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1 Abstract 

The performance of real-time distributed control systems is shown 
to depend critically on both communication and computation 
costs. A taxonomy for distributed system performance mea- 
surement is introduced. A roughly accurate method of perfor- 
mance prediction for simple systems is presented. Experimental 
results demonstrate the effects of communication protocols on 
real-world system performance. 

2 Introduction 

intuition in the simple ten-node networks described here, we are 
interested in real-time computation of algorithms whose com- 
plexity must grow exponentially with the degrees of freedom 
[16]. Thus, we conclude that a much more systematic attack 
upon distributed real-time control design will be needed. 

This paper is organized as follows. In the next section we 
offer a sketch of the large body of literature addressing such 
issues as correctness, latency, and models of concurrency that 
arise in this work. Section 3 then focuses upon certain aspects 
of timeliness in distributed controller performance that seem to 
have been relatively ignored in the literature to  date. In partic- 
ular, we introduce the notion of a cross latencu matrix , and 
provide some experimental evidence of the subtlety in its causal 

chosen for the computed torque control of a torque actuated in- 

its performance. A conclusion follows. 

This paper the design and imp1ementation Of a new mechanisms. Section 4 the network designs we have distributed controller intended to  standardize all real-time com- 

terconnection of any combination of devices from our growing 
zoo of robotic sensors, actuators. and kinematic chains. We had 

putation within the Yale Robotics Lab and to support the in- dustrial manipulator and provides experimental data concerning 

set out with the intention of building “merely” an easily re- 
configurable and incrementally cheap family of computational 
engines in order to  get on with the “real work” of robotics. We 
quickly discovered that the very ubiquity of design that so fa- 
cilitated interconnection led t o  a potentially bewildering varia- 
tion in network behavior depending upon apparently innocent 
changes in topology and communication protocols. Thus, the 
paper constitutes, as well, a prelude to  research in the theory of 
distributed message passing controllers. 

We have distributed control computation over networks whose 
nodes are based upon one of the most powerful commercially 
available microprocessors - the Inmos T800 - and whose ca- 
pacity can be easily expanded (in consequence of the T800’s 
novel design) to  meet almost any demand. However, mere ca- 
pacity, in itself, is useless barring effective deployment. We pro- 
vide preliminary experiments demonstrating our success in tap- 
ping this processing power to  achieve digital sampling rates and 
floating point accuracy in the “benchmark” computed torque 
algorithm that compare favorably with any results previously 
reported in the literature. At the same time, these experiments 
point out the subtleties involved in deploying a controller over 
a network of processors: very different results obtain from ap- 
parently slight modifications in deployment strategies; the very 
notion of sampling rate itself must be revised within more gen- 
eral issues of “timeliness”. Although these subtleties yield to  

3 Physical and Computational Models 

A burgeoning body of theory and working designs [13], attests to  
the growing belief that distributed processing represents the only 
viable solution to  the expanding computational requirements of 
robotic systems. A meaningful discussion of distributed systems 
requires a taxonomy and model. Two widely accepted models of 
concurrent computation are the shared memory (SM) model and 
the communicating sequential process (CSP) model. The mod- 
els provide fundamentally different mechanisms for interprocess 
communication [14, 71. 

A simple shared memory system might have a common bus of 
some fixed bandwidth populated by many processors and a com- 
mon memory store. This provides for efficient message broad- 
casting, wherein one process communicates an identical message 
to  all other processors. However the communication bandwidth 
remains constant as the number of processors varies, often ne- 
cessitating exotic bus design while restricting the system to rel- 
atively few (tens or so) useful processors [17]. 

A simple CSP system might have processors connected by in- 
dividual point-to-point communication channels of fixed band- 
width. Actual systems systems often offer a fixed number of 
point-to-point communication connections for each processor, 
thus total system communication bandwidth scales linearly with 
the number of processors. At the expense of SM-style broad- ‘This work wits supported in part by INMOS Corporation, GMF 
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3.1 

We have used control systems based on both SM and CSP ar- 
chitectures, and found CSP based architectures to offer the fol- 
lowing advantages for robot control applications: 

Extendable Interprocessor Communication Bandwidth: 
The fixed bandwidth limitations of shared bus SM archi- 
tectures restrict them either to applications requiring little 
interprocessor communication or to  applications requiring 
relatively few processors. The CSP based architectures, 
whose communication bandwidth can increase with the 
number of processors, admits the possibility of practical 
large scale distributed controllers. 

CSP Architecture for Robot Control 

No Broadcasting: The control structures we are developing 
generally do not require that global information be broad- 
cast to every processor. 

