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A bsl; r ac t 
A simplified lossless model of the Raibert planar hop- 
per is introduced for the purpose of analytically study- 
ing the control of forward velocity. A closed-form re- 
turn map describing the robot’s state at the next hop 
as a fuiiction of that a t  the current hop is derived. The 
Raibert forward velocity controller is introduced and 
the fixed points of the closed loop system are charac- 
terized as well as the stability of these points. A new 
control law inspired by this analysis is introduced and 
compared with the Raibert control law. 

This paper concerns the behavior of a planar Hopping 
robot where the only control exerted is the placement 
of the lleg at touchdown. This work is motivated by the 
dramatic success achieved by Marc Raibert in imple- 
menting simple control strategies to control physical 
hopping robots [5].  

Raibert and his students built and studied hopping 
robots as a means to understand dynamic legged loco- 
motion [5]. The first hopper was constrained to move 
in the plane. It had a pneumatic cylinder for its leg 
and hence acted as a springy inverted pendulum while 
on the ground. For this planar hopper, Raibert intro- 
duced simple control laws which successfully regulated 
vertical hopping height, forward velocity and body at- 
titude, The understanding gained from the planar hop- 
per was exploited to successfully implement three di- 
mensional hoppers, biped hoppers and quadraped hop- 
pers. 

Raibert sees the tasks of regulating hopping height, 
forward velocity and body attitude as three separate 
control problems. Each controller is designed assum- 
ing that the behavior to  be controlled is decoupled from 
the other behaviors. The experimental success of such 
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a controller design validates the decoupling assump- 
tion. Previous work has endeavored to understand the 
control of vertical hopping height [3] [SI [7] and how 
it is influenced by the addition of the forward running 
dynamics [4]. In this paper, we restrict attention to the 
control of forward velocity. Specifically, this is accom- 
plished by deriving a return map for a simplifed version 
of the Raibert planar hopper, wherein we assume no 
energy losses and constant angular momentum dur- 
ing stance. Control is exerted solely in the forward 
placement of the leg at touchdown. We introduce a 
feedback control law derived from Raibert’s reported 
procedure, characterize the set of fixed points for the 
resulting closed loop system, and initiate a study of 
the stability properties of these fixed points by means 
of local analysis and numerical simulation. 

verview of the 

This paper begins by introducing in section 2 a simpli- 
fied model of the planar hopper. A return map describ- 
ing the robot’s state at next hop as a function of its 
state a t  the current hop is derived in section 3 and rep- 
resents a central contribution of this paper. Once the 
return map is derived, control is introduced in section 
4 and a study the fixed points of the resulting closed 
loop map and their stability properties is undertaken. 

egree of Freedom 

Figure 1 shows the simplified planar hopper. We will 
assume that the leg is massless and that the body is 
a unit point mass. Modelling the hopser in this way 
removes any need to consider control ef body attitude, 
since the body has no rotational inert; about the leg. 
The leg is a pneumatic cylinder, whicb 9cts simultane- 
ously as a prismatic joint and an energy storage mech- 
anism where the force is inversely prouortional to leg 
length. 
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touchdown has a powerful effect on the accelerations 
that occur during stance. 

Raibert’s strategy for selecting the touchdown angle 
is based upon his observation that for each forward ve- 
locity there is a unique touchdown angle that results in 
zero net forward acceleration. This angle will be called 
the neutral angle and the foot postion corresponding 
to this angle will be called the neutral point. When the 
foot is placed on the neutral point, the motion of the 
body during the stance phase is symmetric resulting 
in zero net forward acceleration. Conversely, displac- 
ing the foot from the neutral point generates either net 
forward accelerations or decelerations. 

Raibert’s approach was to use simple approxima- 
tions to estimate the location of the neutral point and 
choose a forward position for the foot that effects the 
desired net forward acceleration. The control law he 
implemented took the form 

XT, 
2 

zj = - $- k i ( k  - 2 . d )  

Where, 
xf 

respect to the center of mass 
T, 
x is the forward speed 
x d  
IC; is a feedback gain 

Here, 9 serves as an approximation for the neutral 
point and k ; ( k  - i d )  serves as the displacement of the 
foot from the neutral point to achieve the necessary 
forward accelerations. 

