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Summary. A dynamic model of running–the spring-loaded inverted pendulum
(SLIP)–has proven effective in describing the force patterns found in a wide va-
riety of animals and in designing and constructing a number of terrestrial running
robots. Climbing or vertical locomotion has, on the other hand, lacked such a sim-
ple and powerful model. Climbing robots to date have all been quasi-static in their
operation. This paper introduces a one degree of freedom model of a climbing robot
used to investigate the power constraints involved with climbing in a dynamic man-
ner. Particular attention is paid to understanding how springs and body dynamics
can be exploited to help relieve a limited power/weight ratio and achieve dynamic
running and climbing.

1 Introduction

We seek a fast and agile robot that can traverse both vertical and horizontal
real world terrain. Dynamic locomotion over unstructured and natural terrain
has proven to be a difficult task. A large number of walking robots have been
built, but only recently have running robots been developed that can move
at speeds of bodylengths/second over rough terrain [6, 21, 15]. The Rhex [6]
and Sprawl [15] families of dynamic machines are based on a Spring-loaded
Inverted Pendulum (SLIP) model of running developed from biomechanical
research [13, 20]. They have simple morphologies with only one actuator per
leg, are polypedal, run mostly open-loop, and rely on springs in the legs to
passively self-stabilize.

On the other hand, there have only been a few legged robots that can climb
vertical surfaces, and they have generally been limited to quasi-static climb-
ing regimes. Their reliance on vacuum or magnetics to achieve the adhesive
forces necessary for vertical climbing has limited them to select man-made
surfaces such as glass and metal [19, 10, 23]. Recently foot-hold based [11, 12]
and vectored thrust based climbers [1] have been developed, but they only
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slightly extend the range of traversable surfaces and do not address the role
of dynamics in climbing.

The motivation for this work is the ongoing development of the RiSE
robot–a bio-inspired hexapedal platform that is intended to both run and
climb vertical surfaces [8]. Currently under development are micro-spine [7, 16]
and dry-adhesive feet [22] to allow attachment to a wide range of natural verti-
cal environments. The current instantiation of the robot, however, is otherwise
like the remainder of climbing robots in that it moves slowly and its control
is based on quasi-static assumptions. The purpose of this work is to explore
how to achieve dynamic climbing and how that can be used to improve the
performance of the RiSE climbing robot.

To this end we discuss some of the fundamental differences between dy-
namic running and climbing and introduce a simple one-dimensional dynamic
climbing model to investigate approaches to mitigate some of the difficulties
in achieving dynamic climbing.

1.1 Dynamic Climbing

We reserve the term dynamic for robots that manage their kinetic as well
as their potential energy. For example, dynamic level ground running can
be distinguished from quasi-static locomotion by the phasing of kinetic and
gravitational potential energy during a stride. Generally, dynamic runners are
distinguished in physical structure by their essential use of springs in the legs.
These leg springs act as reservoirs that can store and return energy at whatever
required rate. In a typical dynamic gait, the spring energy is collected during
the initial phase of a stride (“compression”) and returned during the second
phase (“decompression”) as work done against gravity needed to raise again
the center of mass back close to its height lost in the initial phase. Dynamic
runners can (but need not) adopt an aerial phase gait to buy time for leg
recirculation, thereby affording speeds that surpass the inevitable frequency
limits of their leg swing actuators. In such situations, springs can recover and
return the kinetic energy otherwise lost in body deceleration.

Properly arranging these exchanges of kinetic and spring and gravitational
energy requires control schemes designed to do more than simply track the
joint reference trajectories typically used by walkers. The resulting dynamic
stability confers a degree of agility and maneuverability impossible to achieve
in quasi-static walking gaits. The question arises whether spring assistance
can be introduced in climbing that yields analogous benefits.

The major difference between climbing and running is in the alignment
of the gravity vector with respect to the direction of travel. We suggest that
this has three primary impacts on legged climbers. The first is that travel
aligned with the gravity vector implies that any forward progression increases
the gravitational potential of the robot, resulting in a net drain on the rest
of the system’s energy. As a consequence the SLIP model, which relies on
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the interchange of kinetic and gravitational potential energy from hopping or
bouncing to regulate the energy during a stride, no longer applies.