Device 1 / 0  - Transmission and Isolation: The critical bus 
bandwidth requirements of SM architecture demand a fast 
parallel bus. The CSP architecture, with a multiplicity of 
communication channels, places less stringent bandwidth 
demands on individual channels. Relatively narrow (often 
serial) communication hardware channels suffice, vastly 
simplifying the hardware design issues of long distance 
transmission and electrical isolation. 

The INMOS Transputer is a commercially available micro- 
processor designed for embedded control. The processor pro- 
vides DMA support for interprocessor communication, hard- 
ware primitives for intra-processor communication between mul- 
titasked processes, sub microsecond context switching, and a 
hardware scheduler which obviates the necessity of a real-time 
operating system or kernel. The user has exceptional freedom 
and ease in mapping an abstract topology of processes and soft 
channels onto an actual hardware architecture of processors and 
hardware channels. 

3.2 Distributed Computer Controllers for Contin- 
uous Dynamical Plants 

The gap between continuous plant and digital discrete controller 
models is familiar to every practicing engineer. The proper mod- 
eling of system performance and machine arithmetic is an active 
concern of both the control [3, 151 and computer science [ll,  21 
communities. Investigators have also begun to directly address 
the performance of discrete time nonlinear controllers in contin- 
uous time closed loop systems [SI where, roughly speaking, we 
desire a “Nyquist sampling theorem” for nonlinear systems. 

Concurrent control system implementations, which are used 
to accelerate computation, offer additional obstacles to accurate 
analysis and synthesis tools. The very notion of sampling period 
is compromised by a concurrent implementation. A conventional 
discrete time controller has its outputs assume constant values 
for discrete sample periods. A concurrent controller, however, 
may have no well defined sample period because the inputs and 
outputs may be serviced asynchronously and concurrently. 

4 Timeliness: A Critical Aspect of Dis- 
tributed Controller Performance 

There is no reason to hope for quick theoretical solutions to the 
myriad design issues that arise from juxtaposition of continuous 
dynamical plants with digital discrete distributed controllers. 
Indeed, as we have tried to suggest above, not even the proper 
analytical framework for posing rigorous hybrid design problems 
is yet available. At least, however, most of the component is- 
sues have already attracted a considerable following, a growing 
literature, and we can expect a great deal of progress over the 
next decade. 

Notably absent from many treatments of distributed real- 
time control is the explicit inclusion of interprocessor communi- 
cation costs concomitant with computation costs of a distributed 
controller. Yet, in the course of building and running the robot 
controller described in the next section, we have observed signifi- 
cant variations in performance whose cause can be attributed to 
this phenomenon. The “timeliness” of computations through- 
out a network depends upon both communication and compu- 
tation costs. In turn, the communication costs critically de- 
pend on both network topology and the interprocessor buffering 
paradigms employed. 

4.1 Measures of “Timeliness” 

A simple sequential model for a terminating computation has 
it read some operands from an input, evaluate an expression, 
and write the results to an output. We shall call the inter- 
val of time between reading the operand and writing the result 
(including the finite period consumed by i/o operations them- 
selves) the latency of the computation. If the computation is 
performed at  regular cycles, we shall term the interval of time 
between successive results the update period of the system. 
In the terminology of classical control theory, “sample period” 
corresponds to the above definition of update period. 

A simple concurrent model of computation has the system 
reading from n inputs, computing an expression, and writing to 
m outputs all concurrently. The “Sample period” is ill defined 
in this case. However, a well defined interval of time elapses 
between data being read at  input i and a valid result based upon 
this data appearing at  output j .  We shall term this interval 
the i - j t h  cross latency of the computation. There will, 
in general, be n . m cross latencies for such a system. If the 
computation is performed repetitively, we shall term the interval 
of time between successive results at  the j’th output to be the 
j t h  update period of the computation. 

Note that, unlike the sequential model presented above where 
update period is at  least as great as latency, the concurrent 
model has no such restriction because several computations may 
be simultaneously executing. We feel these quantities capture 
important qualities of concurrent computation systems essential 
to control applications, and in the sequel we discuss how inter- 
nal system structure determines the values of these measures, 
as well as how they might relate to dynamical models of robot 
performance. We conclude this section with a discussion of how 
to measure update and latency in actual distribute&systems. 



4.1.1 U p d a t e  and Latency Measurement  

To measure the update rate of a process one can simply filter 
the output of the simple process through a dedicated update 
measurement process. As indicated in the picture of Figure 1 
the update measurement process simply forwards the output of 
the simple process, and reports update measurements to  the host 

4 over a special channel. 

Updale 
Report. 

