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Abstract. The class of continuous piecewise linear (PL) functions represents a useful family
of approximants because invertibility can be readily imposed, and if a PL function is invertible,
then it can be inverted in closed form. Many applications, arising, for example, in control systems
and robotics, involve the simultaneous construction of a forward and inverse system model from
data. Most approximation techniques require that separate forward and inverse models be trained,
whereas an invertible continuous PL affords, simultaneously, the forward and inverse system model
in a single representation. The minvar algorithm computes a continuous PL approximation to data.
Local convergence of minvar is proven for the case when the data generating function is itself a PL
function and available directly rather than through data.
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1. Introduction. In this paper, we present minvar, a novel algorithm for com-
puting continuous multidimensional piecewise linear (PL) approximations to data.
The algorithm takes advantage of the structure of PL functions to provide a compu-
tationally effective approximation technique. This paper provides a local convergence
proof for the special case when the data generating function is itself PL and is available
directly rather than through discrete data.

Our interest in the PL family is driven by applications that require approximation
of both forward and inverse functions from data. In xerography, for example, the
print engine’s color space transformation is required to stabilize color reproduction,
while its inverse is required to generate printer specific color mixture commands in
response to inputs expressed in device independent color coordinates [21, 23]. The
field of robotics is rife with examples where changes of coordinates play a key role: in
mobile robot navigation [27, 32, 33]; in the representation of gaits [31, 34]; in sensor
based manipulation [8]; as well as in calibration [42]. Since a change of coordinates
is a continuous and continuously invertible function, building a custom change of
coordinates amounts to a search for the appropriate forward and inverse function.
Representations of scalar invertible functions are required for certain machine tool
calibration problems [24], for certain automobile fuel control settings [17], as well
as for probability density estimation [15]. In all such settings, most approximation
techniques require the construction of distinct forward and inverse representations,
because the approximations are not invertible in closed form. In addition to doubling
the effective training effort, accuracy suffers since the approximation of the inverse is
not exactly the inverse of the forward approximation. In contrast, invertibility of PL
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functions can be verified and even imposed geometrically, that is, by well characterized
and computationally effective techniques arising from geometric insights. Moreover,
if a PL function is invertible, it can be inverted in closed form. Thus a single PL
approximation is ideal for applications requiring the approximation of a function and
its inverse.

A substantial amount of mathematical literature on real function approximation
(see, for example, [6, 9, 29]), largely concerned with linear-in-parameters techniques,
deals extensively with algorithms, fundamental limits, convergence rates, and families
of bases in approximating functions. Recent activity has been spurred by evidence
that nonlinear-in-parameters function families offer improved approximation rates in
higher dimensions as compared to linear-in-parameters representations [3]. Recently,
approximation methods that employ collections of local approximations have received
increasing attention [1, 16, 38]. However, very little of this linear- or nonlinear-
in-parameters literature addresses the problem of function approximation under the
constraint of invertibility.

PL functions have been addressed in a number of different settings. Algebraic
topologists used PL homeomorphisms to classify topological spaces [36] but did not
address computational considerations. The study of splines, piecewise polynomials
with continuity and smoothness constraints, includes PL functions [7, 10, 35]. Splines
are typically extended to multiple dimensions by means of tensor products. The do-
main partition is then a tensor product of partitions of the individual dimensions
and the approximant is the sum of tensor products of scalar spline functions. A
multidimensional linear spline is then multilinear, that is, linear in each variable sep-
arately, rather than truly linear. General splines enjoy no invertibility properties.
Moreover, most of the spline literature assumes the domain partition to be fixed, in
which case approximation of the best L2 spline is a linear-in-parameters problem.
Allowing the partition to change introduces a nonlinear-in-parameters problem. The
multivariate adaptive regression spline (MARS) literature admits a limited nonlinear
parameterization by allowing the basis to adapt but does not allow general motion
of the domain partition [16, 38]. The piecewise polynomial literature addresses the
problem of finding (possibly discontinuous) piecewise polynomial approximations to
an explicitly known scalar function. In this setting, the domain partition is consid-
ered as part of the approximation’s parameterization. For scalar functions, there are
results for the existence of a best approximation by possibly discontinuous piecewise
polynomials under certain generalized convexity conditions [4, 18]. Algorithms simi-
lar in flavor to the scalar specialization of minvar were introduced in [2, 25, 26]. A
treatment of discontinuous piecewise polynomial approximations on two-dimensional
triangulations is provided in [39]. Also, [40] provides an algorithm for a moving mesh
finite element solution to variational problems. A specialization of this moving mesh
algorithm is finding the best Lp, p finite and even, continuous piecewise polynomial
approximation to a function. Both of these algorithms [39, 40], as well as the piecewise
polynomial literature in general [2, 25, 26], assume that the function to be approxi-
mated is available directly, and the algorithms entail steps, such as root finding, that
incorporate the function intrinsically. In contrast, the minvar algorithm is defined for
arbitrary (finite) dimension and can either use a finite set of data or directly use the
function to be approximated.

Motivated by applications that require the approximation of invertible functions,
we have developed the minvar algorithm for computing PL approximations to a set
of discrete data. In the context of these applications, PL approximations offer the
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substantial benefit of closed form invertibility. When the domain partition is fixed,
computing the best PL approximation is a linear-in-parameters problem that can be
solved using classical techniques. Treating the partition as a component of the ap-
proximation’s parameterization gives a much more powerful approximant, at the cost
of entering the nonlinear-in-parameters problem domain. In nonlinear-in-parameters
problems, one can generally expect only local, as opposed to global, convergence
properties. Moving the domain partition of a PL function, or triangulation, as for-
mally defined in the next section, has an added difficulty. A triangulation has both
continuous and combinatorial parameters that interact in complex ways. Not all com-
binations of continuous and combinatorial parameters yield a proper triangulation.
Triangulations in two and three dimensions have been studied extensively in the com-
putational geometry literature [13, 30], but results for general dimension are more
scarce, notwithstanding significant recent progress [5, 14, 28]. The price of using a
family of finitely parameterized homeomorphisms, the PL approximations, is the cost
of managing the combinatorial complexities of PL functions.

This paper is divided into five main sections. Section 2 provides a careful definition
of the concept of a triangulation, relating it to the parameterization of PL functions.
Section 3 introduces and defines the minvar algorithm. Section 4 provides a local
convergence proof for the minvar algorithm when the data generating function is
piecewise linear. Section 5 presents a numerical example.