In addition to necessarily changing the way in which kinetic and spring
potential energy are exchanged with gravitational potential energy, a vertical
heading also implies that ground impacts are not induced by gravity. Es-
pecially for the front feet ground contact must be actively generated. This
changes, and to some degree reduces, the role of springs in mitigating ground
contact forces. Successful running robots have required springs to regulate the
impact at ground contact, and this is not necessarily the case for climbers.

A third major difference for climbing robots is the necessity of bi-lateral
or “adhesive” foot constraints. The development of feet that create an in-
pulling force to the wall is one of the major design requirements in a climbing
robot. Having to create feet that grasp the wall to deal with the inherent pitch
instability serendipitously reduces the chance of tipping in the roll direction–
which is a major source of instability in level ground runners. Once attached,
tipping becomes less of a problem, but motions such as repositioning the feet
on the ground via sliding, as is often done in turning, become more difficult.

In some sense these differences make climbing easier than running since
severe foot impacts and lateral tipping are less likely to occur. On the other
hand getting good foot attachment and regulating the system’s energy become
much more difficult. The problem of attachment has and continues to receive
a fair amount of attention. The second problem, more effectively using the
system’s power resources, motivates our investigation with a simple dynamic
climbing model.

A dynamic robot may lend scansorial machines advantages relative to to-
day’s quasi-static climbers analogous to the superiority of level ground runners
over their quasi-static walking counterparts: simplified control; improved effi-
ciency; access to and mobility through otherwise impassible terrain obstacles;
and, of course, faster speeds.

1.2 Power and Speed Constraints

We propose a simple one-dimensional climbing model to investigate the power
requirements and constraints associated with dynamic behavior. As a target
for dynamic motion we set a stride frequency of 3.5 Hz for our 3 kg robot.
Specifically, this figure is associated with the natural frequency of the linear
mass spring model associated with purely vertical SLIP hopping.

At lower frequencies, back-of-the-envelope calculations developed in Ap-
pendix A1 suggest that spring-extension requirements for SLIP-like running
(i.e., resonant bouncing in the sagittal plane over level ground) would incur
impracticably long leg compression.

Another method that has been used to characterize the onset of running is
the Froude number, (v2/gl), where v is the average fore-aft running speed, l is
the leg length and g is the constant of gravitational acceleration. The Froude
number is a dimensionless constant that has been used in biomechanics to



46 J.E. Clark and D.E. Koditschek

predict the dynamic similarity in legged animals that is manifest over a wide
range of sizes. It has been shown that many animals prefer to switch from a
walk to a run at speeds where their Froude number is about 0.5 [4, 18].

RiSE climbing at the target frequency of 3.5 Hz would travel at 0.55 m/s
which corresponds to a Froude number of 0.2. While it is not clear that the
Froude number is as applicable to climbing as it is to terrestrial locomotion,
it does give some indication of when velocity begins to significantly affect
the energetics of motion. The relatively low value of our target frequency’s
Froude number with respect to observed animal gait transitions suggests that
the target frequency we have chosen for dynamic climbing is probably not too
high.

With the current trajectory-tracking, quasi-static control scheme the robot
can climb with a stride frequency of 0.5 Hz. Is it theoretically possible to
achieve the required 7x increase in speed without changing the motors or
decreasing the robot’s mass?

The current robot, weighing 3 kg and equipped with two 4.5 W rated servo
motors for each of its six legs, has an input electrical power-to-mass ratio of
18:1. In order to climb vertically at our dynamic threshold (0.53 m/s with a
stride length of 0.15 m) requires a mechanical output power of 16 W just to
deliver the energy expended to increase the system’s gravitational potential.

Experiments on Geckos running up vertical walls has shown that the me-
chanical power that they expend to run at speeds up to 10 bodylengths/second
is about 5 W per kilogram of animal [9]–about the same ratio as for RiSE were
it to run at 3.5 Hz. What is remarkable is that for the gecko the mechanical
power expended when climbing is only about 10% greater than the amount
of energy lost to gravitational potential.

The 16 W power requirement for RiSE running at this speed represents
30% of the maximum continuous electrical input power that the robot motor’s
can consume without thermal damage. In reality only a small percentage of
the motors’ 54 W rating will be converted into useful mechanical work. The
two major reasons for this are (1) the motors are run at maximum power
for only a small segment of the stride and (2) motor inefficiencies (e.g. ther-
mal losses in the windings and mechanical losses in the bearings) and system
“drag” (e.g., transmission losses, generation of internal forces and negative
work associated with securing footholds) significantly diminish the mechani-
cally useful component of the power the motors consume.

