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’ recent successful effort to achieve the spatial two- 
batting two freely falling balls into independent 

1 dtroduction 

have found that there is already enough room 
in getting its management right as to presage 
important and novel problems that might be 

particularly simple case. 

a1 world. Such sensors must be dynamical in 

constraints to meet, the management of resources 

Figure 1: The Yale Spatial Juggler [lo] 

must stress considerations of update and latency over mere 
throughput. Moreover, the process of extracting a little in- 
formation from a lot of data is driven toward the minimum 
that will suffice for the task at  hand rather than striving 
for the most that might logically be had. Finally, when 
previously sensed data mediates the collection of new in- 
formation, a stability problem may result. 

The architecture of our original setup is briefly reviewed 
in Section 2. The recent success of the two-juggle could not 
have been achieved without the enhancements to the vision 
system that we describe in Section 3. Although the work- 
ing enhancements were developed in an ad hoc manner and 
implemented through a process of empirical trial and error, 
we suspect that the resulting system (or, a t  least, a suitably 
polished version thereof) should admit a relatively simple 
formal description. In Section 4 we present our progress in 
rendering such a formal description with the hope of pro- 
moting a more principled approach to  solving such sensory 
control problems when we encounter them in the future. 

2 Juggling A p p a r a t u s  

Our juggling system, pictured in Figure 1, consists of three 
major components: an environment (the ball); the robot; 
and an environmental sensor (the vision system). After 
briefly sketching the properties of the first two of these we 
describe the originally conceived vision system in this sec- 
tion. All of this material has been presented in greater 
depth in [9, 81. 

Buhler et al. [4] proposed a novel strategy for implicitly 
commanding a robot to  “juggle” by forcing it to track a 
reference trajectory generated by a distorted reflection of 
the ball’s continuous trajectory. This policy, the recourse a 
“mirror law,” amounts to the choice of a map m from the 
phase space of the body to  the joint space of the robot. A 
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robot reference trajectory, 

r ( t )  = m(b(l), i)(l)), (1) 

is generated by the geometry of the graph of m and the 
dynamics of ball, b( t ) .  This reference trajectory (along with 
the induced velocity and acceleration signals) can then be 
directly passed to a robot joint controller. In following the 
prescribed joint space trajectory, the robot’s paddle pursues 
a trajectory in space that periodically intersects that of the 
ball. The impacts induced at these intersections result in 
the desired juggling behavior. 

Central to this juggling strategy is a sensory system c a p  
able of “keeping it’s eyes on the ball.” We require that 
the vision system produce a 1 KHz signal containing estim- 
ates of the ball’s spatial position and velocity (six measure- 
ments). Denote this “robot reference rate” by the symbol 
r, = 10-3sec. Two RS-170 CCD television cameras consti- 
tute the “eyes” of the juggling system and deliver a frame 
consisting of a pair of interlaced frames at EO Hz, so that a 
new field of data is available every rj = 16.6. 10-3sec. The 
CYCLOPS vision system, described in [8, 51, provides the 
hardware platform upon which the data in these fields are 
used to form the input signal to the mirror law, (1). The 
remainder of this section describes how this is done. 

2.1 Triangulation and Flight Models 

We work with the simple projective stereo camera model, 

p:R3-+R4 

that maps positions in affine 3-space to a pair of image 
plane projections in the standard manner. Knowledge of the 
cameras’ relative positions and orientations together with 
knowledge of each camera’s lens characteristics (at present 
we model only the focal length) permits the selection of a 
“pseudo-inverse,” 

such that pt o p = i d R s .  We have discussed our calibration 
procedure and choice of pseudo-inverse at length in previous 
publications [9, 81. 

For simplicity, we have chosen to  model the ball’s flight 
dynamics as a point mass under the influence of gravity. A 
position-time-sampled measurement of this dynamical sys- 
tem will be described by the discrete dynamics, 

p’ : R4 --+ R3, 

a 
~ j + l  = F a  ( ~ j )  = A,wj + U,; 

where s denotes the sampling period, ZI is the gravitational 
acceleration vector, and wj E IR?. 

