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ZERO DYNAMICS OF PLANAR BIPED
WALKERS WITH ONE DEGREE OF

UNDERACTUATION

E.R. Westervelt 1 J.W. Grizzle 2 D.E. Koditschek 3

Abstract: The zero dynamics of a hybrid model of bipedal walking are introduced
and studied for a class of N-link, planar robots with one degree of underactuation
and outputs that depend only on the configuration variables. Asymptotically stable
solutions of the zero dynamics correspond to asymptotically stabilizable orbits
of the full hybrid model of the walker. The Poincaré map of the zero dynamics
is computed and proven to be diffeomorphic to a scalar, linear, time-invariant
system, thereby rendering transparent the existence and stability properties of
periodic orbits.

1. INTRODUCTION

A planar biped walker is a robot that locomotes
via alternation of two legs in the sagittal plane
(see Figure 1). For this paper, it is assumed that
there is no open interval of time during which two
legs are in simultaneous contact with the ground.
The models for such robots are necessarily hybrid,
consisting of ordinary differential equations to
describe the motion of the robot when only one
leg is in contact with the ground (single support
or swing phase of the walking motion), and a
discrete map to model the impact when the second
leg touches the ground (double support phase).
The degree of complexity of controlling such a
system is a function, among other things, of the
number of degrees of freedom of the model as
well as the degree of actuation or, more precisely,
underactuation of the system.

For planar, biped walkers with a torso and one
degree of underactuation, it was shown for the first
time in (Grizzle et al., 2001) for a 3-link model,
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and in (Plestan et al., 2001) for a 5-link model,
that these systems admit feedback control designs
that induce walking motions with provable stabil-
ity properties. The control designs involved the
judicious choice of a set of holonomic constraints
that were imposed on the robot via feedback con-
trol. This was accomplished by interpreting the
constraints as output functions depending only on
the configuration variables of the robot, and then
combining ideas from finite-time stabilization and
computed torque. The desired posture of the robot
was encoded into the set of outputs in a such a way
that the nulling of the outputs was equivalent to
achieving the desired posture.

In general, the maximal internal dynamics of a
system that are compatible with the output be-
ing identically zero is called the zero dynam-
ics (Isidori, 1995). The zero dynamics of the
swing phase were briefly analyzed in (Grizzle et
al., 2001). However, since they are not in general
invariant under the impact map, their stability
properties could not be related directly to the
stability of the orbits of the closed-loop, hybrid
system. Here, the required invariance conditions
will be analyzed in order to formulate a proper
definition of the hybrid zero dynamics, that is,
the zero dynamics of the full hybrid model of
the biped. This will be carried out for a class
of N -link, planar biped walkers with one degree
of underactuation, and for outputs that depend
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only on the configuration variables. Under quite
general conditions, this yields a hybrid system on
the plane that can be analyzed in great detail.
In particular, the associated Poincaré return map
can be explicitly computed and shown to be diffeo-
morphic to a scalar, linear-time invariant system,
thereby rendering transparent the existence and
stability properties of periodic orbits of the hybrid
zero dynamics.

When the hybrid zero dynamics admit an asymp-
totically stable orbit, the general feedback ap-
proach developed in (Grizzle et al., 2001; Plestan
et al., 2001) can be immediately applied to cre-
ate a provably, asymptotically stable orbit in the
full hybrid model. In other work to be reported
elsewhere, a convenient parameterization of the
hybrid zero dynamics is introduced. Parameter
optimization can then be used to tune the hy-
brid zero dynamics in order to achieve closed-
loop, asymptotically stable walking with low en-
ergy consumption, while meeting natural kine-
matic and dynamic constraints. This is similar to
(Chevallereau and Aoustin, 2001), but with the
additional property that the optimization is essen-
tially being performed in closed loop, so the exis-
tence of a controller that asymptotically stabilizes
the closed-loop system is immediate. The hybrid
zero dynamics also make it possible to transition
between feedback controllers that achieve walking
at various fixed rates, and still analytically verify
that stability is never lost.
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Fig. 1. Schematic illustrating the class of N -
link robot models considered here. Note that
there is no actuation between the stance leg
and the ground, while all other joints are
actuated.