In this paper we address the first of these two problems. Specifically we
consider how to use dynamic gaits and body/leg springs to better utilize
the available motor power. We show that in the ideal case these approaches
significantly reduce the peak power demanded from the motors permitting a
smaller gear reduction, which in turn allows a higher stride frequency.

With ideal motors the changing demands for torque and speed during the
leg cycle could be met by implementing a torque control law and allowing the
motor to operate at different points along the speed-torque curve. As shown
in Fig. 2 for the current motors, only 20% of the torque range is available for
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continuous use. This dramatically reduces the flexibility of any such motor
control law. Instead we investigate how to use passive springs and the body’s
inertia to maximize the application of the available electrical power.

The remainder of this paper is organized as follows. Section 2 describes the
one-dimensional model of climbing that we use to evaluate the efficacy of the
proposed schemes. The simplifying assumptions and equations of motion are
given. Section 3 details the numerical studies undertaken and compares the
various cases considered. Section 4 reviews the results and gives some areas
of future work.

2 Model Description

2.1 Assumptions

The RiSE robot (see Fig. 1a) is a six limbed climber with two controlled
degrees of freedom per leg. Each leg can rotate about an axis parallel to the
direction of motion, lifting the foot away from the ground (wing DOF). The
second actuated degree of freedom controls the rotation of the crank segment
of a four bar mechanism connecting the foot to the body. The foot is attached
to the follower link of the mechanism and traces a roughly elliptical path (see
Fig. 3) in a plane passing through the line of action of the wing DOF.

With the assumption that the wing DOF is primarily used to specify the
point of touchdown and lift-off in the cycle, the motion of the legs and body
can be modeled as planar. This abstraction neglects, among other things,
body pitch away from the wall–which is known to be a significant issue.

The further assumptions that the robot uses an alternating tripod gait
and that lateral motions of the robot are of secondary importance allow the
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g

Fig. 1. (A) Picture of RiSE climbing and (B) schematic of the simple climbing
model
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construction of a single degree of freedom model of climbing, shown in Fig. 1b.
The model consists of a point mass body with two virtual, massless legs. The
extension of the foot (XF ) during stance is fixed by the leg kinematics. In
this very simple model, we are ignoring friction from the legs, foot slipping,
etc. Although this oversimplification of the system ignores many real and
important effects, it is hopefully sufficient to examine some basic power and
stability issues and provide a basis for future examinations.

2.2 Stance Dynamics

The sum of the forces in the vertical direction is given by:

mẍ = F −mg (1)

where m is the mass of the body, F is the force generated by the motor, and
g is the gravitational constant opposing the motion.

The force generated by the leg actuator is based on a very simple motor
model. Due to thermal concerns arising from the nearly continuous use of
the motors when climbing, we assume that the motors operate within their
recommended operating range, shown in Fig. 2. Although the stall torque
of the motor is 28.8 mNm, the continuous operational limit (τMax) is only
4.98 mNm. The represents about 20% of the speed/torque curve given by:

τ =
ω − ωnl

−km

Velocity (rpm)

Torque (mNm)

4.5 Watt 
@ 12V

13,900
(No-load
Speed)

4.98
(Maximum Continuous Torque)

28.8
(Stall Torque)

Recommended operating range

Short term operation

Fig. 2. Model and specifications for the motors used on the RiSE robot. Data from
Maxon Precision Motors Inc. RE-16 motor (16 mm diameter, graphite brushes, 4.5
Watt, part number 118730) [2]
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(2R)

Swing
(4R)

Stance

Swing

Fig. 3. Nominal RiSE foot trajectory and simplification used in the model. The
RiSE leg kinematics result in a swing phase that is almost twice as long as the
stance phase. (Leg trajectory from RISE [8])

where ω is the angular velocity of the motor, ωnl is the no-load velocity limit,
and km is the slope of the speed/torque curve. Thus the maximum continu-
ously available torque is given by:

τ = min

(
ω − ωnl

−km
, τMax

)

In order to adapt to a one DOF linear model the trajectory of the four-bar
traveler is approximated with a circle of radius R, as shown in Fig. 3.

