here, we are
interested in real-time computation of algorithms whose com-
plexity must grow exponentially with the degrees of freedom
[16]. Thus, we conclude that a much more systematic attack
upon distributed real-time control design will be needed.

This paper is organized as follows. In the next section we
offer a sketch of the large body of literature addressing such
issues as correctness, latency, and models of concurrency that
arise in this work. Section 3 then focuses upon certain aspects
of timeliness in distributed controller performance that seem to
have been relatively ignored in the literature to date. In partic-
ular, we introduce the notion of a cross latencu matrix , and
provide some experimental evidence of the subtlety in its causal

chosen for the computed torque control of a torque actuated in-

its performance. A conclusion follows.

This paper the design and imp1ementation Of a new mechanisms. Section 4 the network designs we have distributed controller intended to standardize all real-time com-

terconnection of any combination of devices from our growing
zoo of robotic sensors, actuators. and kinematic chains. We had

putation within the Yale Robotics Lab and to support the in- dustrial manipulator and provides experimental data concerning

set out with the intention of building “merely” an easily re-
configurable and incrementally cheap family of computational
engines in order to get on with the “real work” of robotics. We
quickly discovered that the very ubiquity of design that so fa-
cilitated interconnection led t o a potentially bewildering varia-
tion in network behavior depending upon apparently innocent
changes in topology and communication protocols. Thus, the
paper constitutes, as well, a prelude to research in the theory of
distributed message passing controllers.

We have distributed control computation over networks whose
nodes are based upon one of the most powerful commercially
available microprocessors - the Inmos T800 - and whose ca-
pacity can be easily expanded (in consequence of the T800’s
novel design) to meet almost any demand. However, mere ca-
pacity, in itself, is useless barring effective deployment. We pro-
vide preliminary experiments demonstrating our success in tap-
ping this processing power to achieve digital sampling rates and
floating point accuracy in the “benchmark” computed torque
algorithm that compare favorably with any results previously
reported in the literature. At the same time, these experiments
point out the subtleties involved in deploying a controller over
a network of processors: very different results obtain from ap-
parently slight modifications in deployment strategies; the very
notion of sampling rate itself must be revised within more gen-
eral issues of “timeliness”. Although these subtleties yield to

3 Physical and Computational Models

A burgeoning body of theory and working designs [13], attests to
the growing belief that distributed processing represents the only
viable solution to the expanding computational requirements of
robotic systems. A meaningful discussion of distributed systems
requires a taxonomy and model. Two widely accepted models of
concurrent computation are the shared memory (SM) model and
the communicating sequential process (CSP) model. The mod-
els provide fundamentally different mechanisms for interprocess
communication [14, 71.

A simple shared memory system might have a common bus of
some fixed bandwidth populated by many processors and a com-
mon memory store. This provides for efficient message broad-
casting, wherein one process communicates an identical message
to all other processors. However the communication bandwidth
remains constant as the number of processors varies, often ne-
cessitating exotic bus design while restricting the system to rel-
atively few (tens or so) useful processors [17].

A simple CSP system might have processors connected by in-
dividual point-to-point communication channels of fixed band-
width. Actual systems systems often offer a fixed number of
point-to-point communication connections for each processor,
thus total system communication bandwidth scales linearly with
the number of processors. At the expense of SM-style broad- ‘This work wits supported in part by INMOS Corporation, GMF

Robotics Corporation, Weitek Corporation, and the National Science Foun-
’dation under a Presidential Young Investigator Award held by the second

the csp systems communication bandwidth
appears to Offer the possibih’ Of very large scale distributed

author . systems.

CH2876-1/90/0000/1198$01.00 0 1990 IEEE
1198

3.1

We have used control systems based on both SM and CSP ar-
chitectures, and found CSP based architectures to offer the fol-
lowing advantages for robot control applications:

Extendable Interprocessor Communication Bandwidth:
The fixed bandwidth limitations of shared bus SM archi-
tectures restrict them either to applications requiring little
interprocessor communication or to applications requiring
relatively few processors. The CSP based architectures,
whose communication bandwidth can increase with the
number of processors, admits the possibility of practical
large scale distributed controllers.

CSP Architecture for Robot Control

No Broadcasting: The control structures we are developing
generally do not require that global information be broad-
cast to every processor.