2. Triangulations and PL functions. The ability to check invertibility of a
PL function, and to invert it in closed form, derives from the interplay between the
PL function’s combinatorial and continuous parameters. This interplay provides much
power but also creates potential pitfalls. For example, changing the continuous param-
eters inappropriately with respect to the combinatorial structure can cause “tangles”
in the domain partition. Triangulations in general dimension, the key concept in
understanding PL functions, are still an area of active research in computational ge-
ometry. While the minvar algorithm can be stated using only an intuitive notion of
triangulation, further analytical insight, such as the local convergence proof provided
in section 4, is limited without a much more careful definition. This section provides
definitions of triangulations and PL functions to facilitate the exposition. For fur-
ther background, see [41] for an introduction to concepts in convexity and [13] for an
introduction to the geometric concept of triangulations.

2.1. Simplices. An affine subspace V ⊆ R
d is a linear subspace L ⊆ R

d trans-
lated by some xo ∈ R

d, i.e., V = L + xo. The dimension of V is dim(V ) := dim(L).
The affine hull of a set U ⊆ R

d, aff(U), is the smallest affine subspace containing U .
A finite set of points U ⊆ R

d is affinely independent if for i = 1, . . . , d, no affine sub-
space of dimension i contains more than i+1 points from U . The convex hull of a set
U ⊆ R

d, conv(U), is the smallest convex set containing U . A simplex, s, is the convex
hull of a (finite) set V ⊆ R

d of affinely independent points, s = conv(V). The set of
the extreme points, or vertices, of s, V = vert(s), uniquely defines s.1 The dimension
of s is l = dim(s) = dim(aff(s)) = card (V)− 1, where card (V) is the cardinality of V,
and s is called an l-simplex. There can be at most d+1 affinely independent points in
R

d, and thus there are simplices of dimension −1, 0, 1, . . . , d, where by convention ∅ is

1vert is a pseudoinverse of conv, not a true inverse, since if U ⊆ s, then s = conv(U ∪ vert(s)).
The concept of vertices of a simplex is a special case of the more general notion of extreme points
of a convex body. The Krein–Milman theorem [41] states that any convex compact set in R

d is the
convex hull of its extreme points.
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D(S, ε)
S

D(S,−ε)
ε ε

Fig. 2.1. The 2-simplex S with its ε and −ε dilations. The point at the center is where dilation
degenerates to a single point.

considered a simplex with dim(∅) := −1. We may apply a partial order to simplices.
Given two simplices s1, s2, we say that s1 ≤ s2 if and only if vert(s1) ⊆ vert(s2), in
which case we call s1 a face of s2. If dim(s2) = d and dim(s1) = d− 1, then we also
call s1 a facet of s2. In this paper we will predominantly be interested in d-simplices,
so we adopt the convention that a capital S indicates a d-simplex, while a lowercase
s denotes a simplex of any dimension.

Let S be a d-simplex with vert(S) = {p1, . . . , pd+1}. The ε dilation of S, written
D(S, ε), is defined as

D(S, ε) :=

x =

d+1∑
j=1

αjpj

∣∣∣∣∣
d+1∑
j=1

αj = 1 ∀j, αj ≥ −ε
δ(pj , aff(vert(S)− {pj}))


 ,(2.1)

where δ(p,U) is the distance from point p to the nonempty set U . Figure 2.1 illustrates
the dilation of a 2-simplex. D(S, ε) is well defined for

ε ≥ −

d+1∑

j=1

1/δ(pj , aff(vert(S)− {pj}))



−1

.

When equality holds, D(S, ε) is a single point; otherwise it is a d-simplex with facets
parallel to Si, but distance |ε| away, with S ⊆ D(S, ε) for ε > 0, and D(S, ε) ⊆ S for
ε < 0. (See Claim 3 in Appendix A for the dilation’s properties.)

2.2. Triangulation. An abstract simplicial complex is a collection of finite sets
S satisfying the following: if α ∈ S and β ⊆ α, then β ∈ S. The vertex set of an
abstract simplicial complex is the set

{
x
∣∣x ∈ α, α ∈ S}.

A geometric simplicial complex is a collection K of simplices in R
d satisfying

1. s1 ∈ K and s2 ≤ s1 =⇒ s2 ∈ K,
2. s1, s2 ∈ K =⇒ s1 ∩ s2 ≤ s1, s2.

The vertex set of a geometric simplicial complex is vert(K) := ⋃
s∈K vert(s). The

underlying space of a geometric simplicial complex is |K| := ⋃s∈K s.
A subcomplex is a subset of a simplicial complex that is itself a simplicial complex.

The closure of a subset L ⊆ K is the smallest subcomplex that contains L,
ClL := {α ∈ K∣∣α ≤ β, β ∈ L} .

The star of a simplex s is the set of all simplices that contain s,

St s :=
{
s′ ∈ K∣∣s ≤ s′

}
.
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The star is not in general a subcomplex.
We can parameterize2 a geometric simplicial complex K in R

d by the pair (P,S),
where P is an indexed set of n unique points in R

d,

P =
{
p1, p2, . . . , pn

}
,

and S is an abstract simplicial complex with vertex set {1, 2, . . . , n}. Let3

K(P,S) = {conv(P (α))∣∣α ∈ S} .
K(P,S) is a geometric simplicial complex if

1. for all α ∈ S, the points in P (α) are affinely independent,
2. s1, s2 ∈ K(P,S) =⇒ s1 ∩ s2 ≤ s1, s2,

and, moreover, if these properties hold, then vert(K(P,S)) = P . Proofs of these
properties are provided in [20].

A triangulation4 T is a geometric simplicial complex in R
d for which the un-

derlying space is a k-manifold with boundary. Since a triangulation is a type of
geometric simplicial complex, it can be parameterized in the same manner. We write
T (P,S) := K(P,S) to indicate that the resulting geometric simplicial complex gener-
ated by the pair (P,S) is a triangulation.

In this paper, we will deal only with triangulations which are d-manifolds with
boundary that have a simply connected underlying space.

For notational convenience, we assume that the triangulation T = K(P,S) has N
d-simplices that have been indexed and named Si, i = 1, . . . , N . Let Si, Sj ∈ T . We
then define

di,j := dim(Si ∩ Sj) = card (vert(Si ∩ Sj))− 1,

the dimension of the face shared by Si and Sj . Let Ni be the number of d-simplices
in St{pi},

Ni =
∑

Sj∈St pi

1.

2.3. PL functions. A continuous PL function fP : D ⊆ R
d → R

d is parame-
terized by a triplet P = (P,Q,S). P is an indexed set of n points in the domain and
Q is an indexed set of n points in the codomain,

P =
{
p1, p2, . . . , pn

}
, Q =

{
q1, q2, . . . , qn

}
.

2This is not formally a parameterization, because there are some pairs (P,S) for which K(P,S) is
not a geometric simplicial complex. However, for any geometric simplicial complex K, we can write
down a pair (P,S) such that K = K(P,S).

3Formally, an indexed set P of n points in R
d is a map P : {1, 2, . . . , n} → R

d. The ith member
of P is P (i), which we generally write as pi for notational convenience. Here we extend the notion
of P sets. Let α ⊆ {1, 2, . . . , n}; then P (α) :=

{
P (i)

∣∣i ∈ α
}
.