Linear Coordinates

With the following conversions:

FMax =
τMax

R

ẋnl = R ωnl

ke =
ẋnl

FMax
=
R2ωnl

τMax
= R2km

the motor torque law becomes:

F = min

(
ẋ− ẋnl

−ke
, FMax

)

where (km) is the slope of the force/velocity curve. With the addition of a
gear reduction (G), the force from the motor (F ) becomes:
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F = min

(
ẋ− ẋnl

G

−G2ke
, GFMax

)
= min

(
G2ẋ−Gẋnl

−ke
, GFMax

)
(2)

Combining (1) and (2) yields:

ẍ =
1
m

(
min

(
G2ẋ−Gẋnl

−ke
, GFMax

)
−mg

)
(3)

Gait transitions occur when (XF −x) = 0, i.e. when the leg has reached the
end of the vertical section of travel. Since the four-bar mechanism fixes the gait
trajectory, XF is fixed at 2R. Whether the leg is capable of resetting within
the duration of the last stance phase is a function of the swing dynamics,
described below.

2.3 Massless Swing Dynamics

Of course in the physical system the mass of the legs is non-zero, and the
leg’s trajectory during the swing phase is a function of its dynamics. Initially,
however, these dynamics are ignored and the swing phases is considered as a
binary state: either the leg can return to the touchdown position in time, or
it cannot.

The time that it will take the leg to retract, tSwing, is bounded by no-load,
ẋnl, and max continuous velocity, ẋτMax

, of the foot, as given below:

G 2R
ẋτMax

≥ tSwing ≥ G 2R
ẋnl

(4)

The left side of 4 represents an upper bound on the duration of the swing
phase.

3 Numerical Simulation

3.1 Trajectory vs. Force Based Gaits

In the current control philosophy a gait is generated by specifying a desired
trajectory for the path of the feet. Typically four phases are specified: swing,
attachment, stance, and detachment. Using the motor encoder readings and
PD control the legs attempt to track this trajectory throughout the stride.
Forces are generated when errors in the tracking occur. These generally corre-
spond to contact with the ground during attachment, lifting the robot in the
face of gravity during stance, and the inertial resistance to the rapid accelera-
tion during swing. Figure 4 shows an idealized trajectory and the correspond-
ing torques generated by the motors. The figure on the left is a projection of
foot trajectory in the wing plane. A trace of the wing angle with respect to
time is shown on the bottom right. In the plot on the right the solid horizontal
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line represents the maximum continuous torque as specified by the motor’s
manufacturer. The dotted line is the motor’s mean torque over a stride. The
motor torque curve itself is an abstraction of reality where the large spike
in the torque graph corresponds to the body acceleration of the foot during
stance, and the smaller spike to the acceleration of the foot during swing.
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Fig. 4. Sample leg trajectory projected onto the “wing” plane (left) and in terms
of the wing angle (right, bottom). These are used to contextualize the idealized force
pattern (right, top). The leg trajectory and mean torque plots are based on RiSE
robot data [3]

It should be noted that current gaits are designed for effective attachment
and detachment rather than optimizing speed or utilization of available mo-
tor power. Significant improvements in terms of speed can (and are being)
made by refining the shape of the target trajectory–especially during stance
and swing–such that the torque demands more closely match the abstraction
shown in Fig. 4.

Due to the large gear reduction employed, the ability to shape the torque
trajectory is limited. If the peak load on the motors was decreased or distrib-
uted more efficiently throughout the stride then the gearing could be reduced
and the top speed dramatically increased.
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Fig. 5. Simulation results for the base model, showing the minimum possible stride
period (maximum speed) for various gear ratios (G). The shaded areas under the
curves represent regions that are inadmissible as they invalidate either swing or
stance phase constraints

Simulation Results

Figure 5 shows how the theoretical minimum stride frequency for the sim-
ple model described in Sect. 2.2 varies as a function of gear ratio, G. Since
each leg has a kinematically fixed stride length, the stride period is inversely
proportional to velocity. The dashed curved line represents the stance phase
speed limit for each gear ratio, G. The sloping starred line represents the swing
phase reset threshold. Point (A) shows the theoretical maximum speed with
the RiSE v1.0 gear ratio. At this gear ratio any higher speeds would require
the leg to complete the swing phase faster than the motor can handle. Below
a certain gear ratio (point (C) in Fig. 5) the robot no longer has enough force
to overcome gravity and cannot climb. Increasing the gear ratio reduces the
overall available speed and above a threshold, point (B), the duration of the
swing phase becomes the limiting factor.
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Point (B) is therefore the theoretical upper bounds on the velocity of
the robot using the current trajectory-based gait formulation. This stride
frequency (and speed) will, of course, never actually be reached due to the
non-instantaneous, and non-trivial, attachment and detachment requirements.
Nevertheless it is clear that without some change to the energetics and actu-
ation scheme of the robot it will never be able to reach our target dynamic
threshold.