2. ROBOT MODEL AND MODELING
ASSUMPTIONS

The robot is assumed to be planar, consisting of
at least a torso and two identical legs, and the
legs are connected at a common point called the
hips; furthermore, all links have mass, are rigid,
are connected in revolute joints, and all kinematic

chains formed by the connections of links are
assumed to be open. Figure 1 depicts an example
of such a robot. All walking cycles will be assumed
to take place in the sagittal plane and consist of
successive phases of single support (meaning the
stance leg is touching the walking surface and the
swing leg is not) and double support (the swing
leg and the stance leg are both in contact with
the walking surface). During the single support
phase, it is assumed that the stance leg acts as
a pivot. It is further supposed that the walking
gaits of interest are such that, in steady state,
successive phases of single support are symmetric
with respect to the two legs, involve motion from
left to right, and the swing leg is posed in front of
the stance leg.

The rigid contact model presented in (Hurmuzlu
and Marghitu, 1994) is assumed, which collapses
the double support phase to an instant in time,
and allows a discontinuity in the velocity com-
ponent of the state, with the position remaining
continuous. The biped model is thus hybrid in na-
ture, consisting of a continuous dynamics during
the swing phase and a re-initialization rule at the
contact event. An important source of complexity
in a biped system is the degree underactuation
of the system. It will be assumed that there is
no actuation at the end of the stance leg. Thus
the system is underactuated during walking, as
opposed to fully actuated (a control at each joint
and the contact point with the ground).

Swing phase model: Let N ≥ 3 be the number
of links in the robot. The dynamic model of the
robot during the swing phase has N -DOF. Let
q = (q1, · · · , qN ) be a set of angular coordinates
describing the configuration of the robot with
respect to a world reference frame W . Since only
symmetric gaits are of interest, the same model
can be used irrespective of which leg is the stance
leg if the coordinates are relabeled after each
phase of double support. Using the method of
Lagrange, the model is written in the form

D(q)q̈ + C(q, q̇)q̇ + G(q) = Bu. (1)

Torques ui, i = 1 to N − 1, are applied between
each connection of two links, but not between the
stance leg and ground. The model is written in
state space form by

ẋ =
[

q̇
D−1(q) [−C(q, q̇)q̇ −G(q) + Bu]

]
=: f(x) + g(x)u. (2)

where x := (q′, q̇′)′. The state space of the model is
taken as TQ := {x := (q′, q̇′)′ | q ∈ Q, q̇ ∈ IRN},
where Q is a simply-connected, open subset of
[0, 2π)N corresponding to physically reasonable
configurations of the robot (for example, with the
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exception of the end of the stance leg, all points
of the robot being above the walking surface; one
could also impose that the knees are not bent
backwards, etc.).

Impact model: An impact occurs when the
swing leg touches the walking surface,

S := {(q, q̇) ∈ TQ | pv
2 = 0, ph

2 > 0}, (3)

also called the ground. The impact between the
swing leg and the ground is modeled as a contact
between two rigid bodies. In addition to modeling
the change in state of the robot, the impact
model accounts for the relabeling of the robot’s
coordinates that occurs after each phase of double
support. Let R be a constant matrix such that R·q
accounts for relabeling of the coordinates when
the swing leg becomes the new stance leg. Then
the impact model of (Hurmuzlu and Marghitu,
1994) under standard hypotheses (see (Grizzle et
al., 2001), for example), results in a smooth map
∆ : S → TQ,

x+ = ∆(x−), (4)

where x+ := (q+, q̇+) (resp. x− := (q−, q̇−)) is the
state value just after (resp. just before) impact.
For later convenience, ∆ is expressed as

∆(x−) :=
[

∆q · q−
∆q̇(q−) · q̇−

]
(5)

where ∆q := R and ∆q̇(q) is an N ×N matrix of
smooth functions of q.

