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Abstract 
We report on our recently achieved spatial two-juggle: 
the ability to  bat two freely falling balls into stable 
periodic vertical trajectories with a single three degree 
of freedom robot arm using a real-time stereo camera 
system for sensory input. After a brief review of the 
previously reported one-juggle, we describe our initial 
approach to the two-juggle planning and control prob- 
lem. We have developed a number of important refine- 
ments to  our initial strategy in the course of getting 
the system to work, and these are reported in some 
detail. The paper concludes with a discussion of some 
data from typical two-juggle runs in the laboratory. 

1 Introduction 
We have recently reached a long-targeted milestone in 
our laboratory: the ability to simultaneously juggle 
two freely falling balls with a single visually servoed 
robot arm. Our experiments in robot juggling began 
five years ago with the planar one-juggle - the abil- 
ity of a one degree of freedom revolute bar to bat a 
single puck falling on a frictionless inclined plane into 
a stable periodic orbit with specified apex [3]. The 
planning and control strategy developed in that effort 
turned out to extend quite naturally to the planar two- 
juggle - simultaneously batting two pucks falling on 
the plane into two specified periodic orbits through 
properly scheduled impacts with the actuated revolute 
bar [2]. Last year we reported our success in general- 
izing the same strategy to achieve a spatial one-juggle 
- batting a ball falling freely in space into a specified 
vertical periodic orbit - with the system depicted in 
Figure 1. The same broad set of ideas continues to 
guide the present work. Yet several important refine- 
ments have been introduced in order to achieve this 
latest capability. 

The juggling behaviors we explore are exemplars 
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Figure 1: The Yale spatial juggling system. 

from a more general range of dynamically dexterous 
capabilities that autonomous robots will surely require 
in unstructured environments. Controlled collisions 
have been understood to play a key role in robotic ma- 
nipulation since the beginnings of the field [5]. Indeed, 
suggestive experiments with planar “catching” based 
upon extensions of the algorithms reported here [2] of- 
fer some hint of how to handle the mechanics involved 
in the passage from our ballistic mode to the quasi- 
static mode of manipulation exemplified in the work 
of Mason and colleagues [7]. The connection to peri- 
odic dynamical tasks is even more clear. Preliminary 
analysis suggests that the same mechanism respons- 
ible for the vertical component of Raibert’s hoppers 
accounts for the stability of our robots’ behaviors as 
well [6]. Nonlinear oscillators have received significant 
attention as central pattern generators in biological lo- 
comotory systems [4], and our approach to “gait reg- 
ulation” may offer a link to the mechanical sources of 
such oscillators. 

2 Juggling Algorithms 
This section describes how the juggling control meth- 
odology originally introduced for the planar system 
[3, 21 has been extended to the present apparatus, and 
in particular how the experimental work presented in 
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[ll] has been continued to include implementation of 
a spatial two-juggle task. Skipping over the analysis 
of the prior planar work [l], we pass immediately to a 
“commented” presentation of the mirror law, a nonlin- 
ear function from the phase space of the body to the 
phase space of the robot that generates a reference tra- 
jectory as the ongoing time history of the ball’s position 
and velocity is fed through it. This mirror law, is used 
in conjunction with a collection of analytic functions 
that intuitively implement our notions of “if-then-else” 
within a “geometric programming framework,” to de- 
velop a juggling strategy for keeping two balls aloft 
simultaneously. 

It must be emphasized that the functions we present 
here comprise at once a mathematical description of 
our algorithm and its actual implementation. Imple- 
menting “geometric programs” of this type amounts to 
merely placing the particular transformation law - in 
the present case, (3) or (7) - in the juggling block of 
the data flow path depicted in the left side of Figure 1. 
One immediate practical benefit of this arrangement is 
the availability of very powerful high level development 
environments in the form of commercial symbolic ma- 
nipulation packages. In practice, we craft these func- 
tions in Mathematica on a SPARCstation and use the 
automatically generated C code on the target control- 
ler. 