Momentum

If, however, non-zero attachment speeds and the momentum of the body of the
robot is explicitly considered in the control scheme the robot could accelerate
from one stride to another and higher “steady-state” velocities are possible.
This requires either allowing the foot trajectories to change as a function of
body velocity or the adoption of some sort of force-based control scheme as
is done in our simple model. In either case the new maximum speed will be
limited by the swing phase reset time. In this case the fastest configuration
corresponds to the lowest gear ratio that will actually lift the robot, as shown
by point (C) in Fig. 5.

A potential difficulty with this approach is ensuring that the foot attach-
ment trajectory remains viable as the body velocity increases. This problem
is being considered in ongoing work on foot attachment dynamics.

3.2 Spring-Assisted Climbing

An alternative method for increasing speeds with a limited power budget is
by the intelligent use of springs to redistribute the cyclic loading and level
out the demands on the motors. By lowering the peak force requirements the
drive-train gear ratio can be reduced to speed up the overall motion of the
robot. This also brings the mean loading on the motors closer to the maximum
continuous operation level. Since these motors get the most power at 1/2 of
stall, and they are limited to 20% stall by the thermal constraints, maximum
achievable power coincides with the maximum continuous operation point.

In this section we consider two approaches to using springs to assist the
motion of the body in climbing. The first approach stores energy from the
end of the stance phase when the body is decelerating in preparation for
attachment and then releases it at the beginning of the next stance phase
to help re-accelerate the body. The second approach uses the motor to store
energy in a spring during the swing phase, which is then released to assist
lifting the body during stance.

3.3 Stance-Stance Transfer

The inspiration and physical motivation for this approach came from observ-
ing fast climbing animals such as the gecko which swing their tails and flex
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Fig. 6. Schematic of model with body spring and the effect of the spring on the
nominal torque profile. The “+” region represents when the spring is assisting the
motor, and the “−” region represents when the motor is stretching the spring. (As
before, the leg trajectory and mean torque plots are based on RiSE robot data [3])

their backs as they run. One advantage of these motions may be that they
shift the phasing of the power distribution to the beginning of a stride when
it is needed most to accelerate a body after slowing for foot contact. A proper
model for this behavior would include multiple bodies and degrees of freedom.
Here we hypothesize that at least part of the effect of these motions can be
captured by the linear body spring as shown in Fig. 6. The spring is loaded
during the end of the stance phase as the robot slows for attachment and then
is released at the beginning of the next stride to assist with the re-acceleration
of the body.

The net effect of this body/tail spring is to lower the peak torque spike
during stance. This in turn allows us to further change the gear ratio, reducing
the maximum continuous torque limit and increasing the stride frequency.
With the addition of this spring the equation of motion for the body during
stance becomes:

ẍ =
1
m

(
min

(
G2ẋ−Gẋnl

−ke
, GFMax

)
+ k(XF − x) −mg

)
(5)

where XF , the rest length of the spring, is located at the midpoint of stance.
The maximum stiffness of the virtual leg is limited by the force available

from the motors (FMax), as given by (6) where (p) is the number of motors.
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Fig. 7. Simulation results for the model with the body spring. Minimum possible
stride periods for various gear ratios (G) and spring constants (k)

k ≤ G FMax p

2R
(6)

Magnitudes ranging from 0-80% of the maximum force were evaluated.
The simulation results with this spring are shown in Fig. 7.

As in Fig. 5 the areas under the curved lines represent speeds for which
the stance phase displacement requirement is not satisfied, and the starred
diagonal line represents the swing phase requirement. Points (A) and (B)
are the same as in Fig. 5. Point (C) represents the maximum speed with the
body spring which yields a 16% improvement over trajectory refinement alone,
case (B).