Device 1 / 0 - Transmission and Isolation: The critical bus
bandwidth requirements of SM architecture demand a fast
parallel bus. The CSP architecture, with a multiplicity of
communication channels, places less stringent bandwidth
demands on individual channels. Relatively narrow (often
serial) communication hardware channels suffice, vastly
simplifying the hardware design issues of long distance
transmission and electrical isolation.

The INMOS Transputer is a commercially available micro-
processor designed for embedded control. The processor pro-
vides DMA support for interprocessor communication, hard-
ware primitives for intra-processor communication between mul-
titasked processes, sub microsecond context switching, and a
hardware scheduler which obviates the necessity of a real-time
operating system or kernel. The user has exceptional freedom
and ease in mapping an abstract topology of processes and soft
channels onto an actual hardware architecture of processors and
hardware channels.

3.2 Distributed Computer Controllers for Contin-
uous Dynamical Plants

The gap between continuous plant and digital discrete controller
models is familiar to every practicing engineer. The proper mod-
eling of system performance and machine arithmetic is an active
concern of both the control [3, 151 and computer science [ll, 21
communities. Investigators have also begun to directly address
the performance of discrete time nonlinear controllers in contin-
uous time closed loop systems [SI where, roughly speaking, we
desire a “Nyquist sampling theorem” for nonlinear systems.

Concurrent control system implementations, which are used
to accelerate computation, offer additional obstacles to accurate
analysis and synthesis tools. The very notion of sampling period
is compromised by a concurrent implementation. A conventional
discrete time controller has its outputs assume constant values
for discrete sample periods. A concurrent controller, however,
may have no well defined sample period because the inputs and
outputs may be serviced asynchronously and concurrently.

4 Timeliness: A Critical Aspect of Dis-
tributed Controller Performance

There is no reason to hope for quick theoretical solutions to the
myriad design issues that arise from juxtaposition of continuous
dynamical plants with digital discrete distributed controllers.
Indeed, as we have tried to suggest above, not even the proper
analytical framework for posing rigorous hybrid design problems
is yet available. At least, however, most of the component is-
sues have already attracted a considerable following, a growing
literature, and we can expect a great deal of progress over the
next decade.

Notably absent from many treatments of distributed real-
time control is the explicit inclusion of interprocessor communi-
cation costs concomitant with computation costs of a distributed
controller. Yet, in the course of building and running the robot
controller described in the next section, we have observed signifi-
cant variations in performance whose cause can be attributed to
this phenomenon. The “timeliness” of computations through-
out a network depends upon both communication and compu-
tation costs. In turn, the communication costs critically de-
pend on both network topology and the interprocessor buffering
paradigms employed.

4.1 Measures of “Timeliness”

A simple sequential model for a terminating computation has
it read some operands from an input, evaluate an expression,
and write the results to an output. We shall call the inter-
val of time between reading the operand and writing the result
(including the finite period consumed by i/o operations them-
selves) the latency of the computation. If the computation is
performed at regular cycles, we shall term the interval of time
between successive results the update period of the system.
In the terminology of classical control theory, “sample period”
corresponds to the above definition of update period.

A simple concurrent model of computation has the system
reading from n inputs, computing an expression, and writing to
m outputs all concurrently. The “Sample period” is ill defined
in this case. However, a well defined interval of time elapses
between data being read at input i and a valid result based upon
this data appearing at output j . We shall term this interval
the i - j t h cross latency of the computation. There will,
in general, be n . m cross latencies for such a system. If the
computation is performed repetitively, we shall term the interval
of time between successive results at the j’th output to be the
j t h update period of the computation.

Note that, unlike the sequential model presented above where
update period is at least as great as latency, the concurrent
model has no such restriction because several computations may
be simultaneously executing. We feel these quantities capture
important qualities of concurrent computation systems essential
to control applications, and in the sequel we discuss how inter-
nal system structure determines the values of these measures,
as well as how they might relate to dynamical models of robot
performance. We conclude this section with a discussion of how
to measure update and latency in actual distribute&systems.

4.1.1 U p d a t e and Latency Measurement

To measure the update rate of a process one can simply filter
the output of the simple process through a dedicated update
measurement process. As indicated in the picture of Figure 1
the update measurement process simply forwards the output of
the simple process, and reports update measurements to the host

4 over a special channel.

Updale
Report.