2.2 Sensory Management 

Following Andersson’s experience in real-time visual servo- 
ing [l] we employ a first order moment computation applied 

~ ~~ 

‘In the case of a one degree of freedom ann we found that a simple 
PD controller worked quite effectively [3]. In the present setting, we 
have found it necessary to introduce a nonlinear inverse dynamics 
based controller [Ill. The high performance properties of this control- 
ler notwithstanding, our present success in achieving a spatial two- 
juggle has required some additional “smoothing” of the output of the 
mirror law described in a companion article [6]. 

to a small window of a threshold-sampled (thus, binary val- 
ued) image of each field. Thresholding, of course, neces- 
sitates a visually structured environment, and we presently 
illuminate white ping-pong balls with halogen lamps while 
putting black matte cloth cowling on the robot, floor, and 
curtaining off any background scene. Thus, the “world” 
as seen by the cameras contains only one or more white 
balls against a black background. In the case that only 
one white ball is presented, the result of this simple “early 
vision“ strategy is a pair of pixel addresses, c E IR4, con- 
taining the centroid of the single illuminated region seen by 
each camera. 

Figure 2 depicts the sensor management scheme we had 
employed to obtain ball positions in support of the previ- 
ously reported spatial one juggle [9]. Each camera is ser- 

Figure 2: Timing Diagram for the Deployment of a Two 
Node Cyclops System in Support of Single Ball Sensing [lo] 

viced by a pair of processors. A field from a camera is 
acquired in time 7, by one of the pair while the other is 
busy computing its centroid. The necessary computations 
will take longer than the allotted time, r ~ ,  if more than 
about 1200 pixels are examined. Thus, the moments are 
taken over a small subwindow of 30 by 40 pixels centered 
at  the pixel location corresponding to the centroid address 
of the previously examined field. The pair of image plane 
centroids, c E R4, is delivered to the vision coordinator at  
field rate, and is between one and two fields old, depending 
upon how much time it takes to form the centroid. 

In summary, centroid data from one processor is passed 
over to the second whose window coordinates are adjusted 
accordingly. Note that this represents the active compon- 
ent in the sensing strategy upon which more attention will 
be focused below. The data is passed forward as well to 
the triangulation/observer processor. The two nodes then 
reverse roles, and the process repeats. 

2.3 Signal Processing 

Given a report of the ball’s position from the triangulator, 
we employ a linear observer to recover its full state - po- 
sitions and velocities. As described above, the window op- 
erates on pixel data that is at least one field old, 

P k  = F-‘’ (Wk) , 
to produce a centroid. w e  use pk as an “extra” state vari- 
able to denote this delayed image of the ball’s state. Denote 
by w k  the function that takes a white ball against a black 
background into a pair of thresholded image plane regions 
and then into a pair of first order moments a t  the I C t h  field. 
The data from the triangulator may now be written as 

i k  = pt 0 wk 0 P(cPk) .  (3) 

$k+1 F” (p; )  - G(C$k - bk), (4) 

Thus, the observer operates on the delayed data, 
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the gain matrix, G E is chosen so that A ,  + 
Cp,, were available then it would be guaranteed that 

the mirror law an appropriately extrapolated 
version of these estimates as follows. The 
corrected by the prediction, 

is asymptotically stable - that is, if the true delayed 
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e Lk denotes the time required by the centroid com- 
a t  the kih field. Subsequently, the mirror law is 

next entry in the sequence, 

k 
of gains, { Gr } , 1=0’ 

I,  they significantly increase the capabilities of the ro- 
we have recently achieved the long targeted tw-juggle 

principle, one might choose an optimal set of gains, G’, result- 
from an infinite horizon quadratic cost functional, or an optimal 

resulting from a k-stage horizon quad- 
lost functional (probably a better choice in the present context), 

to the standard Kalman filtering methodology. Of course, 
presumes rather strong assumptions and a significant amount of h 

priori,statistical information about the nature of disturbances in both 

until the next estimate, $ k + l  is ready. 