4There is no formal definition of triangulation in geometry [13]. The definition of triangulation
used here is slightly more general than the one used in [14], which requires that the underlying space
be the convex hull of the vertex set. A triangulation as defined here which has a simply connected
underlying space may be transformed to a triangulation as defined in [14] by a PL homeomorphism.
The key concept in our definition is that a triangulation has good local volume properties everywhere.
The underlying space has no “thin” spots. In topology, a triangulation of a topological space X is
formally defined as a geometric simplicial complex K coupled with a homeomorphism between |K|
and X . The definition of triangulation used in this paper is more narrow than the topological notion.
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S is an abstract simplicial complex of indices with vert(S) = {1, . . . , n} such that
T (P,S) is a triangulation and |T (P,S)| = D. This defines a continuous PL function
fP such that fP(pi) = qi, and for any S ∈ T (P,S), fP(x) is affine on S. For a
d-simplex Si ∈ T (P,S) with vert(Si) = {pi1 , pi2 , . . . , pid+1

}, the PL function fP(x)
for x ∈ Si is given by

fP
∣∣
Si
(x) =

[
qi1 qi2 · · · qid+1

] [pi1 pi2 . . . pid+1

1 1 1

]−1 [
x
1

]
.(2.2)

Equation (2.2) uses a homogeneous representation for the rightmost two factors,
though fP |Si

can be equivalently expressed in the more typical form as Aix + bi.
The d-simplices of T (P,S) are a cover for D. If Si ∩ Sj �= ∅, and fP

∣∣
Si
(x) = Aix+ bi

and fP
∣∣
Sj
(x) = Ajx+ bj , then Aix+ bi = Ajx+ bj for x ∈ Si ∩Sj . This follows from

Claim 5 in Appendix A, which states that (Ai − Aj) has a null space of dimension
di,j parallel to aff(Si ∩ Sj).

One of the most compelling properties of PL functions is the ability to check
invertibility and invert in closed form. Let fP be a PL function parameterized by
P = (P,Q,S). If T (Q,S) is a triangulation, then the PL function is invertible, and
the inverse fP−1 is a PL function parameterized by P−1 = (Q,P,S). This is proven
in Claim 7 in Appendix A.

Another important fact applied in proving the main result of section 4 is the con-
tinuity of a PL function in its continuous parameters. This claim, stated formally in
Claim 6 in Appendix A, establishes that two PL functions with the same combina-
torial structure are close in the L∞ sense if their vertices are close in the Euclidean
sense.

We call a PL function fP parameterized by P = (P,Q,S) nondegenerate if for all
pi ∈ P such that pi �∈ ∂ |T (P,S)| the matrix Hi is full rank, where

Hi =


 1

Ni

∑
Sj∈St{pi}

Aj
TAj


−AiTAi, where Ai =

1

Ni

∑
Sj∈St{pi}

Aj .

Intuitively, nondegeneracy of fP requires that for any pi �∈ ∂ |T (P,S)| not all of the
affine functions that fP takes in the surrounding d-simplices are parallel.

3. The minvar algorithm. The minvar algorithm is an iterative scheme to gen-
erate a locally good PL approximation to data. Similar to algorithms proposed in the
possibly discontinuous piecewise polynomial approximation literature [2, 25, 26, 39],

minvar takes advantage of the structure of PL functions. Let Z = {(xi, yi)}Ns

i=1, where
xi ∈ D ⊆ R

d and yi ∈ R
d, be the set of input-output data to be approximated. The

minvar algorithm iteratively improves a PL approximation to the data, f
(k)
P , param-

eterized by P(k) = (P (k), Q(k),S), such that
∣∣T (P (k),S)∣∣ = D. (The superscript in

parentheses indicates the iteration number.) The algorithm breaks down into two
stages. The first stage partitions the data according to the d-simplices of T (P (k),S)
and computes the least squares linear approximations for each subset of the data.
This set of linear approximations is the optimal possibly discontinuous PL approx-
imation on the partition T (P (k),S). The second stage chooses (P (k+1), Q(k+1)) to

make f
(k+1)
P , a continuous PL function, be “close” to the discontinuous approxima-

tion from the first stage. The stages are then iterated.
Recall from the previous section that the domain of a PL function is |T (P,S)|,

so moving a vertex pi ∈ ∂ |T (P,S)| will change the domain of definition of the PL
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function. Since we desire a fixed domain for the PL function, the present exposition
considers vertices on the domain boundary to be fixed. This can be relaxed to al-
low boundary vertices that are not extreme points to move in appropriately chosen
affine subspaces using a constrained version of the cost function from step 3 of the
minvar algorithm. Computational details of constrained motion will be presented in
a subsequent paper on engineering applications of minvar.

From an initial parameterization P(0) = (P (0), Q(0),S), the minvar algorithm
generates a sequence of parameterizations, P(k) = (P (k), Q(k),S), as follows:

1. Partition the data set Z into subsets Zj corresponding to the d-simplices,
S1, . . . , SN of T (P (k),S), breaking multiple memberships (data points that
lie on the boundary between d-simplices) systematically.

2. Compute the least squares affine approximation, Lj(x), for each subset Zj .
3. Update the vertex locations,

p
(k+1)
i = argmin

x∈Rd

varLi(x) + λ
∥∥∥x− p

(k)
i

∥∥∥2

∀ p(k)
i �∈ ∂

∣∣∣T (P (k),S)
∣∣∣ ,(3.1)

p
(k+1)
i = p

(k)
i otherwise,(3.2)

q
(k+1)
i =

1

Ni

∑
Sj∈St{pi}

Li
(
p
(k+1)
i

)
∀ i,(3.3)

where Lj(x) = Ajx+ bj and

varLi(x) =
∑

Sj∈St{pi}


Lj(x)− 1

Ni

∑
Sk∈St{pi}

Lk(x)




2

.

4. If the vertices are not converged, then k ← k + 1, go to 1.

Notice that (3.1) is a positive definite quadratic function of x, and thus can be mini-
mized in closed form by “completing the square,” with the solution given by

p
(k+1)
i = −Hi

−1hi,(3.4)

where

Hi =


 1

Ni

∑
Sj∈St{pi}

Aj
TAj


−AiTAi + λI,

hi =


 1

Ni

∑
Sj∈St{pi}

Aj
Tbj


−AiTbi − λp

(k)
i ,

Ai =
1

Ni

∑
Sj∈St{pi}

Aj bi =
1

Ni

∑
Sj∈St{pi}

bj .