Figure 1: Update Measurement 
Latency of one or more processes is measured by tagging 

incoming data with a timestamp. The timestamp is passed along 
with the results of each computation, and the process which 
reads the final output can read the timestamp to determine how 
long the data was in transit. This technique is pictured in Figure 
2. 

Figure 2: Latency Measurement 
Note that measurement of latency is problematic if the di- 

rected graph corresponding to data flow contains any directed 
cycles. For in such a case, when the data “circulates”, suit- 
able criteria determining when the computation has finished are 
required. Many of our implementations have data flowing in 
undirected cycles, but we have never had the need for directed 
cycles. 

Cross latency is measured in systems which have multiple 
data inputs and multiple data outputs. Latency between any 
individual data input and output is the actual cross latency for 
the input-output pair. 

4.1.2 Global  Clocks 

Establishing a global time reference is a simple matter when 
the network is fully connected either via channels (CSP Model) 
or a common bus (SM Model). In practice we have designed 
asynchronous control networks. Controller operation does not 
require any global time reference - feedback from the physical 
plant itself provides the ultimate measure of “timeliness”. Only 
when we wish additional diagnostic information from the system, 
such as cross latency or run-time execution tracing, does a global 
clock become necessary. A global clock of sufficient accuracy 
for most purposes may be established by providing stable local 
processor clocks which are synchronized at system startup. 

4.2 Communication and Computation P e r f o r m a n c e  
Issues 

A computer system often has predictable time costs associated 
with primitive computation operations such as arithmetic ( +, -, 
X ,  t, etc ... ), elementary functions ( sin(.), cos(.), etc ... ), con- 
trol flow, and the like. Distributed systems will also often have 
predictable time costs associated with primitive interprocessor 
communication operations. It is sometimes.possible to  estimate 

the execution time of simple deterministic programs by summing 
the time taken for each individual operation in the source code. 
This naive estimate of system performance, however, fails t o  ac- 
count for significant system level effects which we s h d  discuss 
in this section. We will illustrate system level effects in the con- 
text of pipelined systems, because they are perhaps the simplest 
concurrent systems which clearly illustrate the phenomenon. 

4.2.1 Buffering Effects: No Buffering 

When several processes pass data over unbuffered links in a 
pipelined fashion the data  update and latency depend in a curi- 
ous fashion on the intervals a t  which data is made available to 
the first processor (pinput), the individual process latencies (pi), 
the individual communication latencies (c,), and the intervals a t  
which the final results are read from the last process (poutput). 

Figure 3: A Simple Pipelined Computation 
Figure 3 shows a simple pipeline in which a process repeat- 

edly performs a blocking read on its input link, evaluates a func- 
tion, and performs a blocking write to  its output link. 

The average update rate of results from the pipeline is deter- 
mined by the slowest process cycle in the pipe, maz(pinput, poutput, 
(pi+c;+ci+l)i=1,2). This is a consequence of the synchronization 
imposed by the unbuffered, blocking communication. At steady 
state the processes all eventually depend synchronously either 
directly or indirectly on the slowest process in the pipeline. 

The average latency of the pipeline is more difficult to  pre- 
dict. The slowest process contributes the latency of its period. 
The ”upstream” processes are directly or indirectly synchronized 
with the slowest process - waiting to write their results to  their 
neighbor. Once a steady state is reached, each process upstream 
of the slowest contributes one multiple of the slowest’s period to  
the overall latency. The downstream processes form their own 
pipeline which has its own slowest process, thus these processes 
must be recursively analyzed t o  determine their overall latency 
contribution to the pipeline. The latency analysis must be ap- 
plied recursively to  the downstream processes until the only re- 
maining downstream item is the period with which results are 
read from the output of the pipeline, poutput. 

4.2.2 Buffering Effects: Fifo Buffering 

The case of communication via first-in first-out buffered links 
with blocking 1/0 is the same as unbuffered links when one 
represents buffered channels as an appropriately sized chain of 
computationless processes which simply input and output re- 
peatedly. 

4.2.3 Buffering Effects: Latest  Buffering 

In another kind of buffering, which we shall call latest buffer- 
ing, two processes perform one way communication via a shared 
variable to  which one process may perform atomic writes, and 
from which the other process may perform atomic reads. The 
reads and writes are discrete in time, and non blocking. The 
second process clearly may only read the ‘‘latest’’ value written 
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by the first process. This buffering technique can be useful for 
avoiding synchronization problems in concurrent systems, since 
the two processes are completely asynchronous. 