3 bensing Issues Arising from Actuator Con- 
Is traint s 

above, it is not the ball’s position, b k ,  which is 
e observer, but the result of a series of compu- 
lied to the delayed copies of the cameras’ image 
Prior to the two-juggle experiments, we ignored 

happily ran with the open loop sensory 
edures used to obtain data (3). It soon 

hat these procedures could not be similarly 
the two-juggle. The practical limitations of 

arm necessitated considerable enhancements to 
subsystem, and getting these management issues 
me one of the chief sources of difficulty. 

iled in [7] the considerable torque gener- 
s of our Buhgler arm did not prove sufficient 

ly tracked ball trajectories in the two-juggle 
re forced to juggle much higher (longer flight 
impacts) and to bring the two balls much 

rter distance between impacts) than had 
lanned. This necessitated adding two new 
tures to the vision system. First, we re- 

an ability to sense and recover from out of frame 
(a ball passing out of the field of view due to the 
of the juggle). Second we required that the system 

urring ball occlusions (two balls appear- 
same location in an image). 

behavior. Finally, their addition to the original sensor man- 
agement system introduces the first hint in our work that 
controlling the machine’s “state of attention” may be an 
important and fundamental problem in robotics. 

3.1.1 Occlusion Detection 

Bringing the two one-juggle tasks closer together in space 
greatly increases the potential for the balls to  pass arbitrar- 
ily close together in a particular image resulting in an occlu- 
sion event. Handling such situations requires either the abil- 
ity to  detect and reject images containing occlusions, or to 
locate the balls reliably in spite of the occlusion. Our disin- 
clination to pursue the second option relates to our interest 
in exploring robust and extensible algorithms suited to our 
computational resources. While a two-ball occlusion can be 
relatively easily disambiguated, more balls or more complic- 
ated shapes give rise to increasingly difficult and computa- 
tionally intensive geometric problems. Instead, we prefer to 
make a very coarse (and presumably, more robust) decision 
concerning when an occlusion has occurred, and entrust to 
a dynamical model (the observer of Section 2.3) the precise 
localization of where either ball may be at  any moment. As 
will be seen directly, this decision has consequences that set 
us out on the path of building a “dynamical sensor.” 

Since we have already committed to measuring the first 
order moments of a binary image as the primary method 
of localization, it is natural to extend this notion and use 
the second order moments as a simple and robust occlu- 
sion defec for .  Under well-structured lighting conditions, 
the “ballness” of an image is easily determined by putting 
thresholds around the the ratio of the eigenvalues of the 
matrix of the second order moments in conjunction with a 
test on the planar orientation its eigenvectors. When mul- 
tiple balls appear in a single window - as determined by a 
data array that fails this second order moment test - the 
entire window of data is discarded and the observer simply 
integrates forward its present estimates. We presume that 
the results of such pure prediction will be more accurate 
than a computation based upon spurious centroid data. 

An analogous line of reasoning supports our use of the 
zeroth order moment to characterize occlusions resulting 
from an out-of-frame or out-of-window event. A window 
of binary thresholded pixels with insufficient density is dis- 
carded as empty and the observer again updates its estim- 
ates on the basis of pure prediction. In the out-of-window 
event, the alternative strategy of re-examining the entire 
frame for the missing object is much too costly. In the out- 
of-frame event where a ball leaves the camera’s field of view 
there is obviously no alternative to  this strategy. 

3.1.2 Observer Based Window Placement 

In a situation where there are guaranteed to be regular oc- 
clusion events (because the balls are to be juggled high and 
close together), the policy outlined above of ignoring data 
from occluded windows severely compromises the effective- 
ness of the simple previously acceptable window placement 
manager. Recall from Section 2.2 that the original scheme 
simply used the centroid from the previous field as the win- 
dow center in the next field. A spatial volume of roughly 
.1 meter diameter whose centroid is one field (.016 sec) old 
will not be likely to  capture balls moving at speeds well in 

in the production of 6 from 2 via excess of 7 meters per second. 
- 

date we have obtained sufficiently 
choice of gains G that recourse to Instead, an obvious improvement results from using the 

filtering seems more artificial than helpful. estimates of the observer itself to place the windows. 

1 2 5  



Namely, in the enhanced vision system, the windows in the 
next image to be processed are centered at  a point formed 
by projecting the present state of the observer onto the 
camera image planes. Thus, the window locator has now 
become the output of a dynamical system internal to the 
robot whose inputs from the physical world we manage ac- 
cording to the decision process described above. 

3.1.3 Impact Detection and Estimation 

The two modifications described above have traded com- 
putational difficulty (simple geometric interpretation) for 
detailed dynamical knowledge (trusting the observer to cor- 
rectly place the windows). However, the observer described 
in Section 2.3 is missing a model of a key dynamical feature 
in the life of the ball - the effect of the robot’s impacts 
(U in (2)). If we drive the window manager with the out- 
put of the purely Newtonian observer then after the first 
impact the window center will continue to “fall” while the 
ball bounces up (with the relatively high velocity) and will 
almost certainly fail to lie within the next window - the 
ball is lost and the juggling stops. 