The nonnegative quantity varLi(x) measures, as a function of location in the domain
x, how tightly clustered the range values generated from the least squares approx-
imations on d-simplices in St{pi} are. In the case of a scalar domain, an interior
vertex pi is in at most two 1-simplices. Thus, if the least squares approximations are
not parallel, then varLi(xc) = 0 at and only at xc, the domain value of the point



990 R. E. GROFF, P. P. KHARGONEKAR, AND D. E. KODITSCHEK

at which the least squares approximations intersect. In the scalar case, the minvar

algorithm with λ = 0 moves the domain and codomain vertices to the intersection
point of the least squares approximations. We called our initial scalar algorithm the
“Graph Intersection” algorithm [22] due to this fact. For dimensions higher than 1,
there is generically no unique intersection point for the least squares approximations
surrounding pi, due to the geometry of triangulations. Rather than the intersection
point, minvar with λ = 0 picks the point where the range values are most tightly
clustered.

The λ term in (3.1) is a regularization. It guarantees that (3.1) will have a unique
minimum, even if all the least squared approximations are parallel. More importantly,
in the implementation of minvar the λ parameter can be tuned to prevent a vertex
from jumping long distances and creating a “tangle” in the domain triangulation of
the approximation. A tangle is when movement of the vertices causes T (P,S) to
no longer be a geometric simplicial complex. That is, either a simplex has been
“flattened” or there are simplices whose intersection is not another simplex from
the complex. This generally occurs when a domain vertex moves through one of its
opposing faces. Methods for detecting and correcting triangulation tangles will be
covered in a subsequent paper on using minvar in engineering applications.

In this exposition, minvar does not modify the combinatorial structure, S, of
the PL approximation. Heuristics for adapting the domain triangulation of a two-
dimensional PL function are presented in [12, 11] for interpolation and [39] for ap-
proximation. These heuristics flip edges in the domain triangulation to improve a
local goodness criterion, similar to a method for computing the planar Delaunay tri-
angulation. Generalizing these heuristics to higher dimensions is difficult because
local topological changes of the triangulation in dimensions greater than two are
more complex than edge flipping [28, 14]. Nonetheless, we find that adaptation of the
combinatorial parameters of the PL function via topological flipping provides signifi-
cant benefit in practice. Techniques for adapting the combinatorial structure will be
presented in a subsequent paper on engineering applications of minvar.

4. A local convergence proof for the minvar algorithm. We turn now to
the central result: a local convergence proof for the minvar algorithm. The result is
for the “approximation,” as opposed to “estimation,” version of the minvar algorithm.
That is, the data generating function is considered to be directly available in closed
form, rather than through a set of discrete data. In this case, the least squares
approximations from step 2 become L2 orthogonal projections of f∗

P |Si
, the data

generating function restricted to Si, to the space of affine functions. Since the data
or data generating function only appear in step 2, the approximation version may
be viewed as the limit behavior of the estimation version when provided with an
unbounded quantity of uniformly distributed data.

Theorem 4.1 shows that, if the data generating function is a nondegenerate PL
function and the approximation is initialized “close enough” to the data generating
function, then the minvar algorithm with λ = 0 will cause the approximation to
converge to the data generating function in the L∞ sense. In this case, “close enough”
means that the initial approximation shares the same combinatorial structure as the
data generating function, and the vertices of the approximation start close to the
corresponding vertices of the data generating function. Examining minvar when λ = 0
admits a simpler proof while capturing the essence of the algorithm. Similar results
could be obtained for λ > 0, though the convergence rate would be slower. An
additional technical condition, that the data generating function be nondegenerate,
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is required when λ = 0 in order to guarantee existence of a unique solution to (3.1),
whereas for λ > 0 the regularized variance minimization in (3.1) is guaranteed to have
a unique solution.

In this paper, unless otherwise noted, vector norms are the standard Euclidean
norm and matrix norms are the induced two norm.

Theorem 4.1. Let f∗
P be a nondegenerate PL data generating function param-

eterized by P∗ = (P ∗, Q∗,S∗). Let ε0 = ε0(P∗) be given by (4.7). Let the initial

approximation f
(0)
P be parameterized by (P (0), Q(0),S∗), satisfying for some ε < ε0,

‖p(0)
i − p∗i ‖ < ε, for all i. Then application of the minvar algorithm with λ = 0 yields

a sequence of approximations satisfying

lim
j→∞

∥∥∥f (j)
P − f∗

P
∥∥∥
∞
= 0.

Proof. Proposition 4.5 shows that iteration of the minvar algorithm causes the
vertices of the approximation to converge to the vertices of the data generating func-
tion. By Claim 6 in Appendix A, a PL function is continuous in its vertices. The
theorem follows directly.

The theorem follows readily from Proposition 4.5, which likewise follows readily
from Proposition 4.4. The statements and proofs of the propositions and lemmas
follow in the next subsections, but first we offer a short sketch of the structure of the
proof. The essence of Proposition 4.4 is that when the distances between the vertices
of the approximation and the corresponding vertices of the data generating function
are bounded by ε, then after one iteration of the minvar algorithm the distances will
be bounded by a constant times ε2. This result is established by applying two lemmas
corresponding to the two stages of the algorithm. Lemma 4.2 proves that if the dis-
tances between corresponding vertices are bounded by ε, then the perturbation of the
least squares affine map over a given simplex of the approximation from the affine map
in the corresponding simplex of the data generating function is bounded by a constant
times ε2. Lemma 4.3 proves that if the perturbation of the least squares affine map
over a simplex of the approximation from the affine map in the corresponding simplex
of the data generating function is bounded by ∆, then the variance minimization will
place the new vertices of the approximation such that the distance between them and
the corresponding vertices of the data generating function are bounded by a constant
times ∆. The combination of Lemmas 4.2 and 4.3 provides Proposition 4.4.

The quadratic rate of convergence in Proposition 4.4 arises from the hypothesis
that the data generating function is piecewise linear and close to the initial approxi-
mation. Without this assumption, Lemma 4.2 would fail to provide an ε2 perturbation
in the least squares affine approximations. In this case, we suspect the convergence
rate of the algorithm to be linear. Convergence may be slower on fine triangulations,
but since this algorithm is intended primarily for use with a discrete set of data, the
fineness of the triangulation is inherently limited by the amount of data provided. In
applications, minvar can run triangulations of practical size in a few minutes.