Figure 1: Update Measurement
Latency of one or more processes is measured by tagging

incoming data with a timestamp. The timestamp is passed along
with the results of each computation, and the process which
reads the final output can read the timestamp to determine how
long the data was in transit. This technique is pictured in Figure
2.

Figure 2: Latency Measurement
Note that measurement of latency is problematic if the di-

rected graph corresponding to data flow contains any directed
cycles. For in such a case, when the data “circulates”, suit-
able criteria determining when the computation has finished are
required. Many of our implementations have data flowing in
undirected cycles, but we have never had the need for directed
cycles.

Cross latency is measured in systems which have multiple
data inputs and multiple data outputs. Latency between any
individual data input and output is the actual cross latency for
the input-output pair.

4.1.2 Global Clocks

Establishing a global time reference is a simple matter when
the network is fully connected either via channels (CSP Model)
or a common bus (SM Model). In practice we have designed
asynchronous control networks. Controller operation does not
require any global time reference - feedback from the physical
plant itself provides the ultimate measure of “timeliness”. Only
when we wish additional diagnostic information from the system,
such as cross latency or run-time execution tracing, does a global
clock become necessary. A global clock of sufficient accuracy
for most purposes may be established by providing stable local
processor clocks which are synchronized at system startup.

4.2 Communication and Computation P e r f o r m a n c e
Issues

A computer system often has predictable time costs associated
with primitive computation operations such as arithmetic (+, -,
X , t, etc ...), elementary functions (sin(.), cos(.), etc ...), con-
trol flow, and the like. Distributed systems will also often have
predictable time costs associated with primitive interprocessor
communication operations. It is sometimes.possible to estimate

the execution time of simple deterministic programs by summing
the time taken for each individual operation in the source code.
This naive estimate of system performance, however, fails t o ac-
count for significant system level effects which we s h d discuss
in this section. We will illustrate system level effects in the con-
text of pipelined systems, because they are perhaps the simplest
concurrent systems which clearly illustrate the phenomenon.

4.2.1 Buffering Effects: No Buffering

When several processes pass data over unbuffered links in a
pipelined fashion the data update and latency depend in a curi-
ous fashion on the intervals a t which data is made available to
the first processor (pinput), the individual process latencies (pi),
the individual communication latencies (c,), and the intervals a t
which the final results are read from the last process (poutput).

Figure 3: A Simple Pipelined Computation
Figure 3 shows a simple pipeline in which a process repeat-

edly performs a blocking read on its input link, evaluates a func-
tion, and performs a blocking write to its output link.

The average update rate of results from the pipeline is deter-
mined by the slowest process cycle in the pipe, maz(pinput, poutput,
(pi+c;+ci+l)i=1,2). This is a consequence of the synchronization
imposed by the unbuffered, blocking communication. At steady
state the processes all eventually depend synchronously either
directly or indirectly on the slowest process in the pipeline.

The average latency of the pipeline is more difficult to pre-
dict. The slowest process contributes the latency of its period.
The ”upstream” processes are directly or indirectly synchronized
with the slowest process - waiting to write their results to their
neighbor. Once a steady state is reached, each process upstream
of the slowest contributes one multiple of the slowest’s period to
the overall latency. The downstream processes form their own
pipeline which has its own slowest process, thus these processes
must be recursively analyzed t o determine their overall latency
contribution to the pipeline. The latency analysis must be ap-
plied recursively to the downstream processes until the only re-
maining downstream item is the period with which results are
read from the output of the pipeline, poutput.

4.2.2 Buffering Effects: Fifo Buffering

The case of communication via first-in first-out buffered links
with blocking 1/0 is the same as unbuffered links when one
represents buffered channels as an appropriately sized chain of
computationless processes which simply input and output re-
peatedly.

4.2.3 Buffering Effects: Latest Buffering

In another kind of buffering, which we shall call latest buffer-
ing, two processes perform one way communication via a shared
variable to which one process may perform atomic writes, and
from which the other process may perform atomic reads. The
reads and writes are discrete in time, and non blocking. The
second process clearly may only read the ‘‘latest’’ value written

1200

by the first process. This buffering technique can be useful for
avoiding synchronization problems in concurrent systems, since
the two processes are completely asynchronous.