In order to implement the observer with an enriched rep- 
resentation of the ball’s dynamics we require both a model 
of impact and rather precise knowledge of the time the im- 
pact takes place. The former we have presented in [9]. The 
latter could be determined analytically in principle: start- 
ing with the assumption that the robot tracks its mirror law 
exactly (1); computing a position-velocity phase at contact; 
computing the induced effective impact. For reasons we 
have discussed at  length in [2], our present mirror law con- 
structions do not admit a closed form computation of the 
robot phase at  contact. While numerical computation is a 
potentially feasible alternative, a predicted quantity will al- 
ways be inferior to a sensed datum. Were the actual time of 
impact available, then a direct reading of the robot’s joint 
space measurements could provide the sensory alternative. 
Thus, we have chosen to augment the sensing system with 
a physical impact detector. 

This device consists of a single microphone attached dir- 
ectly to the robot paddle whose output is passed through a 
narrow band filter tuned to the fundamental frequency pro- 
duced by the impact, then rectified and threshold detected. 
The appropriate input, effectively a state change in the dy- 
namical system (2) is calculated from the state of the ball 
and the robot a t  the time of the impact, and this is passed 
to the observer. 

3.1.4 Window Size Adjustment 

Although a central theme in this work concerns the ad- 
vantages of trading a computationally intensive and brittle 
geometric model of the environment for a more robust dy- 
namical model, there is no escaping the likelihood of error 
accumulation in either case. Our inability to compute with 
more than a small percentage of the available pixels during 
the 16 msec interval between successive camera fields forces 
a tradeoff between the accuracy of the centroid data input 
to the observer and the possibility of an unnecessary but un- 
recoverable out-of-window event. This tradeoff is governed 
by the choice of sampling resolution, or, equivalently, image 
plane window area. Intuitively, it seems clear that we ought 
to be able to develop some rational scheme for adjusting the 
sampling resolution in accord with an evolving set of error 
estimates. But what model of decision making offers an ap- 
propriate basis for such decisions, and where might one find 

a reasonable model by which to  form the requisite estimates 
of error? 

There are three principal sources of error in the sensor. 
First, noise inevitably corrupts the image frame processing 
(e.g., distortions introduced by thresholding an imperfectly 
illuminated scene, or by insufficient spatial resolution). 
Second, the observer is itself compromised by parametric 
errors (e.g., the gravitational force, ii in (2) is obtained 
through our calibration procedure) and omissions (e.g., 
there is no model of spin during flight). Finally, these are 
exacerbated by the intermittent loss of input data that at- 
tends occlusion events (e.g., out-of-frame events may easily 
last in excess of .25 seconds). 

In the absence of a more principled approach to window 
area management, we have adopted the following strategy. 
Window area grows following any image plane measurement 
failure (i.e., an occlusion event). Window area shrinks fol- 
lowing a valid measurement. The intuition is that we are 
capable of growing the windows large enough to compensate 
for the inevitable modeling error and reliably reacquire the 
ball either when it  returns to  the field of view or the occlu- 
sion ends. Conversely, after the observer has had a number 
of position inputs to process, we presume that the risk of 
losing the ball is outweighed by the potential advantage of 
gaining accuracy in the estimate from higher spatial resolu- 
tion and minimizing the risk of further occlusions with the 
other ball/window . 
3.1.5 Window Overlap/Prioritization 

Of course, the larger the windows, the greater the likelihood 
of their overlapping and multiple balls being visible in in- 
dividual windows. We have introduced an excision rule for 
removing intersecting regions from one window and assign- 
ing them exclusively to the other. Our rule weighs the cost 
of losing entirely a poorly tracked ball more heavily than 
that of corrupting the estimates of a relatively well tracked 
ball. This amounts to first looking for the things we know 
about in the image, blocking them out, and continuing to 
search for the remainder of the objects. Thus, we assign 
the windows a level of priority inversely corresponding to 
their size. The higher priority (smaller) window’s pixels are 
excised from the moments computation of the lower pri- 
ority (larger) window, but all of its pixels are used in the 
computation of its own moments. 