4.1. Lemmas and propositions. This section states the lemmas and propo-
sitions, while the proofs are provided in the following section. First, we introduce
several reoccurring constants. These constants may be interpreted geometrically as
minima or maxima of different measures of the “radii” of d-simplices in the triangu-
lation T (P ∗,S∗) of the data generating function. The first measures the maximum



992 R. E. GROFF, P. P. KHARGONEKAR, AND D. E. KODITSCHEK

inter-vertex distance between “connected” vertices,

r1 := max
S∗∈T (P∗,S∗)

p∗
i ,p

∗
j∈S∗

∥∥p∗i − p∗j
∥∥ .(4.1)

The second measures the minimum distance of a vertex to its opposing hyperplanes,

r2 := min
S∗∈T (P∗,S∗)

p∗∈vert(S∗)

δ(p∗, aff(vert(S∗)− {p∗})) .(4.2)

The third measures the d-simplex which can be dilated the least before it intersects
simplices outside its immediate neighborhood.

r3 := min
S∗∈T (P∗,S∗)

sup
{
ε
∣∣∣D(S∗, ε) ⊆ |Cl StS∗|

}
.(4.3)

The first lemma shows that if the domain vertices of the approximation are close
to the domain vertices of the data generating function, then least squares affine fit in
a simplex Si is a perturbation away from the affine function that the data generating
function takes in S∗

i . Moreover, the perturbation is quadratic in the bound on the
distance between the approximation and data generating function’s domain vertices.
We write Π(f) to denote the L2 orthogonal projection of the function f onto the space
of affine functions.

Lemma 4.2. Let f∗
P be a PL data generating function parameterized by P∗ =

(P ∗, Q∗,S∗). Consider a PL approximation fP parameterized by P = (P,Q,S∗). Let
ε < εc, where

εc := min
{

1
2(d+1)r2, r3, 1

}
.(4.4)

Consider the simplices S∗
i and Si. Let xc ∈ S∗

i . Let f
∗
P |S∗

i
(x) = A∗

i (x − xc) + b∗i .
If
∥∥pj − p∗j

∥∥ < ε for all p∗j ∈ S∗
i , then the least squares approximation to f∗

P on Si,

Π(f∗
P |Si)(x) = Âi(x− xc) + b̂i, satisfies the property∥∥∥∥

[
Âi

T −A∗
i
T

b̂i
T − b∗i

T

]∥∥∥∥
2

< c1,iε
2,(4.5)

where c1,i = c1,i(P∗) is given by (4.18).
The second lemma considers one set of affine functions that all intersect at a

common point and another set of affine functions which are perturbations of the first
set of functions. It is shown that performing the variance minimization, equivalent
to (3.1) with λ = 0, on the second set of functions generates a point whose distance
from the intersection point is linear in the norm of the perturbations.

Lemma 4.3. Let L∗ be a set of N affine maps, L∗
1, . . . L

∗
N , such that all intersect

at (p∗, q∗) and are written as L∗
i (x) = A∗

i (x − p∗) + q∗, and such that H∗, given by
(4.20), is full rank. Let L be a set of perturbed affine maps, L1, . . . LN , expressed as
Li(x) = Âi(x− p∗) + q̂i, which satisfy the property∥∥∥∥

[
Âi

T −A∗
i
T

q̂i
T − q∗T

]∥∥∥∥ < ∆(4.6)
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for ∆ < ∆0, where ∆0 = ∆0(A
∗
i , p

∗, q∗) is given by (4.19). Let p′ and q′ be given by

p′ = argmin
x

var L(x),

q′ =
1

N

N∑
i=1

L(p′).

Then p′ and q′ satisfy

‖p′ − p∗‖ < c2∆,

‖q′ − q∗‖ < c3∆,

where c2 = c2(A
∗
i , p

∗, q∗) and c3 = c3(A
∗
i , p

∗, q∗) are given by (4.23) and (4.24).
The first proposition brings the two lemmas together to show that a single step of

the minvar algorithm induces a quadratic change in the distance of the approximation
vertices to the data generating function vertices.

Proposition 4.4. Let f∗
P be a nondegenerate PL data generating function pa-

rameterized by P∗ = (P ∗, Q∗,S∗). Let ε < εd,

εd := min

{
εc,

√
∆m

0

c1

}
,

where εc = εc(P∗) is given by (4.4), ∆m
0 = ∆m

0 (P∗) by (4.25), and c1 = c1(P∗) by
(4.27).

If the PL approximation fP parameterized by (P,Q,S∗) satisfies ‖pi − p∗i ‖ <
ε for all i, then one iteration of the minvar algorithm with λ = 0 gives the new
approximation f ′

P parameterized by (P ′, Q′,S∗), which satisfies
‖p′i − p∗i ‖ < c4ε

2,

‖q′i − q∗i ‖ < c5ε
2,

for all i, where c4 = c4(P∗) and c5 = c5(P∗) are given by (4.31) and (4.32).
The second proposition applies the first proposition to show that iteration of

the minvar algorithm causes convergence of the vertices of the approximation to the
vertices of the data generating function.

Proposition 4.5. Let f∗
P be a nondegenerate PL data generating function pa-

rameterized by (P ∗, Q∗,S∗). Let

ε0 = min

{
εd,

1

c4

}
,(4.7)

where εd and c4 are given in Proposition 4.4. If for some 0 < ε < ε0 the initial PL

approximation f
(0)
P with parameterization (P (0), Q(0),S∗) satisfies ‖p(0)

i − p∗i ‖ < ε
for all i, then iteration of the minvar algorithm with λ = 0 gives a sequence of

approximations f
(k)
P satisfying

lim
k→∞

∥∥∥p(k)
i − p∗i

∥∥∥ = 0,

lim
k→∞

∥∥∥q(k)
i − q∗i

∥∥∥ = 0

for all i.
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4.2. Proofs of lemmas and propositions. This section presents proofs of the
lemmas and propositions stated in the previous section.

Proof of Lemma 4.2. Let ϕi(x) := A∗
i (x− xc) + b∗i , the extension of f

∗
P |S∗

i
to the

entire domain. Let ψi(x) := f∗
P(x)− ϕi(x).

The orthogonal projection Π is a linear operator, and, moreover, for g affine,
Π(g) = g. It follows that

Π(f∗
P |Si) = Π(ϕi|Si

) + Π(ψi|Si
)

= ϕi +Π(ψi|Si
).(4.8)

Let Âi and b̂i be such that Π(f∗
P |Si

)(x) = Âi(x − xc) + b̂i. Then from (4.8) it

follows that Π(ψi|Si
) = (Âi − A∗

i )(x − xc) + (b̂i − b∗i ). Moreover, since Π(ψi|Si
) =

Π(f∗
P |Si − ϕi|Si

), we can compute (Âi − A∗
i ) and (b̂i − b∗i ) using the formula for the

L2 orthogonal projection of f∗
P |Si

− ϕi|Si
,

[
(Âi −A∗

i )
T

(b̂i − b∗i )
T

]
= Sxx,i

−1Sxy,i,

Sxx,i =

∫
Si

[
x− xc

1

] [
xT−xc

T 1
]
dx, Sxy,i =

∫
Si

[
x− xc

1

]
(f∗

P(x)− ϕi(x))
Tdx.