It appears that the use of such a body spring increases the maximum pos-
sible speed for a given G, but does not lower the gear ratio which is necessary
to overcome gravity and lift the robot. Thus the use of a body spring to some
degree duplicates the benefit from implementing a stride-to-stride velocity
adaptation scheme.
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3.4 Swing-Stance Transfer

A second approach to using springs to more effectively and evenly apply the
torque from the motors is to use a spring connecting the foot to the body. As
shown on the left in Fig. 8, this is modeled as a spring acting in parallel to the
actuator in each virtual leg. This spring is loaded during swing phase as the
leg resets to a position relative to the body ready for touch down. The spring
is then released at the beginning of stance to assist with the acceleration of the
body. As shown on the right in Fig. 8, this adds a load to the motors during
swing (when their torque output capabilities are currently underutilized) and
mitigates the force requirements at the beginning of stance.

The addition of this spring results in the same body equation of motion
as in Sect. 3.3, but the spring is now fully loaded at the beginning of stance,
and is fully unloaded at the end. The spring constant, k, is chosen in the same
manner as in the previous section.

k
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Fig. 8. Schematic of model with leg spring and the effect of the spring on the
nominal torque profile. The “+” region represents when the spring is assisting the
motor, and the “−” region represents when the motor is stretching the spring. (As
before, the leg trajectory and mean torque plots are based on RiSE robot data [3])

Figure 9 shows the effect of changing the gear ratio G on the stride period
for a range of spring constants from 0–80% of the maximum spring constant
for each G as given by (6). For each value of G and k, the resulting minimum
stride period is shown. As before, the line corresponding to the stride period
limit for retraction of the leg during swing is indicated with a starred line.
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Fig. 9. Simulation results for the model with the leg spring. Minimum possible
stride periods for various gear ratios (G) and spring constants (k)

Points (A) and (B) are the same as in Fig. 5 and represent the maximum
possible speed without springs. Point (C) indicates the maximum speed con-
figuration for a model with a linear spring with k = 80% of maximum. The
use of a linear spring increases the maximum speed by 36% to 0.62 m/s.

Softening Spring

While advantageous for their simplicity, linear springs are not optimal in terms
of energy storage for a limited stretching force. If the linear spring were re-
placed by a softening spring the spring potential energy at maximum deflection
would increase. In the limit, with a constant force spring, the energy storage
would double. A constant force spring, however, would add a large load to the
beginning of the swing phase when the motors may already be saturated at-
tempting to accelerate the leg. The leg spring analysis in the previous section
was repeated with the linear spring replaced by one with a spring equation
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of: F = kx
1
2 . This significantly increases the energy storage for the spring

with minimal interference with the acceleration of the leg in swing. Point (D)
in Fig. 9 represents the fastest configuration that can be achieved with this
softening spring, resulting in a speed increase to 0.84 m/s.

Retraction Dynamics

In this swing-to-stance spring approach the load during the swing phase is sig-
nificantly increased, therefore it becomes important to determine what hap-
pens when the leg dynamics are explicitly considered. In other words, at what
point will the inertia of the legs and the frictional losses in the springs erode
any benefit from running dynamically or adding leg springs.

To this end the dynamics of the swing legs were modeled with (7).

ẍf =
1
m2

(
min

(
G2ẋf −Gẋf nl

−ke
, GFMax

)
+ k(Xbody − xf ) − bẋfm2g

)
(7)

Where m2 is the effective inertia of the robot’s leg and b is the damping
term, as given by (8).

b = 2ζ
√
mk (8)

While both adding inertia to the legs and increasing the losses in the
spring detract from the gains suggested by the simulation, the model can still
climb with a spring constant, k = 80% of maximum, at speeds equivalent to
what the simple swing phase model predicts with leg inertias of 30% of the
bodymass and a damping coefficient ζ = 0.3.

3.5 Results of Numerical Study

Table 1 summarizes the cases considered thus far and gives the maximum
frequency, speed, and percent improvement for each case. With a force-
optimization series of trajectory refinements the robot’s speed can (theoreti-
cally) be significantly improved. Obviously real-world issues associated with
mechanical losses and foot attachment/detachment will prevent the actual
achievement of the 3.05 Hz theoretical speed predicted from implementing
trajectory refinements.