We will consider the planar hopper with forward ve- 
locity control only. Since there is no thrust, we have 
no means of either injecting energy into the system or 
changing the hopper’s spring constant during stance. 
As a consequence, we will assume there are no dis- 
sipative losses throughout the hopping cycle. This 
assumption is reasonable since the energy added by 
thrust during each stance is meant to compensate for 
the losses that take place throughout the cycle. We 
follow Raibert’s ideas as detailed above and let the for- 
ward position of the leg at touchdown, or equivalently 
the touchdown angle, 0 = Btd  be the control input. 

is the forward displacement of the foot with 

is the duration of the stance phase 

is the desired forward speed 

Figure 1: The simplified planar hopper 

peration of the Hopper 
The hopping cycle consists of two primary phases: the 
stance phase, when the foot is on the ground, and the 
flight phase, when the robot is airborne [5]. The stance 
phase can be decomposed into three sub-phases: com- 
pression, thrust and decompression. Four important 
events must occur during one hopping cycle: Touch- 
down, the moment the foot makes contact with the 
ground; Bottom, the moment during stance when the 
robot reaches maximal compression and the radial ve- 
locity changes from inward to outward; Lift-off, the 
moment the foot loses contact with the ground; Apex, 
the moment in the flight phase where the robot has 
maximum amplitude and vertical motion changes from 
upward to downward. 

2.2 Control of the Hopper 

The control task for the simplified hopper is first, to 
regulate about a certain apex height; second, to regu- 
late about a certain forward velocity. Raibert attempts 
to achieve these goals by treating hopping height and 
forward speed as separate control problems. This de- 
coupling of the control relies on a presumed weak cou- 
pling between the motions. He summarizes the control 
tasks as follows [5]: 

1) Excite hopping motions and regulate their 
amplitude by specifying the thrust to be de- 
livered by the leg on each hop. 
2) Stabilize the machine’s forward speed by 
extending the foot forward to a position that 
will provide the needed acceleration during 
stance. 

The second author has previously studied Raibert’s 
solution to 1) in isolation [3]. We now undertake the 
study of 2) in isolation. 

2.2.1 Control of Forward Speed 

Since forward speed is constant during flight, any ac- 
celeration must occur during stance phase. In light 
of this, Raibert observes that the angle of the leg at  

2.3 Dynamics of the Simplified Hopper 

We will use Cartesian coordinates, b := [ 2, y 3’ and 
polar coordinates q := [ T ,  0 IT as depicted in Fig- 
ure 1. The stance phase begins at touchdown, where 
the leg is fully extended, r = r t d .  The leg cylin- 
der pressure is fixed to be the same at each touch- 
down, yielding a spring constant of WO” throughout the 
stance phase. The length of the pneumatic spring 
during stance is ( r  - r p ) ,  where rp is the length of 
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the piston. The leg compresses until it reaches the 
bottom state and then begins to decompress. The 
hoppeic lifts off when the leg is again fully extended, 
r = rlo = rid. Under the assumptions discussed above 
and assuming a spring law with potential U ( P ) ,  we 
find that the potential energy during stance is given 
by V := gr sin 0 + U ( r )  and the kinetic energy during 
stance is given by T = $[;2 + (r8)']. Defining the 
Lagrangian function, L(q ,  4 ,  t )  = T - V and applying 
the Lagrangian operator yields the following stance dy- 
namics: 

During the flight phase, the robot acts as a projectile 
under the force of gravity. Hence the flight dynamics 
are governed by 

A two degree of freedom mechanical system can be 
completely described by its planar positions and ve- 
locities, thus the hopper's dynamics reside in a four 
dimensional phase space. By selecting a Poincare sec- 
tion and studying the systems evolution on this section, 
we can reduce by one the dimension of the problem to  
be studied. Furthermore, we will see that after &d is 
selected the system reduces to two dimensions. 

3 'The Apex Return Map 
While various means could be used to define a Poincar6 
section, it is advantageous to select the apex event.l 
An apex event occurs during the flight phase when the 
hopper reaches its maximum altitude and as a result 
can be defined as the subspace jj z 0. As a mat- 
ter of notation, apex coordinates will always be de- 
noted by an overbar. Because the hopping cycle can 
be thought of as descending from apex to touchdown, 
progressing from touchdown to liftoff , and ascend- 
ing from liftoff to the new apex, the apex return map 
R : [ 6(k), 6 ( k ) ] "  w [ 6 ( k  + 1), 6 ( k  + 1)IT can be 
considlered as the following composition: 

R = F a  0 s 0 Fd, (3) 

Where, F d  is the descent flight map, S is the stance 
map, and Fa is the ascent flight map. 