The update period of such a process is simply that of the
computation itself along with the internal and external commu-
nication times. Note that the update rate is independent of the
data input rate. The latency period for data within a process
is given by the sum of the update period, the time the data
waited in the input buffer, and the time consumed by the actual
input and output operations. Figure 4, which shows the experi-
mentally measured latency of such a computational process as a
function of the frequency at which the input buffer receives new
data, shows that update rate is indeed independent of input rate
and that average latency is equal to the update period plus half
the input period.

+Input Data Rate

Figure 4: Update and Latency vs Data Input Rate.

5 A Distributed Robot Controller

We have implemented distributed real time control systems.
This section offers a brief discussion of some design and im-
plementation aspects of the actual control systems.

5.1 Device Independence: C o n t r o l and Actuation

Where does the controller end and the plant begin? While the
conceptual distinction between the two entities may be clear,
the physical division is ambiguous. Is the division at the output
shaft from the electric motor to the link? Is it at the command
input to the motor power amplifiers? Or is it at the diodes of
an optical shaft encoder?

We have found it convenient to place this conceptual division
within the processor network itself, partitioning the network into
an ac tua tor subsys tem considered to be part of the plant and
a control subsys tem which constitutes the controller. Each
robot joint has a dedicated ac tua tor processor which provides
a device independent joint interface to the control subsystem.
It handles the multitude of housekeeping task necessary to run
an actual motor - possibly including commutation, position
and velocity estimation, safety monitoring, and the like. The
actuator process is a smart device driver which provides the
control subsystem with a uniform interface to the many (often
infuriatingly different) motor hardware interfaces of the robot.

Each actuator process has one channel to and one channel
from the control subsystem. To the control subsystem it pro-
vides current state information - position and velocity of the
joint - in floating point format in conventional units. From the
control subsystem it receives torque (or force) commands, also

in floating point format and conventional units. This modular
design limits device dependent design to the actuator processors
and frees the control subsystem to perform the purely “algorith-
mic” task of executing a control law.

Subsystem 0

Figure 5 : Control System Structure
We feel that the distinction between actuator and controller

subsystems offers implementation advantages, by modularizing
device dependence, as well as the conceptual clarity of isolating
the more abstract algorithmic and computational control func-
tions within the controller subsystem.

5.1.1 Computa t iona l H a r d w a r e

The computational hardware for these implementations was the
Yale XP/DCS, a powerful real-time control node based on the
INMOS Transputer floating point microprocessor. Students a t
the Yale robotics Lab currently use the XP/DCS in actual work-
ing systems which include: A robot juggler [4], a GMF A-
500 SCARA arm (51 a field-rate real-time vision system, an ad-
vanced sensor-based obstacle avoidance system [6], a variable-
reluctance motor commutation test bed, and a one degree of
freedom pneumatic-muscle robot. Several new projects are un-
derway.

5.1.2 T h e P l a n t

The GMF Robotics Model A-500, a four degree of freedom
SCARA type arm shown in Figure 6, was chosen as the tar-
get mechanical unit. Each joint which has a motor capable
of delivering torque and a position sensor. Like virtually all
commercially available robot systems, the original A-500 system
controller provides an integrated high level user interface which
serves admirably in industrial applications, but precludes the
low level servo intervention which is needed in the research lab-
oratory. It was therefore necessary to replace the manufacturer’s
control system with our own low level interface. At present in-
terfaces are fully operational for the two primary revolute axes.

5.2 A c t u a l C o n t r o l l e r C o m p u t a t i o n a l P e r f o r m a n c e

As a preliminary test for this CSP controller architecture
we have implemented the well known “computed torque” non-
linear feedback control algorithm. While the performance of
this algorithm has been extensively analyzed and simulated, its
computational requirements have precluded its widespread use
in actual systems. Several excellent experimental implementa-
tions have been reported in the literature. A purely feedforward

1201

Figure 6: The GMF Model A-500

inverse dynamics implementation by Kanade at. al. [9] achieved
a 1.2 mS update period for a six axis arm by exploiting struc-
tural features of the Newton Euler derivation for equations of
motion. An implementation by Leahy et. al. [12] obtained a 14
mS sample period for a six axis arm. Khosla and Kanade [lo]
achieved a 2 mS sample period for a six a x i s arm using approx-
imations of nonlinear terms. An et. al. [l] obtained a 7 mS
sample period for a three axis arm in an exact implementation
using scaled integer representation.