The last row in the table (Combination) shows the effect of combining the
body and softening foot springs and allowing the body velocity to increase
from stride to stride (momentum), which results in a 2.9x improvement over
the trajectory refinement case alone. Even if drag and attachment losses only
permitted achieving 40% of the theoretical speed limit, with these changes we
get near the 3.5 Hz dynamic threshold that we established previously. Of the
various elements, the non-linear foot spring contributes the most.

Another option to improve the speed of the robot climbing is to alter its
power/weight ratio. As a point of comparison the motor specs for larger motors
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Table 1. Frequency, velocity, and percent improvement for cases (B) to (G)

Case Frequency Velocity (m/s) % Impr.

(A) Trajectory Refinement 3.05 0.46 0
(B) Body Momentum 3.66 0.55 20
(C) Body Spring 3.55 0.53 16
(D) Foot Spring-Linear 4.15 0.62 36
(E) Foot Spring-Softening 5.59 0.84 83
(F) Body + Foot Springs 5.78 0.87 89
(G) Combination 8.85 1.33 190

from the same vendor and product line were used in the model to see how
much the power needed to be increased to match the effect of adding springs
and dynamic gaits. In this case the 4.5 W motors for RiSE were replaced
with 20 W versions. The total mass of the robot was left unchanged and the
simulations repeated. This 4.4x increase in power resulted in a 2.3x increase
in speed. A net increase slightly less than with springs/dynamics.

In reality the use of larger motors brings with it a significant increase in
mass and complexity. The addition of these larger motors would add addi-
tional 1.5 kg to the robot’s mass, not including the necessary changes to the
body, battery, and electronics design. Fundamentally, increasing the size of
the motors does not substantially increase their power to weight ratio. Other
motors do have higher power/weight ratios than the ones chosen for our robot,
but these suffer from other draw backs such as controllability.

Of course reducing the weight of the robot, were we able to find a way to
do it without loosing performance, would help as well. The simulations with
the simple model described here suggest that gains in speed comparable to
the use of springs or the addition of (magically) more powerful motors can be
achieved by reducing the robot’s weight by about 50%.

In the absence of further improvements to the power/weight ratio of our
robots, the simulations suggest that with our current design it is not possible
to reach our target speed. Simply refining the gait and reducing the inefficien-
cies in the system will, by themselves, be insufficient. With an appropriate
use of springs and body dynamics, however, our target speed of 3.5 Hz be-
comes theoretically possible. The actual realization of these speeds, however,
depends on how well these concepts can be incorporated with the ongoing
work in improving trajectory refinement and foot attachment.

4 Conclusion

One of the significant problems in achieving fast climbing is the power demand
associated with delivering the required work against gravity at higher speeds.
Having sufficient on-board power for fast locomotion on the level ground has
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proven challenging, and motion against gravity, obviously, only exacerbates
the problem. One approach to increasing the use of a robot’s onboard power
is switch from a position-based control scheme to forced-based approach. By
explicitly regulating the motors’ output rather than relying on position track-
ing errors, the actuators can be much more effectively utilized during a stride.
This adoption of this control framework also enables the robot to build up
speed over a number of strides, further increasing the performance gains.

Even if the switching the fundamental control scheme from a position-
based approach proves infeasible (e.g., perhaps because our limited degrees of
freedom require intricately planned approaches and departures from stance to
guaranteed adequate wall adhesion and limited perturbation during detach-
ment), much of the advantage of a force-based system could be duplicated by
very careful trajectory tuning and adaptation.

In either case the refinement of the force trajectory can bring substantial
performance benefits to the robot. The simple model employed here suggests
that as a theoretical upper limit they could allow the robot to climb at 3Hz
or at 0.46 m/s, which is near our dynamic threshold. Of course attachment,
detachment and other physical constraints will necessarily reduce the actual
gains.

However, in this respect the remainder of the numerical results from the
simplified model are encouraging. They suggest that the appropriate addition
of body and leg springs could double the robot’s speed over this value. The
further incorporation of a variable stride period could almost triple the speed
over trajectory refinement alone. This is more than the effect of increasing the
motor’s power 4.4x! (that is of course without acknowledging and accounting
for the weight of the larger motors). While the advantages of these approaches
are not entirely “free”, they do represent a significant gain. When the various
refinements are combined, the model results suggest that locomotion at our
dynamic threshold of 3.5 Hz (or 2 bodylengths/second) should be achievable.