In practice, this strategy seems to have the desired ef- 
fect of not confusing a ball we are tracking well with one 
we have temporarily lost. That is, it avoids the spurious 
occlusion event caused by a well tracked ball (one we have 
seen in the recent past) entering a large window associated 
with a poorly tracked ball (one whose observer error has not 
yet grown small). More significantly, we have not yet intro- 
duced a means of discriminating between occlusions gener- 
ated by out-of-frame versus window overlap conditions. For 
example it is not uncommon that a window overlap near the 
edge of the field of view is followed followed by one of the 
balls moving out of the field of view. Suppose the out-of- 
frame ball is assigned a higher priority than the ball still in 
view while the window overlap persists (that is, the in-view 
ball remains within the now enlarged window owned by the 
out-of-frame ball). The excision rule gives the pixels gener- 
ated by the in-view ball to  the out-of-frame ball’s window, 
the window manager now starts to  track the in-view ball, 
and the out-of-frame ball is lost. This sort of failure hap- 
pens frequently enough that still more sophisticated window 
excision and overlap handling strategies than presently in 
place seem to be desirable. 
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Figure 3: Measured and predicted (by the observer) ball 
heights for an out of frame juggling sequence (a), and an 
expanded view of a single recovery event (b). 

3.2 :Effect of the Modfflcations 

We have recently achieved a functional two-juggle but have 
not yet logged more than a few dozen hits of both balls [SI. 
We are convinced that the sensing enhancements discussed 
above have significantly contributed to  our recent success, 
and thkat their refinement will afford two-juggle performance 
comprrrable to our current one-juggle performance. Some 
documentation of this recent progress now follows. 

3.2.1 Recovery from Out-of-Frame 

As mentioned above, this set of modifications has allowed 
the juggling height to be raised to the point that every juggle 
passes out of the field of view of our vision system. Figure 
3 (a) and (b depict exactly such a sequence. The top 0.25 

is evident by the lack of position measurements during this 
period, Nevertheless the observer continues to predict the 
ball’s location, and the ball is recovered as it passes back 
into thLe system’s field of view. Figure 3(b) shows a detail of 
a single recovery. Evidently there is indeed a slight build up 
of prediction error (approximately 5 cm vertical error) over 
the near 0.5 second that the ball was out of view. However 
since the measurement window has grown, this magnitude 
of error is readily accommodated. 

to 0.4 secon d s of each flight are outside the field of view, as 

3.2.2 Recovery from Ball-Ball Occlussions 

Having recently succeed in presenting the vision system with 
two objects for a prolonged period of time, we have been 
been able to observe the occlusion events discussed above. 
Figure 4 and 5 depict the image plane tracks generated dur- 
ing an occlusion event. The small squares represent meas- 
urements assigned to ball 0, while the triangles are those 
associated with ball 1. The solid and dotted boxes are the 
windows used for moment calculations for ball 0 and 1 re- 
spectively. These are numbered corresponding to the tem- 
poral sequence of fields read. Figure 5 is a blow-up of a 
subregion of the right image plane shown in the previous 
figure, and is included so that the occlusion event (which 
occurs in the left camera) can be more clearly seen. In this 
particular sequence ball 0 (the squares) is rising towards 
its apex as ball 1 falls “behind” i t  causing an occlusion in 
the 5th frame. The balls remain occluded (lying within 
the overlap region between the two large windows) until 
the loth frame at  which point ball 1 reappears from behind 

3T0 enhance visual clarity we have chosen to not show the windows 
that failed one of the “valid data” (i.e., zeroth or second order mo- 
ment computation) tests and thus result in no input to the observer. 
Consequently, the windows “jump” from 4 to 11 and 4 to 10 for ball 
0 and 1 respectively. 

Figure 4: Left and Right image-plane tracks of a ball-ball 
occlusion event. 
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Figure 5: Expanded view of the left image-plane tracks 
showing the occlusion event. 

the search window for ball 0, and frame 11 when ball 0 be- 
comes visible due to the search window for ball l shrinking 
and exposing it. 

Although we have just begun to  analyze data of this sort 
from our a working two-juggle we feel that a careful ana- 
lysis of these events will allow for improved tuning of the 
window sizes and their rates of growth and shrinkage. Cur- 
rently reliable recovery from these occlusion events remains 
the major obstacle to achieving sustained two-juggle per- 
formance we would consider comparable to that which we 
have been able to achieve with the one-juggle task. 