Rather than optimizing this algorithm to fit an available ar-
chitecture, we constructed an architecture to suit the algorithm.
We based our implementation on the exact Euler-Lagrange equa-
tions for the three dynamically coupled joints of a GMF A-
500 SCARA arm, including all nonlinear terms of the deriva-
tion. Full 32 bit floating point representation was employed,
and mathematical expressions were not optimized to omit spe-
cial case operations on parameter values of 0.0, 1.0, and the like.

Coaitrolle.
Sub.p“m ,

Control

ink # Control ; e ,
tor

i n k # I j

Control

I 1

ink # Control : e
IO.

ink x; ; -

I 1

ink # Control : e
IO.

ink x; ; -

Figure 7: A Controller Hardware Topology.

The system was entirely programmed in the high level language
OCCAM, and no assembly language code was used anywhere in
the system. As pictured in the topology of Figure 7 the feed-
back expressian for an individual joint, comprising the entire
feedback gain calculation (including off-diagonal terms) and the
appropriate rows of the generalized interia and Coriolis matrices,
were partitioned to processors directly connected to the corre-

sponding joint actuator processor.
Figures 8, 9, and 10 tabulate actual measured cross latency

matrices for this implementation. The control network has three
inputs and three outputs corresponding to the respective robot
actuator processors. The row index index of a matrix indicates
the state input from each actuator and the column index indi-
cates the command output t o each actuator. For example the
(1,1) element of the matrix represents the self latency of the
network for actuator 1, while the (1,2) element represents the
cross latency from actuator 1 through the network to actuator
2. Units are microseconds.

The network topology and computation distribution scheme
was identical in each case, however different buffering strate-
gies were employed for interprocess communication. Latencies
uniformly under ImS, Figure 8 are observed for the unbuffered
network. Introducing latest buffering, shown in Figure 9, is seen
to significantly increase the off-diagonal terms - representing
increased latency between concurrent partitions of the control al-
gorithm. Figure 10 shows cross latencies obtained by employing
unbuffered communication within the algorithm partitions and
employing latest buffering between them. The strong diagonal
dominance of the matrix shows “self latencies” uniformly under
600pS (for the computationally identical exact computed torque
algorithm) at the expense of increased off-diagonal latencies.

These experimentally measured latencies reveal computa-
tional performance which compares favorably with other reported
implementations, thus establishing the usefulness of CSP archi-
tectures for robot control. This data underscores the contri-
bution of communication time to overall latency in concurrent
controllers. The examples particularly demonstrate the signif-
icance of buffering strategy in determining the communication
costs of a given network topology.

(l ink I[11 2 I 3 1 m]
860 731 829

Figure 8: Actual Cross Latency: Unbuffered (pSec)

1166 1021 1270 I (1 1422 1 1296 I 967 1
Figure 9: Actual Cross Latency: Latest Buffering (pSec)

I node 11 1 I 2 I 3 I
598 1456 1718

1707 1457

Figure 10: Actual Cross Latency: Combination of Un- and
Latest-Buffering (pSec)

1202

6 Conclusion

The substantial and ever increasing literature on distributed ar-
chitectures within the robotics community suggests a consensus
that concurrency offers the only practical solution to increasing
computational needs.

We have argued that sample period, the classical measure
of “timeliness” in discrete time controllers, is problematic for
concurrent control systems, and have proposed the well defined
quantities of update period (which reduces to sample period
in the case of sequential implementations) and cross latency as
generalized measures of controller computational performance.

We have constructed a working robot controller, using com-
mercially available components and development tools, whose
performance compares satisfactorily with both sequential and
distributed applications in the literature. Moreover, our exper-
iments demonstrate that update and latency in concurrent sys-
tems depend critically on both c o m p u t a t i o n a n d c o m m u n i c a t i o n
costs even though the latter have been relatively ignored in the
literature. We have shown that, in turn, communication costs
depend critically on both the network topology and buffering
strategy.

For simple (pipeline) topologies we have developed a roughly
accurate tool for predicting the latency and update periods that
result from the buffering paradigms of Section 4.2, as depicted
in Figure 4. The surprising variation in cross latencies (Figures
8,9, and 10) that obtains from schemes in the less trivial topolo-
gies (Figure 7) suggests the need for a richer set of theoretical
techniques. For even though we do not know exactly what ef-
fect the various cross latencies will have on the performance of
our physical closed loop systems (experiments of this kind are
presently in progress) it seems virtually certain that these effects
will become more dramatic in larger distributed controllers.