4.1 Future Work

In order to implement body dynamic dependent gait trajectories some sort of
control system to measure body velocity and alter the leg trajectory may be
necessary to ensure good attachment of the feet. More detailed foot/substrate
interaction tests may provide the empirical data necessary to develop such a
controller.

Although we have assumed that foot contact once made will only be bro-
ken at the desired detachment point, this clearly does not reflect the reality.
Reducing the demands on the foot attachment mechanism could be one of the
major advantages of dynamic climbing. It seems possible that an appropri-
ate use of springs and the robot’s body’s dynamics could significantly reduce
the required foot reaction forces. If force threshold limits were added to the
feet the effectiveness of the various schemes proposed in this paper could be
evaluated in this regard.
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Although not addressed here, the stability of dynamic climbers is a topic
of interest. Besides the fundamental issues of insuring that the front feet stay
attached to the wall, there are a number of other possible ways to consider
stability. Many of these arise with the shift from a position-based control to
a force-based system. The numeric simulation results suggest that when the
velocity is allowed to vary from stride to stride that the simple climber tends
to quickly converge to a steady period-1 gait. Have we been fortuitous in our
parameter selection, or are these limit cycles almost inevitable? Are they local
in nature hence hard to achieve in practice or do they have large basins (e.g.,
are they globally asymptotic stable)? The model we have used may be simple
enough to permit a careful mathematical analysis of the system dynamics.

A second interesting question that arises from decoupling multiple limbs
from a trajectory-tracking control scheme is the question of synchronization.
A related climbing study with an open-loop climbing model [17] indicates
that legs tend to synchronize rather than staying 180 degrees out of phase.
Is this also true for this model, and if so what sort of controller needs to be
established to maintain a regular alternating gait?

Looking further ahead, we wonder if with the addition of a lateral degree
of freedom to the model we can begin to duplicate the motions and ground
reaction forces seen in dynamic climbing animals such as geckos and cock-
roaches.

We believe that enabling a robot with the ability to both dynamicly run
and climb is an compelling goal. The achievement of both with an (inherently)
constrained power/weight ratio is a difficult task. The creative use of springs
and system dynamics to modify the climbing motion of the robot may enable
the construction of such robots. While we are not there yet, we at least have
some simple models that suggest that it may be possible.
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Appendix A1: Rise Robot Constants

Appendix A2: Minimum Leg Frequency

In order to achieve resonant hopping as described by the spring-loaded in-
verted pendulum (SLIP) model, the motor activation frequency–whether used
primarily for recirculating vertical leg springs as in RHex [6] or for powering
vertical leg strokes in phase with passive recirculating springs as in Sprawl
[14]–should match the natural frequency of the body’s oscillation. For a SLIP-
type hopper the natural frequency, ωn, during stance is a function of the body
mass, M , and stiffness of the legs, k, that varies in a rather subtle manner
with the particular steady state gait for even the simplest two degree of free-
dom models [5]. Empirically, we find this function is effectively approximated
by that characterizing a one degree of freedom spring-mass system:

ωn =

√
k

M
(9)

The lower limit on the spring stiffness is constrained by its maximum
displacement, ∆x, which in turn is fixed by the leg kinematics. Although
the force-extension profile of a spring can vary significantly depending upon
whether it is “hardening” or “softening”, it will suffice for our present order-of-
magnitude analysis to consider the simplest relationship of constant stiffness
arising from a Hooke’s law spring. For this model, a lower bound on the
excursion of the leg spring corresponds to when the force on the spring is
equal to gravity, giving:

k =
Mg

∆x
(10)

Combining equations (9) and (10) gives:

ωn =

√
k

M
=

√
Mg

∆x M
=
√

g

∆x

For RiSE with a kinematically achievable ∆x = 0.02 m:

Table 2. RiSE specific model parameter values

Variable Value Description

TStall 0.0288 Nm Stall torque
TMax 0.00498 Nm Maximum continuous torque
ωnl 13, 900 rpm No-load speed
R 0.0762 m Radius of foot trajectory
G 126 Base Gear ration
p 6 Number of motors per tripod
m 3 kg Mass of the robot
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ωn = 22 rad/s = 3.5 cycles/s

If large airborne phases are allowed the body oscillation frequency would
become slower than the body spring-mass frequency, ωn. Any gains from this,
however, would be set off by the increased required deflection of the spring,
∆x, during stance.
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