4 Toward the Control of A t t e n t i o n  

As more and more “enhancement modules” are added in 
the rather ad hoc fashion we have described, predicting and 
controlling their interactions becomes an increasingly diffi- 
cult design problem. With the hope of developing a more 
principled approach to  such design problems, we offer here 
a slightly more formal version of how to model and control 
the relevant sensor dynamics. It should be stressed that 
this formalism neither incorporates all nor cleaves faith- 
fully in detail to any of the “enhancements” we presently 
employ. In contrast to  those purely pragmatic measures 
adopted to “get on with the work,” this re-examination is 
heavily weighted by considerations of analytical tractability. 
We are convinced that this interactive process of pragmatic 
building followed by theoretical ieflection leading to further 
refined building, and so on, is the best way to advance the 
infant field of robotics. 

Image plane windows that are too large will introduce un- 
ecessary noise through subsampling and time taken to com- 
pute the centroid. Larger windows will also have a higher 
probability of occluding when there are multiple targets to 
track. On the other hand, windows that are too small will 
be likely to  loose their target with potentially catastrophic 
results, In this preliminary exploration, we focus on the 
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matter of how to place and size the windows in a rational 
manner. 

4.1 The Window Management Variables as a “State of 
Attention” 

The window manager controls the locus and extent of the 
image plane windows. Thus, we tentatively define a win- 
dow’s state of attention at some field interval, k, as the 
pair 

U k  = ( b , , p , )  E IR3 x IR+ ( 5 )  

where bk denotes an estimate of the spatial position of a 
falling ball, and where the positive scalar P k  is a measure 
of “certainty.” With respect to  a norm, 11 . l l ~ ,  that will be 
defined below, a k  induces two windows on the two camera 
image planes including all stereo image pixel pairs, c having 
the property 

If enough of the pixels corresponding to the imageof the ball 
pass throu h the imaging threshold to produce a sufficiently 
large zero“ order moment in the windows just defined, the 
first order moments will be passed to the triangulator to  
be interpreted as a spatial position. Otherwise, an “empty 
window” will be logged. For the sake of notational simpli- 
city, we will denote the situation that first order moments 
are successfully formed inside the windows of the kth camera 
field as 

This notation immediately points up the dynamics intrinsic 
to the window management problem that appears a t  present 
as mere delay, Regardless of how it is computed, the state of 
attention, ak must be assembled from information derived 
from existing sensory observations. Thus, the acquisition of 
new data is necessarily mediated by old knowledge. 

For a suitable norm, we look back to the stabilized ob- 
server equations (4). Because the poles of the closed loop 
observer have been placed within the unit circle there exists 
a positive definite symmetric matrix, M ,  such that 

bk eN(ak-1)- 

[Art + GCIT M [ A ,  + GC] < M ,  

and we will denote the Euclidean norms induced by this 
matrix as 

For ease of exposition we introduce the notational conven- 
tions, 

A 
a = l l A r , I l ~ ;  6 IlArl + GCIIM 

and assume, purely for further notational convenience, that 
the poles of the closed loop observer equation (4) have been 
placed on the real line with multiplicity two with the con- 
sequence that 

4.2 

Clearly, the task at hand is to  develop a control scheme for 
updating the state of attention, a k  as a function of its pre- 
vious value and presently available data. To do so we must 
append to our previous state estimation procedure some 

Observer Errors from a Noisy Model 

notion of its changing degree of certainty. Thus, reconsider 
the Newtonian flight model (2), with the addition of both a 
process and a sensor noise model. We wish to model the in- 
accuracies in the Newtonian flight law as well as the salient 
features of the inaccuracies in ball position measurement in- 
troduced through the use of the camera. The latter include 
two central phenomena: the absence of data when the ball 
lies outside of its assigned window; and the imprecision of 
spatial localization as the size of the window grows (and 
either delay grows or resolution shrinks correspondingly). 
For present exploratory purposes, we will be content with a 
crude deterministic representation of the imprecision inher- 
ent in these process and sensor models. What seems more 
critical to  emphasize is an incorporation in the noisy model 
of the particular effect of image plane geometry. For it is 
exactly the window size and consequent spatial resolution 
that is under control. 