The submultiplicative property holds for the induced two norm,

∥∥∥∥
[
(Âi −A∗

i )
T

(b̂i − b∗i )
T

]∥∥∥∥ ≤ ∥∥Sxx,i
−1
∥∥ ‖Sxy,i‖ ,

so we can independently establish bounds on
∥∥Sxx,i

−1
∥∥ and ‖Sxy,i‖. We will proceed

to bound
∥∥Sxx,i

−1
∥∥. Since Si is a d-simplex, it follows from calculus and the definition

of Sxx,i that Sxx,i is a positive definite matrix. Let M
∗
i be given by

M∗
i :=

∫
D(S∗

i ,−εc)

[
x− xc

1

] [
xT−xc

T 1
]
dx.

Since 0 < ε < εc by hypothesis and εc ≤ 1
2(d+1)r2 by definition, it follows from Claim 3

in Appendix A that D(S∗
i ,−εc) is a d-simplex. Thus M∗

i is also positive definite, and
hence invertible. Since ε < εc and the vertices or Si are all less than ε away from the
vertices of S∗

i , it follows that D(S∗
i ,−εc) ⊆ Si. Thus, x

TM∗
i x < xTSxx,ix for all x,

which implies that λmin(M) < λmin(Sxx,i). This provides the bound on
∥∥Sxx,i

−1
∥∥,

∥∥Sxx,i
−1
∥∥ <

∥∥M∗
i
−1
∥∥ .

Now we proceed to ‖Sxy,i‖. By the properties of norms,

‖Sxy,i‖ ≤
∫
Si

∥∥∥∥
[
x− xc

1

]∥∥∥∥ ‖ψi(x)‖ dx.(4.9)

Let C(Si, ε) = {x ∈ R
d|δ(x, Si) ≤ ε}. By hypothesis, the vertices of Si are less than

ε away from the vertices of S∗
i , so vertSi ⊆ C(S∗

i , ε). Moreover, since both Si and
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C(S∗
i , ε) are convex, Si ⊆ D(S∗

i , ε). The integrand in (4.9) is nonnegative definite, so
(4.9) is bounded by

≤
∫
C(S∗

i ,ε)

∥∥∥∥
[
x− xc

1

]∥∥∥∥ ‖(ψi(x))‖ dx.

By hypothesis xc ∈ S∗
i . By the definition of r1 and since ε < εc, it follows that for all

x ∈ C(S∗
i , ε), ‖x− xc‖ ≤ r̄ := r1 + 2εc. Thus, the integral above is further bounded

by

≤
√
1 + r̄2

∫
C(S∗

i ,ε)

‖(ψi(x))‖ dx.(4.10)

Once again the integrand is nonnegative definite, so (4.10) can be bounded by inte-
grating over D(S∗

i , ε), since C(S∗
i , ε) ⊆ D(S∗

i , ε),

≤
√
1 + r̄2

∫
D(S∗

i ,ε)

‖(ψi(x))‖ dx(4.11)

=
√
1 + r̄2

N∑
j=1

∫
Uj

‖(ψi(x))‖ dx,(4.12)

where Uj = D(S∗
i , ε) ∩ S∗

j and N is the total number of d-simplices in the domain
triangulation. Since ψi(x) = 0 on S∗

i , the term corresponding to j = i in (4.12) is 0.
By hypothesis ε < εc ≤ r3, so then following from the definition of r3, S

∗
j ∩D(S∗

i , ε) �= ∅
if and only if S∗

j ∈ StS∗
i . Thus the terms in (4.12) are only nonzero for j such that

S∗
j is incident to S∗

i . Consider such a term,∫
Uj

‖ψi(x)‖ dx =
∫
Uj

∥∥(A∗
j −A∗

i

)
(x− xc) + b∗j − b∗i

∥∥ dx,
where f∗

P |S∗
j
(x) = A∗

j (x − xc) + b∗j . By Claim 5 in Appendix A, there exists xO ∈
S∗
j ∩ S∗

i ⊆ Uj such that
(
A∗

j −A∗
i

)
(xO − xc) + b∗j − b∗i = 0. Applying the change of

coordinates y = x− xO gives∫
Uj

‖ψi(x)‖ dx =
∫
Uj−xO

∥∥(A∗
j −A∗

i

)
y
∥∥ dy.(4.13)

Let L be the linear subspace parallel to aff(S∗
i ∩ S∗

j ). Recall that dimL = dimS∗
i ∩

S∗
j := di,j . By Claim 5 in Appendix A, L ⊆ N ((A∗

j −A∗
i

)
). Let v1, . . . , vdi,j

be an

orthonormal basis for L. Let vdi,j+1, . . . , vd be an orthonormal basis for L⊥. Then
P =

[
v1 v2 · · · vd

]
is an orthogonal matrix. Rewrite (4.13) under the change of

coordinates z = PTy,

=

∫
PT(Uj−xO)

∥∥(A∗
j −A∗

i

)
Pz
∥∥ dz.(4.14)

Since the integrand is a nonnegative definite function, we may bound (4.14) by increas-
ing the volume over which the integrand is integrated. By Claim 4 in Appendix A,
there exists κi,j such that for all x ∈ Uj , δ

(
x, aff(S∗

i ∩ S∗
j )
)
< κi,jε. Equivalently

δ(y, L) < κi,jε for any y ∈ Uj − xO, from which it follows that the projection
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of y onto L⊥ must have magnitude less than κi,jε. Moreover, by the definition
of r̄, the projection of y onto L must have magnitude less than r̄. It follows that
PT(Uj − xO) ⊆ [−r̄, r̄]di,j × Bd̄i,j

(κi,jε), where d̄i,j = d − di,j and Bd̄i,j
(κi,jε) is the

d̄i,j-dimensional ball of radius κi,jε. Then (4.14) is bounded by

≤
∫

[−r̄,r̄]di,j×Bd̄i,j
(κi,jε)

∥∥(A∗
j −A∗

i

)
Pz
∥∥ dz.(4.15)

The first di,j columns of
(
A∗

j −A∗
i

)
P are zero, since the first di,j columns of P are

in the nullspace of
(
A∗

j −A∗
i

)
. Thus, the integrand in (4.15) has no dependence on

z1, z2, . . . , zdi,j
, so we can integrate through for z1, . . . , zdi,j

, giving

= (2r̄)di,j

∫
Bd̄i,j

(κi,jε)

∥∥∥∥(A∗
j −A∗

i

)
P

[
I
0

]
z̄1

∥∥∥∥ dzdi,i+1 . . . dzd,(4.16)

where z̄1
T =

[
zdi,j+1 · · · zd

]
T. Since the first di,j columns of

(
A∗

j −A∗
i

)
P are

zero and P is orthogonal, it follows that ‖(A∗
j −A∗

i

)
P
[
I 0

]T‖ ≤ ‖A∗
j −A∗

i ‖. Thus,
(4.16) can be further bound by

≤ (2r̄)di,j
∥∥A∗

j −A∗
i

∥∥∫
Bd̄i,j

(κi,jε)

‖z̄1‖ dz̄1.(4.17)

From calculus (see, for example, [37]) it can be shown that5∫
Bk(ε)

‖w‖ dw =
k

k + 1

πk/2

Γ(k/2)
εk+1.