The update period of such a process is simply that of the 
computation itself along with the internal and external commu- 
nication times. Note that the update rate is independent of the 
data input rate. The latency period for data within a process 
is given by the sum of the update period, the time the data 
waited in the input buffer, and the time consumed by the actual 
input and output operations. Figure 4, which shows the experi- 
mentally measured latency of such a computational process as a 
function of the frequency at which the input buffer receives new 
data, shows that update rate is indeed independent of input rate 
and that average latency is equal to  the update period plus half 
the input period. 

+Input Data Rate 

Figure 4: Update and Latency vs Data Input Rate. 

5 A Distributed Robot Controller 

We have implemented distributed real time control systems. 
This section offers a brief discussion of some design and im- 
plementation aspects of the actual control systems. 

5.1 Device Independence: C o n t r o l  and Actuation 

Where does the controller end and the plant begin? While the 
conceptual distinction between the two entities may be clear, 
the physical division is ambiguous. Is the division at the output 
shaft from the electric motor to the link? Is it at the command 
input to the motor power amplifiers? Or is it at the diodes of 
an optical shaft encoder? 

We have found it convenient to  place this conceptual division 
within the processor network itself, partitioning the network into 
an ac tua tor  subsys tem considered to  be part of the plant and 
a control  subsys tem which constitutes the controller. Each 
robot joint has a dedicated ac tua tor  processor which provides 
a device independent joint interface to the control subsystem. 
It handles the multitude of housekeeping task necessary to run 
an actual motor - possibly including commutation, position 
and velocity estimation, safety monitoring, and the like. The 
actuator process is a smart device driver which provides the 
control subsystem with a uniform interface to  the many (often 
infuriatingly different) motor hardware interfaces of the robot. 

Each actuator process has one channel to  and one channel 
from the control subsystem. To the control subsystem it pro- 
vides current state information - position and velocity of the 
joint - in floating point format in conventional units. From the 
control subsystem it receives torque (or force) commands, also 

in floating point format and conventional units. This modular 
design limits device dependent design to the actuator processors 
and frees the control subsystem to perform the purely “algorith- 
mic” task of executing a control law. 

Subsystem 0 

Figure 5 :  Control System Structure 
We feel that the distinction between actuator and controller 

subsystems offers implementation advantages, by modularizing 
device dependence, as well as the conceptual clarity of isolating 
the more abstract algorithmic and computational control func- 
tions within the controller subsystem. 

5.1.1 Computa t iona l  H a r d w a r e  

The computational hardware for these implementations was the 
Yale XP/DCS, a powerful real-time control node based on the 
INMOS Transputer floating point microprocessor. Students a t  
the Yale robotics Lab currently use the XP/DCS in actual work- 
ing systems which include: A robot juggler [4], a GMF A- 
500 SCARA arm (51 a field-rate real-time vision system, an ad- 
vanced sensor-based obstacle avoidance system [6], a variable- 
reluctance motor commutation test bed, and a one degree of 
freedom pneumatic-muscle robot. Several new projects are un- 
derway. 

5.1.2 T h e  P l a n t  

The GMF Robotics Model A-500, a four degree of freedom 
SCARA type arm shown in Figure 6, was chosen as the tar- 
get mechanical unit. Each joint which has a motor capable 
of delivering torque and a position sensor. Like virtually all 
commercially available robot systems, the original A-500 system 
controller provides an integrated high level user interface which 
serves admirably in industrial applications, but precludes the 
low level servo intervention which is needed in the research lab- 
oratory. It was therefore necessary to  replace the manufacturer’s 
control system with our own low level interface. At present in- 
terfaces are fully operational for the two primary revolute axes. 

5.2 A c t u a l  C o n t r o l l e r  C o m p u t a t i o n a l  P e r f o r m a n c e  

As a preliminary test for this CSP controller architecture 
we have implemented the well known “computed torque” non- 
linear feedback control algorithm. While the performance of 
this algorithm has been extensively analyzed and simulated, its 
computational requirements have precluded its widespread use 
in actual systems. Several excellent experimental implementa- 
tions have been reported in the literature. A purely feedforward 
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Figure 6: The GMF Model A-500 

inverse dynamics implementation by Kanade at. al. [9] achieved 
a 1.2 mS update period for a six axis arm by exploiting struc- 
tural features of the Newton Euler derivation for equations of 
motion. An implementation by Leahy et. al. [12] obtained a 14 
mS sample period for a six axis arm. Khosla and Kanade [lo] 
achieved a 2 mS sample period for a six a x i s  arm using approx- 
imations of nonlinear terms. An et. al. [l] obtained a 7 mS 
sample period for a three axis arm in an exact implementation 
using scaled integer representation. 