- 
Onlly the current control input appears in the resulting re- 

turn map. In contrast, both the current and previous control 
inputs enter the return map of the hopper in the other coordi- 
nate systems. 

3.1 A Simplification of the Stance Dy- 
namics 

Because the flight dynamics are affine in state, the 
bulk of the work in deriving the return map lies in 
integrating the stance dynamics. As is often the case 
for nonlinear differential equations, the stance dynam- 
ics shown above (1) do not admit closed form inte- 
gration. Difficulties arise due to the presence of the 
gravitational terms and the choice of the spring law. 
Thus, as in [4] we will assume that the spring force is 
the dominant radial force during stance and that the 
robot's angular momentum is constant during stance. 
This allows us to ignore gravity in both the the radial 
and angular equations of stance motion. While simu- 
lations suggest these assumptions are reasonable, more 
systematic studies are being undertaken to identify the 
regimes where these assumptions hold. 

3.2 The Resulting Form of the Return 

Having found the maps for the stance and flight phases 
in [6], we can now complete the expression for the re- 
turn map. While R is technically a map from R4 to it- 
self, we have reduced its order by one by restricting the 
state to the Poincark section defined by jj = 0. More- 
over, the resulting three dimensional map is a function 
of (jj, E, Btd) .  Since &d is the sole horizontal velocity 
control input according to Raibert's design, we observe 
that the problem reduces to the two dimensional return 
map given by 

Map 

f ( x ,  e t d )  = 

1 $(%sin? + [2g(;ji- Ttdsinetd)]3. c o s y ) ~  + Ttdsin(y - etd)  
- I .  -;cosy+ [2g(y- rtdsin8,d)l. sin7 

where x = [ jj, $1' and y = Btd + 61, = 2 ( 6 t d  - A&,). 
In the previous expression, A& represents the change 
in angle from touchdown to bottom; it is obtained by 
integrating the stance dynamics and therefore depends 
strongly upon the form of U ( ? )  [6]. 

In the ensuing analysis of the fixed points and their 
stability, we will find it helpful to decompose the return 
map into the following form: 

Where, 

+ c ) = - [  cosy siny - s h y  cosy 10; t , ( z ) = z + [  yy] 
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Armed with this decomposition, we will move to D z f u ( z * > =  I 
consider the equilibria and stability properties of this 
system. 21co+*[~ - rtdsinu(z*)]+ - TtdcosU(Z*) 

-&[g* - ~tdsinu(x*)]+ 

oint and Stability 

aving simplified the hopper's fourth order continu- 
ous dynamics to  arrive at the second order discrete 
dynamical control system, f (z ,  B t d ) ,  we now introduce 
a control law Qtd = U ( % )  in order to arrive at  the closed 
loop control system, tu(%) = f(z, U(%)). 

.I Fixed Points 
A fixed point z* of the hopping behavior must satisfy 
the relation fu(x*) = t(r(x*)-u(r*)) o s o ry(z*) o s-l o 
t - u ( z * ) ( 2 * )  = z* .  Let FP = { z  E ~ ~ / f ~ ( z )  = z } .  
Notice for y(z*) = R ,  we find f u I ( r ( , z * ) = T )  = tu(z.) o 
~ a I o s - ~  = id, the identity mapping. Hence 
we find a sufficent condition for z E FTp is that z E r R ,  
where Fa = {z E R21y( z )  = T } .  Moreover, it can be 
shown that z: E rR is a necessary condition for z E FTP 
and hence Fa = F'P [6]. In general, I'R will be a curve 
in the z plane. TO illustrate this, see Figure 2 which 
shows the fixed point curve for the closed loop system 
with the control law of section 4.2.2 introduced. 

The physical significance of the condition y = T 
is that Old and 81, are symmetric about $. This B 
symmetry in addition to the stance symmetry ( T i o  = 
rid, +lo = - i t d  and Oro = B t d )  shown in [6] yields a 
complete symmetry between the touchdown and liftoff 
conditions. This symmetry of B about 5 is exactly 
the relationship Raibert tries to achieve to regulate 
forward speed. 

ility 
Having derived the relation which specifies the set of 
fixed points of f u ,  we would like to  characterize the 
stability properties of the elements of this set. Since 
in general we are riot only concerned with the stability 
of equilbria, but their domain of attraction as well, 
this paper will provide an analysis of the local stability 
properties of the fixed points and use simulations to 
give a feel for the domain of attraction of the set of 
fixed points. 