Applying this with (4.17) to (4.12), and then simplifying using the fact that εm ≤ ε2

for m ≥ 2 since ε < εc ≤ 1, gives

‖Sxy,i‖ ≤
√
1 + r̄2 li max

j s.t. j �=i,

S∗
j ∈StS∗

i

(
(2r̄)di,j

∥∥A∗
j −A∗

i

∥∥κi,j
1+d̄i,j

d̄i,j
d̄i,j + 1

π(d̄i,j)/2

Γ((d̄i,j)/2)

)
ε2,

where li =
∑

S∗
j ∈StS∗

i
1. Then

∥∥∥∥
[
Âi

T −A∗
i
T

b̂i
T − b∗i

T

]∥∥∥∥ ≤ ∥∥Sxx,i
−1
∥∥ ‖Sxy,i‖

< c1,iε
2,

where

c1,i :=
∥∥M∗

i
−1
∥∥√1 + r̄2 li max

j s.t. j �=i,

S∗
j ∈StS∗

i

(
(2r̄)di,j

∥∥A∗
j −A∗

i

∥∥κi,j
1+d̄i,j

d̄i,j
d̄i,j + 1

π(d̄i,j)/2

Γ((d̄i,j)/2)

)(4.18)

5For even k, Γ(k/2) = (k/2)!. For odd k, let k′ = 1
2
(k − 1); then Γ(k/2) = Γ( 1

2
+ k′) =

√
π (2k′+2)!

(k+1)!4k
′+1

.
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and d̄i,j = d− di,j , li =
∑

S∗
j ∈StS∗

i
1, and r̄ = r1 + 2εc.

Proof of Lemma 4.3. Let the constant ∆0 from the statement of the lemma be
given by

∆0 := min




1

N

N∑
j=1

∥∥A∗
j

∥∥ ,


12

N

∥∥H∗−1
∥∥ N∑

j=1

∥∥A∗
j

∥∥



−1

 ,(4.19)

where H∗ is given by (4.20).
Solving p′ = argminx var L(x) is equivalent to solving (3.1) with λ = 0. As

with (3.1), a closed form expression for p′ can be found by “completing the square.”
Specifically, p′ = H−1h,

H :=


 1

N

N∑
j=1

Âj
TÂj


− ÂTÂ,

h :=


 1

N

N∑
j=1

Âj
T(q̂j − Âjp

∗)


− ÂTb̂,

where Â = 1
N

∑N
j=1 Âj and b̂ = 1

N

∑N
j=1(q̂j−Âjp

∗). Let Ãj = Âj−A∗
j and q̃j = q̂j−q∗.

Then H = H∗ + H̃ and h = h∗ + h̃, with

H∗ :=


 1

N

N∑
j=1

A∗
j
TA∗

j


−A∗TA∗,(4.20)

h∗ :=


 1

N

N∑
j=1

A∗
j
T(q∗ −A∗

jp
∗)


−A∗T,

H̃ =
1

N


 N∑
j=1

(A∗
j + Ãj)

TÃj +

N∑
j=1

Ãj
TA∗

j


−A∗TÃ − ÃTA∗ − ÃTÃ,

h̃ =
1

N


 N∑
j=1

(A∗
j + Ãj)

T(q̃j − Ãjp
∗) +

N∑
j=1

Ãj
T(q∗ −A∗

jp
∗)


−A∗Tb̃ − ÃTb∗ − ÃTb̃,

where

A∗ =
1

N

N∑
j=1

A∗
j , b∗ =

1

N

N∑
j=1

(q∗ −A∗
jp

∗),

Ã =
1

N

N∑
j=1

Ãj , b̃ =
1

N

N∑
j=1

(q̃j − Ãjp
∗).

Notice that H∗ and h∗ depend only on A∗
j , p

∗, and q∗. Moreover, since all functions
in L∗ go through (p∗, q∗), it must be that p∗ = argminx var L∗(x), and thus p∗ =
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H∗−1h∗. Rewriting p′ = H−1h, gives (H∗ + H̃) (p∗ + (p′ − p∗)) = h∗ + h̃. Applying
H∗p∗ = h∗ and solving for p′ − p∗ yields

p′ − p∗ =
(
H∗ + H̃

)−1 (
h̃− H̃p∗

)
.

From the hypothesis it follows that ‖Ãj‖ < ∆ and ‖q̃j‖ < ∆. Applying these bounds
and the properties of norms, it follows after some computation that

∥∥∥H̃∥∥∥ ≤ 2∆2 +
4∆

N

N∑
j=1

∥∥A∗
j

∥∥ ,
∥∥∥h̃∥∥∥ ≤ 2 (1 + ‖p∗‖)∆2 +

2∆

N

N∑
j=1

[∥∥A∗
j

∥∥ (1 + ‖p∗‖) + ‖q∗‖+ ∥∥A∗
j

∥∥ ‖p∗‖] .
Since ∆ < ∆0 and by definition ∆0 ≤ 1

N

∑N
j=1

∥∥A∗
j

∥∥, the above bounds may be
further simplified to

∥∥∥H̃∥∥∥ <


 6

N

N∑
j=1

∥∥A∗
j

∥∥

∆,(4.21)

∥∥∥h̃∥∥∥ <


 2

N

N∑
j=1

[
2
∥∥A∗

j

∥∥ (1 + ‖p∗‖) + ‖q∗‖+ ∥∥A∗
j

∥∥ ‖p∗‖]

∆.(4.22)

Also by definition ∆0 ≤ ( 12
N ‖H∗−1‖∑N

j=1 ‖A∗
j‖)−1, so the bound in (4.21) can be

simplified to ‖H̃‖ < 1
2‖H∗−1‖ , and thus ‖H∗−1H̃‖ < 1

2 . From [19], if M ∈ R
n×n and

‖M‖ < 1, then I −M is nonsingular and ‖(I −M)−1‖ ≤ 1
1−‖M‖ . Some computation

using this fact and the bound on ‖H∗−1H̃‖ provides∥∥∥(H∗ + H̃)−1
∥∥∥ < 2

∥∥H∗−1
∥∥ .