We substitute for (2) and (3) the system 

~ [ ( j  + 1)rr] 

bk 

= Frr (W(jTr)) + nN(jTr) 

= ck [pk + nS(Pk-l)] 
P&+l = tl([“Sl (6) 

I t  seems reasonable to take as a first crude model of the fail- 
ings of the putative Newtonian free-flight model (2), nN, a 
bounded deterministic sequence of uncontrolled inputs (per- 
haps generated via a map on the state space). The sensor 
noise introduced by thresholding a finite resolution image 
before computing moments is modeled by the function nS.  
Because the resolution must decrease as the window mag- 
nitude increases in consequence of subsampling, n s  is non- 
decreasing in its argument. Because no subsampling is re- 
quired for sufficiently small windows, n s  is a positive con- 
stant for small values of its argument. For present purposes 
it seems adequate to take nS to be affine in p ,  

The deterministic output map, C k  returns the value C = 
[I,O] as in (2) when the body’s image is in its assigned 
window, and vanishes otherwise: 

We have determined in the face of an “empty window’’ to 
use simple extrapolation of the present estimate. Thus, the 
resulting observer takes the same form as (4) only with e k  
(8) incorporated, 

@ k + l  
&(krf + j r r )  

= F” (et)  + G(6k - Ck@k) 
= FTf+”+’“ ( f i k )  , 

(9) j = 0, 1, ..., Tj + Lk+l - Lk 
5 ,  = CF‘f ( $ E ) .  

Here, we distinguish between the state estimate, 2 i r ( . ) ,  that 
is sent forward to the juggling algorithm, and the attention 
variable, &, that will be sent back to  the window manager. 
The robot gets &(hi)  as soon as it is formed: future predic- 
tions are made at  the faster physical rate, T,.. The window 
manager will make use of fik in the form of &k to handle the 
(k + image. 

There are now three distinct kinds of error, each with its 
own causes and effects. The first is the standard error due 
to the observer, 

A 
Fk = P k - @ k r  
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and is governed by the dynamics 

A Denoting the present error magnitude by d k  = llj&llM, we 
have 

lflk+l 5 x k d k  f I lnkI lM 

(11) 
a >  1 : b k  #N U ) - 1  

Akq 5 < 1  

and the condition on c k  and may now be expressed 
explicitly as 

bk E s N ( a k - 1 )  * Ilc'(cW[(k - 1)T j ]  - h k - l ) l l M  < P k - 1 .  

Thus, there is a second sort of error associated with this 
event. It is due to the conjunction of process noise with time 
delay in the formation of the extrapolated state estimate. 
For, assuming I l n N l l M  is bounded above by the scalar V N ,  

we have 

(12) 

IICT(CW[(k - 1 771 - ~ k - l ) l l M  
_- '= l lW[ (k  - 1)rJ  1 - FrJ ( F k - 1 )  IIM 
:s ~ ~ I ~ k - l ~ ~ M  + E ' Z = I ( a k - - ' l l n N [ ( k  - 2 ) r J  +jrr]llM 
5 a ( 8 k - 1  + r, V N j .  

(13) 
I t  follows that if P k - 1  is a t  least as large as the last ex- 
pression, we are guaranteed (within the limits of our noise 
model) that the kth window will not be empty - that con- 
dition (12) will hold. 

The third sort of error concerns the quality of the estimate 
passed forward to the robot. If G k  = w ( h j  + Lk) - G ( k r j )  
we have, using arguments similar to those above, 

A 

I l ~ k I l M  _< a'" ( d k  + (rj + L k ) v N )  (14) 
Since we prohibit the window manager from addressing 
more pixels than can be processed within the ldmsec frame 
period, Lk, the centroid computation time, increases by units 
of rr and saturates a t  the value rj: 

rr 5 Lk _< T J -  

Thus, 1 1 & . l l ~  is a non-decreasing function of both I9 and p. 

4.3 Certainty Estimates from a Parallel Observer 

Computations (13) imply that Pk should he set in relation 
to d k  in order to insure data to the observer. But, unfortu- 
nately, we are not in possession of the error magnitude, 0 ,  
for the very reason that we were led to build an observer in 
the first place. Since 9 represents our only knowledge of p ,  
the best estimate of 0 is 0 as matters stand presently. To 
address this deficit, we will build a second state estimator 
and attlempt to get additional information concerning 19 by 
comparing the two. 