2.1 Review of the Working One-Juggle: 
The Mirror Law 

A detailed development of the one-juggle control 
strategy can be found in [I, lo]. Briefly, the “mir- 
ror law,” is a map m : TB + Q (from the phase 
space of a ball to the configuration space of the ro- 
bot), that determines the robot’s reference trajectory 
as Q d ( t )  = m ( 4 t ) ) .  

Figure 2: The Biihgler arm (left) and it’s kinematics 
(right). 

The function, m is defined as follows. Using (6) of 

[ll], define the the joint space position of the ball 

rdbl  

where p-’ is the inverse kinematic map (including the 
paddle’s length s that provides an effective fourth de- 
gree of freedom) for our machine, shown in Figure 2. 
We now seek to express formulaically a robot strategy 
that causes the paddle to respond to the motions of 
the ball in four ways: 

(i) q d l  = &, causes the paddle to  track under the ball 
a t  all times. 

(ii) The paddle “mirrors” the vertical motion of the 
ball through the action of Ob on Qd2 as expressed 
by the original planar mirror law [3]. 

(iii) Radial motion of the ball causes the paddle to 
raise and lower, resulting in the normal being ad- 
justed to correct for radial deviation in the ball 
position. 

(iv) Lateral motion of the ball causes the paddle to 
roll, again adjusting the normal so as to correct 
for lateral position errors. 

To this end, define the ball’s vertzcal energy and radial 
distance as 

A 1 .  A 7 = yb, + -b: and, Pb = sin(8b)sa (2) 

respectively. The complete mirror law combines these 
two measures with a set point description ( i j ,  p ,  and 
6) to form the function 

2 

A m(w) = 7 

Koo(pb  (ii) - pb) + L O l b b  (3) 

2.2 Planning the Two-Juggle: Phase 
Regulation and Urgency 

A two-juggle task requires that the robot perform two 
simultaneous one-juggles with two independent balls 
separated in both space and time. Separation in space 
avoids ball-ball collisions ( not currently part of the en- 
vironmental model) and temporal separation (the two 
balls should not fall simultaneously) is necessary to 
ensure that the machine is capable of striking one ball 
and moving into position under the second, prior to the 
first falling to the floor. The juggling algorithm must 
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be able to control the phase relationship between the 
two balls in addition to the new variables associated 
with the position and energy of the additional ball. 

To accomplish this, we follow the ideas of [2] and 
introduce a new variable, ball phase.  

A bs €(W) = -- 
fi’ (4) 

which evaluates to 1 immediately prior to impact, -1 
immediately after impact, and 0 a t  the apex of the 
ball’s flight. This function measures the ball’s pro- 
gress through its repetitive sequence of fall-teimpact- 
to-rise-to-apex events in a manner that is independent 
of its total energy. A symmetric phase e r ror  can then 
be constructed based on the desired phase relationship 
between the two balls, 

The one-jug le mirror law is then augmented by 
phase e r ror  to k r m  

(6) 
This new relationship between the ball’s state and 

the robot configuration is essentially equivalent to (3), 
except that the expression for qd2 now includes a term 
based on eph.  This term is responsible for maintaining 
(‘phase separation’’ between the two balls. Its overall 
effect causes the robot to strike a ball “harder” when it 
is following too closely behind the other ball. Similarly, 
it will strike a ball “more gently” should the other be 
too close behind it. Both of these behaviors result in 
increasing or decreasing, respectively, the ball’s time of 
flight, thereby correcting the phase relationship, eph. 
Of course proper adjustment of the parameter ~2 1s 
crucial to overall system stability. 

Figure 3: The mapping, U, from ball phase to ‘(ur- 
gency”. 

Individual mirror laws for the two balls, are then 
combined to  form the overall two-juggle law by the use 
of a scalar valued analytic switch s E [0,1], 

m I I ( W 0 , W l )  = S ( W 0 ,  Wl)mo(Wo, W1) + (7) 
(1  - S ( W 0 ,  w)) ml(W1, WO). 