To study the local stability properties, we will find 
the eigenvalues of the Jacobian of fu evaluated at the 
fixed point condition, which is shown in [6] to be 

~~ 

2Technically, y(z * )  = (2% + 1 ) ~  is the fixed point condition. 
However, since a14 these cases coincide on our state space - topo- 
logically equivalent to the cylinder - it  is unnecessary to carry 
dong the extra (2n+l). Moreover, since y = d t d  + d ~ , ,  both of 
which lie in [O,T], the physically meaningful set correpsonds to 
n= 0. 

For simplicity, we will refer to the outer product 
on the right hand side of the above equation as abT. 
The eigenvalues of DzfU ( z * )  are given by A 1  = 1 and 
Xz = 1 + aTb.  The unity eigenvalue arises indepen- 
dently of both the structure of the control input and 
the assumption of the specific spring law, DU(r) .  In 
contrast, the second eigenvalue depends strongly on 
both the controller used and the spring law assumed. 
Since we are only exerting control for the forward ve- 
locity, it comes as no surprise that we see a unity eigen- 
value at  the fixed point in any case. It is expected that 
even if a fixed point is attracting in the f direction, it 
is at best marginally stable in the 3 direction. 

Let 3 P s  be the subset of rn given by F'Ps = 
{z I  - 2 < aTb(+)  < 0). Then for all x E FTP, the 
Jacobian evaluated at z has one stable eigenvalue and 
one unity eigenvalue. Because we are looking at  the Ja- 
cobian of a nonlinear system, this test is inconclusive 
and we cannot immediately make any claims regarding 
the stability of these fixed points. 

In an attempt to  understand the stability of the 
points in FPs,  we can observe h a t  the center manifold 
is identically the set of fixed points. This is easily ver- 
ified, since the center eigenspace, i.e. that correspond- 
ing to  the unity eigenvalue, is orthogonal to DZ-y and 
hence tangent to  the fixed point curve 111. Moreover, 
locally for points in 3 P s  the transverse dynamics are 
converging towards the center manifold [6]. 

The attracting portion, F'Ps, of the fixed point 
curve is bounded by the condition -2 < aTb < 0. 
Since aTb is strongly dependent upon the choice of the 
spring law, DU(r ) ,  and the control input, U(%), we 
must now choose both. 

4.2.1 A Particular Spring Law 

While the structure of the return map is shown in sec- 
tion 3.2 , the expression for a& and hence that for 
y is left unspecified. This work is completed in [SI, 
where an integral expressim for At$, is derived. The 
analytical tractibility of that  integral depends greatly 
on the choice of the spring law DU(r ) .  A f spring law 
is introduced and shown to result in a closed-form ex- 
pression for A&, which in turn allows us to completely 
specify a closed-form return map for the simplified pla- 
nar hopper. The validity of the above assumption is 
demonstrated in [B] by showing that the force profiles 
for the f spring law and the commonly used ;-';;; 
spring law, as well as the phase portraits of the hopper 
corresponding to these spring laws are almost identical. 
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4.2.2 The Raibert Controller 

The above analysis was undertaken independently of 
the controller structure. That  is, any control law we 
choose could be substituted into the aTb expression 
and the stability of a selected fixed oint, z* could be 
studied by calculating the value of a b(z*). In this sec- 
tion, we will actually look at a control law motivated 
by and bearing strong resemblance to  the Raibert con- 
troller. Figure 2 shows the set of stable fixed points, 
F P s ,  arising from the use of such a controller. 

The Raibert controller for forward speed is discussed 
at length in section 2.2.1. Because of the analytical 
complexities of even the simplified stance dynamics, we 
have no closed form expressions for the time of stance. 
Hence, the approximation for the x; corresponding to  
the neutral point is given by rtdcosO*, whcrc 6* is 
computed to be the. touchdown angle which results in 
a fixed point with c = x*. The error term is identi- 
cal to  that of Raibert’s. Putting this all together, the 
resulting control law is 

2p 

1 . 9  
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Figure 2: The set of fixed points of fu arising from the 
use of a Raibert controller with x* = 1.8 on a simplified 
hopper with r t d  = .7, w,” = 16 . 