Rather than optimizing this algorithm to fit an available ar- 
chitecture, we constructed an architecture to suit the algorithm. 
We based our implementation on the exact Euler-Lagrange equa- 
tions for the three dynamically coupled joints of a GMF A- 
500 SCARA arm, including all nonlinear terms of the deriva- 
tion. Full 32 bit floating point representation was employed, 
and mathematical expressions were not optimized to omit spe- 
cial case operations on parameter values of 0.0, 1.0, and the like. 

Coaitrolle. 
Sub.p“m , .................................. 

Control 

ink # Control ; e ,  
tor 

i n k # I  j 

Control 

I 1  

ink # Control : e  
IO. 

ink x; ; - 
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IO. 

ink x; ; - 

Figure 7: A Controller Hardware Topology. 

The system was entirely programmed in the high level language 
OCCAM, and no assembly language code was used anywhere in 
the system. As pictured in the topology of Figure 7 the feed- 
back expressian for an individual joint, comprising the entire 
feedback gain calculation (including off-diagonal terms) and the 
appropriate rows of the generalized interia and Coriolis matrices, 
were partitioned to processors directly connected to the corre- 

sponding joint actuator processor. 
Figures 8, 9, and 10 tabulate actual measured cross latency 

matrices for this implementation. The control network has three 
inputs and three outputs corresponding to the respective robot 
actuator processors. The row index index of a matrix indicates 
the state input from each actuator and the column index indi- 
cates the command output t o  each actuator. For example the 
(1,1) element of the matrix represents the self latency of the 
network for actuator 1, while the (1,2) element represents the 
cross latency from actuator 1 through the network to actuator 
2. Units are microseconds. 

The network topology and computation distribution scheme 
was identical in each case, however different buffering strate- 
gies were employed for interprocess communication. Latencies 
uniformly under ImS, Figure 8 are observed for the unbuffered 
network. Introducing latest buffering, shown in Figure 9, is seen 
to significantly increase the off-diagonal terms - representing 
increased latency between concurrent partitions of the control al- 
gorithm. Figure 10 shows cross latencies obtained by employing 
unbuffered communication within the algorithm partitions and 
employing latest buffering between them. The strong diagonal 
dominance of the matrix shows “self latencies” uniformly under 
600pS (for the computationally identical exact computed torque 
algorithm) at  the expense of increased off-diagonal latencies. 

These experimentally measured latencies reveal computa- 
tional performance which compares favorably with other reported 
implementations, thus establishing the usefulness of CSP archi- 
tectures for robot control. This data underscores the contri- 
bution of communication time to overall latency in concurrent 
controllers. The examples particularly demonstrate the signif- 
icance of buffering strategy in determining the communication 
costs of a given network topology. 

( l ink I[ 11 2 I 3 1  m] 
860 731 829 

Figure 8: Actual Cross Latency: Unbuffered (pSec) 

1166 1021 1270 I (1 1422 1 1296 I 967 1 
Figure 9: Actual Cross Latency: Latest Buffering (pSec) 

I node 11 1 I 2 I 3 I 
598 1456 1718 

1707 1457 

Figure 10: Actual Cross Latency: Combination of Un- and 
Latest-Buffering (pSec) 
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6 Conclusion 

The substantial and ever increasing literature on distributed ar- 
chitectures within the robotics community suggests a consensus 
that concurrency offers the only practical solution to  increasing 
computational needs. 

We have argued that sample period, the classical measure 
of “timeliness” in discrete time controllers, is problematic for 
concurrent control systems, and have proposed the well defined 
quantities of update period (which reduces to  sample period 
in the case of sequential implementations) and cross latency as 
generalized measures of controller computational performance. 

We have constructed a working robot controller, using com- 
mercially available components and development tools, whose 
performance compares satisfactorily with both sequential and 
distributed applications in the literature. Moreover, our exper- 
iments demonstrate that update and latency in concurrent sys- 
tems depend critically on both c o m p u t a t i o n  a n d  c o m m u n i c a t i o n  
costs even though the latter have been relatively ignored in the 
literature. We have shown that, in turn, communication costs 
depend critically on both the network topology and buffering 
strategy. 

For simple (pipeline) topologies we have developed a roughly 
accurate tool for predicting the latency and update periods that 
result from the buffering paradigms of Section 4.2, as depicted 
in Figure 4. The surprising variation in cross latencies (Figures 
8,9, and 10) that  obtains from schemes in the less trivial topolo- 
gies (Figure 7) suggests the need for a richer set of theoretical 
techniques. For even though we do not know exactly what ef- 
fect the various cross latencies will have on the performance of 
our physical closed loop systems (experiments of this kind are 
presently in progress) it seems virtually certain that these effects 
will become more dramatic in larger distributed controllers. 
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