Nonlinear system with impulse effects: The
overall biped robot model can be expressed as
a nonlinear system with impulse effects (Ye et
al., 1998)

ẋ = f(x) + g(x)u x− /∈ S
x+ = ∆(x−) x− ∈ S,

(6)

where, x−(t) := limτ↗t x(τ). Solutions are taken
to be right continuous and must have finite left
and right limits at each impact event; see (Grizzle
et al., 2001) for details.

Informally, a half-step of the robot is a solution of
(6) that starts with the robot in double support,
ends in double support with the positions of the
legs swapped, and contains no other impact event.
This is more precisely defined as follows. Let
ϕ(t, x0) be a maximal solution of the swing phase
dynamics (2) with initial condition x0 at time
t0 = 0, and define the time to impact function,
TI : TQ → IR ∪ {∞} as the first time that a
solution of the swing phase dynamics intersects S;
see (Grizzle et al., 2001). Let x0 ∈ S be such that
TI(∆(x0)) < ∞. A half-step of the robot is the
solution of (6) defined on the half-open interval
[0, TI(∆(x0))) with initial point x0.

3. SWING PHASE ZERO DYNAMICS

Note that if an output y = h(q) depends only on
the configuration variables, then, due to the sec-
ond order nature of the robot model, the deriva-
tive of the output along solutions of (2) does not
depend directly on the inputs. Hence its relative
degree is at least two. Differentiating the output
once again computes the accelerations, resulting
in

d2y

dt2
= L2

fh(q, q̇) + LgLfh(q)u, (7)

where the matrix LgLfh(q) is called the decou-
pling matrix and depends only on the configu-
ration variables. A consequence of the general
results in (Isidori, 1995) is that the invertibility
of this matrix at a given point assures the ex-
istence and uniqueness of the zero dynamics in
the neighborhood of that point. With a few extra
hypotheses, these properties can be assured on a
given open set.

Lemma 1. (Swing phase zero dynamics) Sup-
pose that a smooth function h is selected so that

HH1) h is a function of only the position coordi-
nates;

HH2) there exists an open set Q̃ ⊂ Q such that
for each point q ∈ Q̃, the decoupling matrix
LgLfh(q) is square and invertible (i.e., h has
vector relative degree (2, . . . , 2)′);

HH3) there exists a smooth real valued function
θ(q) such that Φ : Q̃ → IRN by Φ(q) :=
(h(q)′, θ(q))′ is a diffeomorphism onto its im-
age;

HH4) there exists at least one point in Q̃ where h
vanishes.

Then,

(1) Z := {x ∈ Q̃ × IRN | h(x) = 0, Lfh(x) =
0} is a smooth two dimensional embedded
submanifold of TQ; and

(2) the feedback control

u∗(x) = −(LgLfh(x))−1L2
fh(x)

renders Z invariant under the swing phase
dynamics; that is, for every z ∈ Z, fzero(z) :=
f(z) + g(z)u∗(z) ∈ TzZ.

Z is called the zero dynamics manifold and

ż = fzero(z) (8)

is called the (swing phase) zero dynamics.

The zero dynamics are now developed in a conve-
nient set of local coordinates. Since the columns of
g in (2) are involutive, by (Isidori, 1995), page 222,
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in a neighborhood of any point where the decou-
pling matrix is invertible, there exists a smooth
scalar function γ such that

η1 = h(q), η2 = Lfh(q, q̇)

ξ1 = θ(q), ξ2 = γ(q, q̇)
(9)

is a valid coordinate transformation and Lgγ = 0.
Moreover, by applying the constructive proof of
the Frobenius theorem of (Isidori, 1995), page 23,
(see also, (Grizzle et al., 2001)) one obtains that
γ(q, q̇) has the form γ0(q) · q̇ and (9) can be shown
to be a valid coordinate change on all of Q̃× IRN .