The closed loop return map f u  with the control law 
described above has been simulated using dstool, a dy- 
namical systems simulation package designed by Guck- 
enheimer and his students at Cornel1 University [2 ] .  
Using this package we generate the fixed points of the 
return map and then launch the system from a vari- 
ety of initial conditions to  obtain a rough picture of the 
domain of attraction of the stable manifold, 3 P s .  Fig- 
ure 3 shows the results of these simulationsfor a hopper 
with leg length, r t d  = .7, spring constant W O ”  = 16, and 
desired forward velocity i* = 1.8. In this plot, the solid 
line at T = 1.8 represents the desired forward velocity, 

the thick curve represents the fixed point curve (com- 
pare Figure 3 with Figure 2) and the shaded set cor- 
responds roughly to the set of initial conditions which 
get mapped to  the attracting set 3Ps. From the prot 
we can see that the Raibert controller provides a good 
region of attraction. However, since the resulting fixed 
point curve does not correspond exactly to  the value 
of i* , the controller will regulate the forward velocity 
to a value near x*, but not necessarily equal to it. 

4 - 
Y 8 

Figure 3: Region of attraction which arises from us- 
ing a Raibert controller with &* = 1.8 on a simplified 
hopper with r t d  = .?, w: = 16 . 

.2.3 New Control Law 

Recall that the fixed point condition is -y (x ,&)  = 
7r and a ( z , & d )  satisfying this relation results in 
f u ( z , B t d )  = id.  Thus, given a state x i ,  we could nu- 
merically solve the above expression for 6 t d  and use 
this value as the control input, resulting in fu = id. 
Implementing such a control law turns any point into 
a fixed point, x i  = x ’ .  However, since we are inter- 
ested in regulating about a desired value, we introduce 
the following proportional law 

and select the control input to  be the numerical solu- 
tion for 6td of the implicit fuction y(p(iJ,T),Btd) = R .  
This control law was implemented in simulation for a 
hopper with rtd = .7, WO” = 16, and x* = 1.8 (the 
same values used for the simulations using the Raib- 
ert controller), resulting in the phase portrait shown in 
figure 4. Comparing this with Figure 3 it is observed 
that this new control law, which relies more strongly 
on the system dynamics, gives better regulation (initial 
conditions actually iterate to i”) and a larger region 
of attraction. 
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Figure 4: Region of attraction for which arises from 
using the new control law with x* = 1.8 on a simplified 
hopper with r t d  = .7, w: = 16. 

5 Conclusion 
While a growing previous literature concerns the con- 
trol of vertical hopping height for the Raibert planar 
hopper, no analytical work seems yet to have consid- 
ered the control of forward velocity. In this paper, we 
have studied the planar hopper, where control is ex- 
ercised solely in the forward placement of the foot a t  
touchdown. 

The major contribution of this paper is the deriva- 
tion of a closed-form return map (3.2) for a simplified 
model of the planar hopper. This makes it possible, 
for the first time, to  study analytically the stability of 
the forward velocity equilibrium behaviors. 

In this work, we have introduced a feedback con- 
troller modelled on Raibert's design and characterized 
the fixed points of the closed loop system. We have 
studied the local stability of these fixed points. Sim- 
ulations suggest that both 3 P s  and its domain of at- 
traction grow as the spring constant is increased [6]. 
Furthermore, while Raibert's simple decoupled feed- 
back yields good regulation, better regulation can be 
achieved using coupled feedback which takes into ac- 
count the dynamic structure of the robot, such as the 
control law of section 4.2.3. However, since we are in- 
terested in finding simple control laws, we must ask 
ourselves whether the more complicated control laws 
are worth the price - both sensing and computation are 
dramatically increased. We hope the analysis initiated 
in this paper will help us find a decoupled Raibert-like 
feedback which gives "global" regulation around the 
invariant manifold. 

Thus, while local stability results are of interest, the 
real hope is to understand the global properties of the 
nonlinear closed-loop control system, fu. As this work 

continues we would like to  pursue stronger stability 
results and reintroduce the vertical component of the 
control. 

Work in progress suggests the possibility of extend- 
ing this sort of analysis to  more interesting leg kinemat- 
ics. Before carrying this much further, we are attempt- 
ing to systematically determine the operating regimes 
over which the constant angular momentum assump- 
tion is valid. 
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