The function s encodes the mixture between the need 
to juggle ball 0 (follow mo) or ball 1 (follow ml), and is 
itself constructed from individual “urgency” functions 
(U) for each ball by 

Where the “urgencies” are produced by a map from the 
phase of a ball to the unit interval as show in Figure 3. 
The motivation for this implementation is as follows. 6 

varies smoothly from -1 immediately after impact, to 
0 at the balls apex, to 1 immediately prior to impact. 
U then describes the urgency of the ball (being near 
1 when the ball is near impact, and 0 as it rises to 
its apex). Finally s combines these two urgencies by 
smoothly mapping the unit box onto [0,1] so s = 0 
when 6 1  = 1, and s = 1 when 6 0  = 1. 

3 Refinements in Implementa- 
tion 

The foregoing strategy represents a more or less 
straightforward generalization of the ideas developed 
in [2]. In order to achieve the spatial two-juggle in 
our laboratory, however, we have found in necessary 
to introduce a number of important refinements. 

3.1 Smoothness of Reference Traject- 
ories 

We use a nonlinear inverse dynamics based robot con- 
troller [12] to track the reference trajectory output by 
the mirror law (7). Such controllers require that the 
reference trajectory be twice differentiable. Now (7) 
is an analytic function, and its input is the output of 
a mechanical system (the ball’s position and velocity). 
However the velocity of the ball is necessarily discon- 
tinuous a t  the impact events. Consequently, the velo- 
cities we command the robot to attain are discontinu- 
ous as well. One might plausible hope that this might 
not be a problem in practice, as the discontinuity only 
occurs immediately after the machine has struck the 
ball ( at a juncture when it does not matter what the 
arm does). Unfortunately the “settling time’” of our 
machine is on the order of 0.3 to 0.5 seconds. This 
is close enough to the expected temporal ball separa- 
tion (time between impacts) a t  equilibrium (0.5 sec) 
to cause difficulties. The potential for failure during 
transients is much worse. 

Under the scheme described above we observed that 
there were significant difficulties maintaining regula- 
tion of a one-juggle while introducing the second ball. 
On the rare occasions that we succeeded in releasing 

‘Of course since the dynamics of the robot are nonlinear there 
is no formally detined settling time for such a system. We use 
the term loosely to mean the time typically necessary for the 
robot and controller to recover from a transient in the reference 
trajectory. 
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Figure 4: Block diagram of twc-juggle algorithm with follow-through. 

the second ball, failure would shortly follow due to wild 
hits, or simple misses. From the analysis of data from 
these failed attempts it became clear that one of the 
major causes was the inability of the robot to track 
the reference trajectories. In particular, the machine 
could not recover from a post-impact transient in time 
to reliably strike the next ball. The most natural solu- 
tion was to correct the reference trajectory, and make 
it “trackable”. Towards this end we have added what 
we have come to call a follow-through to the juggling 
algorithm . 

3.2 Follow Through 
The follow-through, whose implementation is shown in 
block diagram form in Figure 4, consists of two parts, 
a reference trajectory generator, and a mixing func- 
tion. The follow through reference trajectory is simply 
the extrapolation of the commanded reference traject- 
ory immediately prior to the impact. That is to say 
we capture the commanded state of the robot imme- 
diately before the impact, then integrate it forward 
in time with no acceleration to generate the follow- 
through reference. This trajectory is then mixed with 
the true juggling trajectory by taking a convex combin- 
ation of the two trajectories based on the phase of the 
ball in question. More specifically the phase is passed 
through the function show in Figure 5 to produce C 
which is used to  combine the two references as follows, 

By properly choosing the function which relates ball 
phase to C it  becomes possible to produce reference tra- 
jectories which remain twice differentiable across the 
impacts, yet still exactly track the trajectories given 
by (3) as the ball approaches impact. In particular for 

Figure 5: Splined follow-through mixing function, C .  

these two properties to be met C must be 1 when the 
balls phase is at -1 (immediately after impact) and 
must fall to 0 before the phase reaches +1 (immedi- 
ately before impact). We use, for C, a one parameter 
family of splined functions, consisting of two quadratic 
pieces which take C from 1 to 0 as the phases move 
from -1 to a chosen value and a constant piece which 
remains a t  0 across the remainder of the domain. 