In the coordinates (9), the zero dynamics become

ξ̇1 = Lfθ

ξ̇2 = Lfγ
(10)

where there right hand side is evaluated at

q = Φ−1(0, ξ1) (11)

q̇ =


 ∂h

∂q
γ0



−1 [

0
ξ2

]
. (12)

Theorem 2. Under the hypotheses of Lemma 1,
(ξ1, ξ2) = (θ(q), γ0(q) · q̇) is a valid set of coor-
dinates on Z, and in these coordinates the zero
dynamics take the form

ξ̇1 = α(ξ1)ξ2 (13)

ξ̇2 = β(ξ1). (14)

Moreover, if the model (2) is expressed in N − 1
relative angular coordinates, (q1, · · · , qN−1), plus
one absolute angular coordinate, qN , the follow-
ing interpretations can be given for the various
functions appearing in the zero dynamics:

ξ1 = θ|Z (15)

ξ2 =
∂K

∂q̇N

∣∣∣∣
Z

(16)

α(ξ1) =
∂θ

∂q
·

 ∂h

∂q
γ0



−1 [

0
1

]∣∣∣∣∣∣∣
Z

(17)

β(ξ1) = − ∂V

∂qN

∣∣∣∣
Z

, (18)

where K(q, q̇) = 1
2 · q̇′D(q)q̇ is the kinetic energy

of the robot, V (q) is its potential energy, and γ0

is the last row of D, the inertial matrix.

PROOF. The form of (13) is immediate from
(10) and (12) since both h and γ0 are functions
of only q, and hence when restricted to Z, are

functions of ξ1 only. Suppose now that the model
(2) is expressed in N − 1 relative angular coordi-
nates and one absolute coordinate. Since the ki-
netic energy of the robot, K(q, q̇), is independent
of the choice of world coordinate frame (Spong
and Vidyasagar, 1989, page 140), and since qN

fixes this choice, K(q, q̇) is independent of qN .
Since D := ∂ [(∂K/∂q̇)′] /∂q̇, ∂D/∂qN = 0. Let
DN , CN , and GN be the last rows of D, C,
and G, respectively. Then ξ2 = γ0(q) · q̇ is equal
to DN (q) · q̇ (Grizzle et al., 2001), and thus is
equal to ∂K/∂q̇N since K = 1

2 · q̇′Dq̇. Continuing,
ξ̇2 := Lfγ becomes

Lfγ =
[

q̇′ · ∂D′
N

∂q
DN

] [
q̇

−D−1 [Cq̇ + G]

]

= q̇′ · ∂D′
N

∂q
· q̇ − CN q̇ −GN . (19)

Noting that (see (Spong and Vidyasagar, 1989,
page 142))

CN = q̇′ · ∂D′
N

∂q
− 1

2
· q̇′ · ∂D

∂qN
,

(19) becomes Lfγ = −GN = −∂V/∂qN , which
when evaluated on Z is a function of ξ1 only.

4. HYBRID ZERO DYNAMICS

This section incorporates the impact model into
the notion of the maximal internal dynamics com-
patible with the output being identically zero, in
order to obtain a zero dynamics of the complete
model of the biped walker, (6). Towards this goal,
let y = h(q) be an output satisfying the hy-
potheses of Lemma 1 and suppose there exists
a trajectory, x(t), of the hybrid model (6) along
which the output is identically zero. If the trajec-
tory contains no impacts with S, then x(t) is a
solution of the swing phase dynamics and also of
its zero dynamics. If the trajectory does contain
impact events, then let (t0, tf ) be an open interval
of time containing exactly one impact at te. By
definition, on the intervals (t0, te) and (te, tf ), x(t)
is a solution of the swing phase dynamics and
hence also of its zero dynamics, so x(t) ∈ Z;
since also by definition of a solution, x−(te) :=
limt↗te

x(t) exists, is finite, and lies in S, it follows
that x−(te) ∈ S ∩ Z. Moreover, by definition of
a solution of (6), x(te) := x+(te) := ∆(x−(te)),
from which it follows that ∆(x−(te)) ∈ Z. On the
other hand, if ∆(S ∩Z) ⊂ Z, then from solutions
of the swing phase zero dynamics it is clearly
possible to construct solutions to the complete
model of the biped walker along which the output
y = h(q) is identically zero. This leads to the
following definition.
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Definition 3. Let y = h(q) be an output satisfying
the hypotheses of Lemma 1, and let Z and ż =
fzero(z) be the associated zero dynamics manifold
and zero dynamics of the swing phase model.
Suppose that S ∩Z is a smooth, one-dimensional,
embedded submanifold of TQ. If ∆(S ∩ Z) ⊂ Z,
then the nonlinear system with impulse effects,