Using the invertibility of the observability matrix, 

we may define a very different estimate of p of the form 

A This is a dead-beat observer for p in the sense that C& = p t  - 
d k  converges to zero in two steps from all initial estimates, 
do in the absence of noise, ns = n N  = 0 .  In the present 
setting we have 

and, noticing that 

4.4 Window Radius Dynamics for Bounded Estimator 
Errors 

Equipped with a worst case estimate for 3, we are now in a 
position to adjust p. According to the previous calculations 
( 13), a window radius management strategy that achieves 
the relation 

Pk 2 a ( 9 k  + T j v N )  

guarantees data to the observer at step t+l. Noting that Q h  
is causally determined by p k ,  and thus cannot be estimated 
directly by the procedure (15) at stage k, we appeal to (11) 
and note that the desired relation is implied by 

P k  2 a ( ~ k - 1 ~ k - l f  ~ ~ n k - 1 ~ ~ M  + T J v N )  
This demonstrates that the radius adjustment procedure 

Pk = a ( x k - 1 8 k - 1  + [ I n k - l I l M  + T J V N )  (17) 

will always yield a window large enough to capture the next 
centroid, up to the limits of the error models employed. 

But there is now a question of observer convergence. For, 
recall that as p increases, the quality of the robot estimates 
deteriorates. Eventually, the recourse to subsampling might 
begin to have a net destabilizing effect through the injection 
of noise represented by n k  in (11)). We must show that the 
coupled dynamical system (ll), (17) remains bounded. 

Approximating the appearance of p in n k ,  V A  to first order 
(7), we have 

I lnkl lM 
V A ( P k , P k - l )  

< 7(VO + V l P k - 1 )  + l" 
3 (1 + ar/)vN + y(yO + v 1 P k )  +& (VN + 2VO + V l P k  f V l P k - 1 )  

= (1 -t a(TJ + l / l l @ l l M ) v N  + (7 + 2&)vO 

"1 (7 + *) P k  + V l & P k - l *  

1 2  9 



The coupled dynamical inequalities in question now rnay be 
written 

8k+1 
P k + l  

5 x k o k  + V l P k - 1  + 7VO + VN 
5 a ( T f v N  + y ( V 0  + V 1 P k - 1 )  + V N  
+% [dk 2 Y A ( P k r P k - l ) ]  .) 

4.5 

Now in the coordinate system, x = ~ 1 , ~ 2 , x 3 ] ~ ,  where 
x l ( k )  2 29f bounds the actual Lyapunov magnitude of (9) 
and x z ( k )  2 P k ,  x 3 ( k )  2 P k - 1  represent bounds on the most 
recent window radius values, we obtain the dynamics 

Boundness of the State of Attention 

A 

z(k + 1) = Qkx(k) + r 

where the symbols g i ,  ri, i = 1 , 2  denote constants derived 
from the computations developed above. 

By construction of the radius adjustment procedure (17), 
the state of this system enters a region where x k  = CU < 
1 after an initial transient. Now, elementary root locus 
analysis of the characteristic polynomial of this system, 

s2 (-(Y + s )  + QV1 [ ( g z  - 1)G + (6g1 - g2)s + g1s2] 
shows that the matrix Q has roots in the unit circle of the 
complex plane for small enough values of VI: they originate 
at {(Y,O,O}. This implies that if the noise coefficient, V I  
is sufficiently small relative to  the other parameters then 
the window management system succeeds in keeping the 
windows large enough to retain the required image, but not 
so large as to destabilize the estimation procedure. 

5 Conclusion 

The foregoing scheme is a reasonably faithful formalization 
of how the windows are placed in our present juggling sys- 
tem - the assignment of 6 k  (9). I t  is considerably less 
faithful to the way in which window radii, P a ,  are presently 
determined. The chief advance in our thinking represented 
by the proposed formal radius management scheme (17) is 
the manner in which measurement uncertainty is incorpor- 
ated. Specifically, the idea of running a second state estim- 
ator in parallel with the traditional Luenberger observer in 
order to compute a plausible bound on the estimate's error 
magnitude appears to be new. Whether i t  is also effective 
will depend upon the relative magnitude of sensor noise as 
compared to that of the drift term in the unstabilized New- 
tonian flight model (2). Further experimentation will be 
needed to ascertain whether or not this is so. 
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