References
Chae H. An, Christopher G. Atkeson, and John M. Hollerbach.
Model-Based Control of a Robot Manipulator. MIT Press, Cam-
bridge, MA, USA, 1988.

Geoff Barrett. Verifying the transputer. In N A T U G I : Proceedings
of the First Conference of The North American Tmnsputer Useers
Group, pages 21-29, Salt Lake City, UT, USA, 1989.

R. W. Brockett. On the computer control of movement. In IEEE
International Conference on Robotics and Automation, pages
534-540, Philadelphia, PA, USA, 1988.

M. Biihler , D. E. Koditschek, and P.J. Kindlmann. A Simple
Juggling Robot: Theory and Experimentation. In V. Hayward
and 0. Khatib, editors, International Symposium on Ezperimen-
tal Robotics, page (to appear). Springer-Verlag, 1989.

M. Buhler, L. Whitcomb, F. Levin, and D. E. Koditschek. A
distributed message passing computational and i/o engine for
real-time motion control. In Proc. American Control Conference,
pages 478-488, Pittsburgh, PA, Jun 1989. American Control Sc-
ciety.

Edward Cheung and Vladimir Lumelsky. Development of sensi-
tive skin for a 3d robot arm operating in an uncertain environ-
ment. In I E E E International Conference on Robotics and A u -
tomation, pages 1056-1061, Scottsdale, AZ, USA, 1989.

C. A. R. Hoare. Communicating Sequential Processes. Ptentice-
Hall, Englewood Cliffs, NJ, USA, 1985.

[E] Ping Hsu and Shankar Sastry. The effect of discretized feedback
in a closed loop system. In Proceedings of the 26th Conference on
Decision and Control, pages 1518-1523, Los Angeles, California,
USA, 1987.

[9] Takeo Kanade, Pradeep K. Khosla, and Nobuhiko Tanaka. Real-
time control of cmu direct-drive arm ii using customized inverse
dynamics. In I E E E Conference on Decision and Control, pages
1345-1352, Las Vegas, Nevada, USA, 1984.

[lo] Pradeep K. Khosla and Takeo Kanade. Real-time implementa-
tion and evaluation of model-based controls on cmu dd arm ii. In
Proceeding IEEE International Conference on Robotics and A u -
tomation, pages 1546-1555, San Francisco, CA, Apr 1986.

[I l l U . W. Kulisch and W. L. Miranker. The arithmatic of the digital
computer: A new approach. SIAM Review, 28(1):1-40, March
1986.

[12] M. B. Leahy, Jr . , K. P. Valavanis, and G. N. Saridis. The effects
of dynamic models on robot control. In IEEE International Con-
ference on Robotics and Automation, page 4954, San Francisco,
CA, USA, 1986.

[13] C.S.G. Lee. IEEE Transactions on Robotics and Automation Spe-
cial Issue on Robot Manipulators: Algorithms and Architectures.,
October 1989.

[14] A . Pnueli. Applications of temporal logic to the specification and
verification of reactive systems: A survey of current trends. In
J.W. Bakker, W.P. de Roever, and G. Rozenberg, editors, Cur-
rent Trends in Concurrency, chapter 9, pages 510-584. Springer-
Verlag, 1986.

[15] P. J . Ramadge and W. M. Wonham. Supervisory control of a class
of discrete event processes. SIAM J . Control and Opttmizal ion,
25(1):206-230, Jan 1987.

[16] E. Rimon and D. E. Koditschek. Exact robot navigation in
geometrically complicated but topologically simple spaces. In
Proc. IEEE International Conference on Robotics and Automa-
tion, Cincinnati, OH, USA, May 1990.

[17] P. Woodbury, A. Wilsoc B. Shein, B. Gertner, P. Y. Chen,
J . Barttlet, and 2. Aral. Shared memory multiprocessors: The
right approach to parallel processing. In Proc. 94th I E E E C o m -
puter Society International Conference - C O M P C O N , pages 72-
80, San Francisco, CA, USA, February 1989. IEEE Computer
Society Press.

1203