ż = fzero(z) z− /∈ S ∩ Z
z+ = ∆(z−) z− ∈ S ∩ Z,

(20)

with z ∈ Z, is the hybrid zero dynamics of the
model (6).

Remark 4. From standard results in (Boothby,
1975), S ∩ Z will be a smooth one-dimensional
embedded submanifold if S ∩ Z 6= ∅ and the map
[h′ (Lfh)′ pv

2]
′ has constant rank equal to 2N − 1

on S∩Z. A simple argument shows that this rank
condition is equivalent to rank of [h′ pv

2]
′ = N , and

under this rank condition, S ∩ Z ∩ Q̃ consists of
the isolated zeros of [h′ pv

2]
′
. Let q− be a solution

of (h(q), pv
2(q)) = (0, 0), ph

2 (q) > 0. Then the
connected component of S ∩ Z containing (q−, 0)
is diffeomorphic to IR per σ : IR → S ∩ Z, where

σ(ω) :=

[
σq

σq̇ · ω

]
(21)

σq := q−, and

σq̇ =


 ∂h

∂q
(q−)

γ0(q−)



−1 [

0
1

]
. (22)

In view of this, the following additional assump-
tion is made about the output h and the open set
Q̃
HH5) there exists a unique point q− ∈ Q̃ such

that (h(q−), pv
2(q

−)) = (0, 0), ph
2 (q−) > 0 and

the rank of [h′, pv
2]
′ at q− equals N .

The next result characterizes when the swing
phase zero dynamics are compatible with the
impact model, leading to a non-trivial hybrid zero
dynamics.

Theorem 5. (Hybrid zero dynamics
existence) Consider the robot model (6) along
with a smooth output function h satisfying HH1–
HH5. Then, the following statements are equiva-
lent:

(a) ∆(S ∩ Z) ⊂ Z;
(b) h ◦∆|(S∩Z) = 0 and Lfh ◦∆|(S∩Z) = 0;
(c) there exists at least one point (q−, q̇−) ∈ S ∩

Z such that γ0(q−) · q̇− 6= 0, h ◦∆q(q−) = 0,
and Lfh ◦∆(q−, q̇−) = 0.

PROOF. The equivalence of (a) and (b) is im-
mediate from the definition of Z as the zero set of
h and Lfh. The equivalence of (b) and (c) follows
from Remark 4 once it is noted from (5) that
Lfh ◦∆ is linear in q̇ .

Under the hypotheses of Theorem 5, the hybrid
zero dynamics are well-defined. Let z− ∈ S ∩ Z,
z+ = ∆(z−) and suppose that TI(z+) < ∞. Let
ϕ : [0, tf ] → Z, tf = TI(z+), be a solution of the
zero dynamics, (8), such that ϕ(0) = z+. Define

θ̂(t) := θ ◦ ϕ(t) and ˙̂
θ := dθ̂(t)/dt.

Proposition 6. Assume the hypotheses of Theo-
rem 5. Then over any half-step of the hybrid zero
dynamics, ˙̂

θ : [0, tf ) → IR is never zero. In par-
ticular, θ̂ : [0, tf ) → IR is strictly monotonic and
thus achieves its maximum and minimum values
at the end points.

The proof is omitted for reasons of space. By
Remark 4, it follows that θ̂(0) = θ(∆q(q−))
and θ̂(tf ) = θ(q−), that is, the extrema can be
computed a priori. Denote these by

θ− := θ(q−) (23)

θ+ := θ(∆q(q−)). (24)

Without loss of generality, it is assumed that θ+ <
θ−; that is, that along any half-step of the hybrid
zero dynamics, θ is monotonically increasing.