3.3 Sensing Issues 
The primary sensor for our spatial juggler is a stereo 
vision system2. As might be imagined, the task of 
keeping track of two flying balls is considerably harder 
than tracking a single one. The problems and our solu- 
tions are described at length in a companion paper 
[9] and are merely sketched here. Obviously there is 
the classic “tracking” problem of assigning measure- 
ments to tracks. Given of the real-time nature of the 
juggler we choose to produce ball locations from im- 
age data by recourse to “brute simple” computations 
of low-order moments (zeroth, first, and second) over 
small subwindows in the image (we currently use 1200 

We also use an audio sensor for precise temporal measure- 
ments of ball impacts. 
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pixels per window), Coupling the window placement 
of this tracker with a dynamical observer has proven 
extremely effective in correlating tracks to data, as 
the simple Newtonian model for the free falling ball 
is sufficiently accurate for reliable prediction. However 
the problem of real-time image interpretation becomes 
more complicated as the balls pass arbitrarily closely 
together in any particular image. The simplicity of our 
low-level image processing algorithm incurs significant 
risk of catastrophic failure, resulting either in the con- 
fusion of the two balls (both observer "tracking" one 
ball) or the simple loss of one or both. In order to 
avoid these pitfalls we have chosen to selectively ignore 
images where interpretation would become too compu- 
tationally expensive to be undertaken in our real-time 
environment. The analysis of this decision algorithm 
comprises the main focus of [a]. 

4 Present Status 
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Figure 6 :  Two-Juggle ball trajectory: Height vs. Time. 
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Figure 7: Two-Juggle ball trajectory: Phase Error vs. 
Time. 

What follows here is a presentation of our most recent 
success at implementing the spatial two-juggle task. 
Figure 6 depicts the vertical position of two balls dur- 
ing a typical juggling run. As can be seen the ma- 
chine succeeds in regulating the heights of the constitu- 
ent one juggles to within roughly 10 cm of the target 
height. In this particular experiment the initial drop 
of the second ball was  well timed (nearly perfectly out 
of phase with the original ball), and thus we see no 
significant effort on the part of the machine to correct 
the phase. This is depicted in the plot of phase error 
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Figure 8: Two-Juggle ball trajectory: Height vs. Time. 
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Figure 9: Two-Juggle ball trajectory: Phase Error vs. 
Time. 

shown in Figure 7. In contrast Figures 8 and 9 show 
the same variables for a different initial condition, a 
rather poor drop. Here the effect of phase regulation 
is clearly visible in the trajectories of both balls near 
the 4 second mark. In order to improve phase sep- 
aration the machine has temporarily sacrificed height 
regulation by gently striking the second ball (dashed 
line) and firmly striking the first ball (solid line) thus 
changing their times of flight and forcing the balls to 
be more out of phase with each other. Finally it is 
worth noting that at the 5.75 second mark of this ex- 
periment there is a large transient in the track of the 
second ball. This is due to an erroneous centroid meas- 
urement of the ball, and was recovered from without 
significant difficulty. 

Figure 10 gives some feeling for the horizontal regu- 
lation performance of the system. The position of the 
balls is only controlled to an error of approximately 15 
cm. This variation seems attributable to the various 
noise sources in the system, most notably surface ir- 
regularities on the paddle and controller error in the 
positioning of the roll axis of the robot. Fortunately, 
the proportional derivative terms in (3) are sufficiently 
stabilizing to result in acceptable performance. 

Finally, Figure 11 and 12 allow the reader to assess 
the effect of adding follow-through to the performance 
of the robot controller. The former of these figures 
shows the generated reference trajectory (solid line) 
and the tracking performance for the shoulder joint of 
the robot (dashed line) without the use of the follow- 
through. The later figure plots the same variables 
for an identical run with the inclusion of the follow 
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Figure 10: Projection of the ball trajectories onto the 
plane x-y=O - facing the robot “head on”. 

through. As can be seen the sharp corner, which cor- 
responds to  a step in commanded velocity, disappears 
from the reference trajectory. Associated with this is a 
significant increase in tracking performance as can be 
seen from the greatly reduced errors immediately after 
the impact (which occur a t  the peaks in the graph). 
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