5. POINCARÉ ANALYSIS OF THE ZERO
DYNAMICS

Assume the hypotheses of Theorem 5. Take the
Poincaré section to be S ∩Z so that the Poincaré
return map is the partial map ρ : S ∩ Z →
S ∩ Z defined as follows (Grizzle et al., 2001):
let ϕ(t, z0) be a maximal solution of the swing
phase zero dynamics, ż = fzero(z). Since both
fzero(z) and Z are smooth, a solution of (13)–
(14) from a given initial condition, z0, is unique
and depends smoothly on z0. Then by (Grizzle
et al., 2001, Lemma 3), Z̃ := {z ∈ Z | 0 <
TI(z) < ∞ and Lfpv

2(ϕ(TI(z), z)) 6= 0} is open.
For z ∈ S ∩ Z̃, define the Poincaré return map for
the hybrid zero dynamics as

ρ(z) := ϕ(TI(∆(z)),∆(z)). (25)

In a special set of local coordinates, the return
map can be explicitly computed. Indeed, express
the hybrid zero dynamics in the coordinates of
Theorem 2, namely, (ξ1, ξ2) = (θ, γ). In these
coordinates, S ∩ Z and ∆ : (ξ−1 , ξ−2 ) → (ξ+

1 , ξ+
2 )

simplify to
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S ∩ Z =
{
(ξ−1 , ξ−2 ) | ξ−1 = θ−, ξ−2 ∈ IR

}
(26)

ξ+
1 = θ+ (27)

ξ+
2 = δzero · ξ−2 , (28)

where δzero := γ0(q+)·∆q̇(q−)·σq̇(q−), a constant.
The hybrid zero dynamics are thus given by (13)–
(14) during the swing phase, and at impact with
S ∩ Z the re-initialization rules (27) and (28) are
applied. By Proposition 6, over any half-step ξ̇1 is
non-zero, and thus (13)–(14) are equivalent to

dξ2

dξ1
=

β(ξ1)
α(ξ1)ξ2

. (29)

¿From (15), ξ̇1 6= 0 implies ξ2 6= 0, and thus
ζ2 := 1

2 (ξ2)2 is a valid change of coordinates on
(29). In these coordinates, (29) becomes

dζ2

dξ1
=

β(ξ1)
α(ξ1)

. (30)

For θ+ ≤ ξ1 ≤ θ−, define

κ(ξ1) :=

ξ1∫
θ+

β(ξ)
α(ξ)

· dξ (31)

ζ−2 :=
1
2
(ξ−2 )2 (32)

ζ+
2 := δ2

zero · ζ−2 . (33)

Then (30) may be integrated over a half-step to
obtain

ζ−2 = ζ+
2 + κ(θ−), (34)

as long as 4 ζ+
2 + K > 0, where,

K := min
θ+≤ξ1≤θ−

κ(ξ1). (35)

These results yield the following theorem.

Theorem 7. (Poincaré map for hybrid zero
dynamics) Assume the hypotheses of Theorem
5 and let (θ, γ) be as in Theorem 2. Then in
the coordinates (ζ1, ζ2) = (θ, 1

2γ2), the Poincaré
return map of the hybrid zero dynamics, ρ : S ∩
Z → S ∩ Z, is given by

ρ(ζ−2 ) = δ2
zero · ζ−2 + κ(θ−), (36)

with domain of definition{
ζ−2 > 0 | δ2

zero · ζ−2 + K ≥ 0
}

. (37)

If δ2
zero 6= 1 and

ζ∗2 :=
κ(θ−)

1− δ2
zero

(38)

4 By definition, ζ2 := 1
2
(ξ2)2 must be positive along any

solution.

is in the domain of definition of ρ, then it is a fixed
point of ρ. Moreover, if ζ∗2 is a fixed point, then ζ∗2
is an asymptotically stable equilibrium point of

ζ2(k + 1) = ρ(ζ2(k)) (39)

if, and only if, δ2
zero < 1, and in this case, its

domain of attraction is (37), the entire domain of
definition of ρ.
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