So then

‖p′ − p∗‖ ≤
∥∥∥∥(H∗ + H̃

)−1
∥∥∥∥∥∥∥h̃− H̃p∗

∥∥∥
≤ 2

∥∥H∗−1
∥∥(∥∥∥h̃∥∥∥+ ∥∥∥H̃∥∥∥ ‖p∗‖)

< c2∆,

where c2 :=
4
∥∥H∗−1

∥∥
N

N∑
j=1

(
6
∥∥A∗

j

∥∥ ‖p∗‖+ 2
∥∥A∗

j

∥∥+ ‖q∗‖) ,(4.23)

which is the first part of the desired result. Applying this bound and the definition
of q′, we find after some computation that

‖q′ − q∗‖ < c3∆,
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where c3 := 1 +
2c2
N

N∑
j=1

∥∥A∗
j

∥∥(4.24)

which completes the desired result.
Proof of Proposition 4.4. Let

∆m
0 = min

i s.t.
p∗
i ∈P∗




1

Ni

Ni∑
j=1

∥∥∥A∗
ij

∥∥∥ ,


 12

Ni

∥∥H∗
i
−1
∥∥ Ni∑

j=1

∥∥∥A∗
ij

∥∥∥



−1

 ,(4.25)

where S∗
i1
, . . . , S∗

iNi
are the Ni d-simplices in St{p∗i }, and

H∗
i =


 1

Ni

Ni∑
j=1

A∗
ij

TA∗
ij


−


 1

Ni

Ni∑
j=1

A∗
ij


T


 1

Ni

Ni∑
j=1

A∗
ij


 .

We will examine the effect of a single iteration of the minvar algorithm on pi ∈ P ,
qi ∈ Q. The results will hold independently of i, giving the desired result.

The first stage of the minvar algorithm calculates the least squares projection
Π(f∗

P |Si) in each d-simplex Si of the approximation (step 2 of the algorithm; since
this proposition addresses the approximation version of the problem, there is no par-
titioning of data to be performed in step 1). Let Si1 , . . . , SiNi

be the d-simplices in
St{pi}. Since f∗

P and fP are parameterized with the same abstract simplicial complex
S∗, S∗

i1
, . . . , S∗

iNi
are the d-simplices in St{p∗i }. Let f∗

P |S∗
ij
(x) = A∗

ij
(x− p∗i ) + q∗i and

Π(f∗
P |Si) = Âij (x − p∗i ) + q̂ij . Since ε < εd ≤ εc, it follows from Lemma 4.2 that for

each j = 1, . . . , Ni, ∥∥∥∥
[
Âij

T −A∗
ij

T

q̂ij
T − q∗i

T

]∥∥∥∥ < c1,ij ε
2,(4.26)

where c1,ij is given by (4.18). Let

c1 = max
i=1,..,N

c1,i,(4.27)

where N is the total number of d-simplices in T (P,S∗). Then for j = 1 . . . , Ni,∥∥∥∥∥
[
Âij

T −A∗
ij

T

b̂ij
T − b∗ij

T

]∥∥∥∥∥ < c1ε
2.(4.28)

Step 3 of minvar moves the knots taking (pi, qi) → (p′i, q
′
i). Since ε < εd ≤

√
∆m

0 /c1
by hypothesis, it follows that c1ε

2 < ∆m
0 . Thus, (4.28) implies that the bound in (4.6)

is satisfied, permitting application of Lemma 4.3, which gives

‖p′i − p∗i ‖ < c2,ic1ε
2,

‖q′i − q∗i ‖ < c3,ic1ε
2,

where

c2,i :=
4
∥∥H∗

i
−1
∥∥

Ni

Ni∑
j=1

(
6
∥∥∥A∗

ij

∥∥∥ ‖p∗i ‖+ 2
∥∥∥A∗

ij

∥∥∥+ ‖q∗i ‖) ,(4.29)

c3,i := 1 +
2c2,i
Ni

Ni∑
j=1

∥∥∥A∗
ij

∥∥∥ .(4.30)
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For each pi, qi we can compute such bounds. Let

c4 := c1 max
i

c2,i,(4.31)

c5 := c1 max
i

c3,i.(4.32)

Then, for all i, p′i and q′i satisfy

‖p′i − p∗i ‖ < c4ε
2,(4.33)

‖q′i − q∗i ‖ < c5ε
2,(4.34)

which is the desired result.
Proof of Proposition 4.5. First we establish by induction that for k ≥ 1,

1

c4
(c4ε)

2k

< εd,(4.35) ∥∥∥p(k)
i − p∗i

∥∥∥ <
1

c4
(c4ε)

2k

,(4.36) ∥∥∥q(k)
i − q∗i

∥∥∥ <
c5
c4

(c4ε)
2k

.(4.37)

For k = 1, c4ε
2 < εd since ε < ε0 ≤

√
εd/c4. For k > 1, 1

c4
(c4ε)

2k

< εd by the

induction hypothesis. Moreover, c4ε < 1 since ε < ε0 ≤ 1
c4
. Then 1

c4
(c4ε)

2(k+1)

=

( 1
c4
(c4ε)

2k

) (c4ε)
2k

< εd. This establishes (4.35). Since ε < ε0 ≤ εd, it follows that
for k = 1, after a single iteration of the minvar algorithm, (4.36) and (4.37) will hold

by Proposition 4.4. For k > 1, for all i, ‖p(k)
i − p∗i ‖ < 1

c4
(c4ε)

2k

by the induction

hypothesis. From (4.35), proven above, 1
c4
(c4ε)

2k

< εd. Since for all i, ‖p(k)
i − p∗i ‖ <

εd, it follows from Proposition 4.4 that

∥∥∥p(k+1)
i − p∗i

∥∥∥ < c4

(
1

c4
(c4ε)

2k
)2

=
1

c4
(c4ε)

2(k+1)

,

∥∥∥q(k+1)
i − q∗i

∥∥∥ < c5

(
1

c4
(c4ε)

2k
)2

=
c5
c4

(c4ε)
2(k+1)

,

which establishes (4.36) and (4.37). Since c4ε < 1, as argued above, it follows that
(4.36) and (4.37) go to 0 as k goes to infinity.

5. Numerical example. This section presents an example of the minvar algo-
rithm’s performance on a “test function,” f : [0, 1]2 → R

2, given by

f(x) =

[
tanh 5

8

(
2x1 − 4x2

4 + 3x2
2 − 1

)
tanh 5

8

(
2x1

2 − x1
4 + 2x2 − 1

)
]
,(5.1)

which is invertible over the domain D = [0, 1]2. The implementation of minvar
constructs an approximation to a discrete set of data and includes constrained mo-
tion of boundary vertices as well as data dependent retriangulation. Since the test
function is neither piecewise linear nor directly available, Theorem 4.1 provides no
performance guarantees, but good performance under these circumstances suggests
minvar’s broader applicability. Two sets of numerical studies are presented. The first
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Fig. 5.1. Visualizations of the test function (lower right) and a series of PL approximations to
the test function. In each subfigure, the domain is displayed on the left and the range on the right.
Note that the approximations are invertible, since there are no tangles in the range triangulations.

examines the effects of varying the number of vertices in the PL approximation, and
the second examines how data set size affects approximations with a fixed number of
vertices.

The first set of experiments fits PL approximations of differing sizes to a single
data set. The data set was generated by sampling the test function on an 80×80 uni-
form grid over the domain. For each n = 2, . . . , 13, three different PL approximations
with n2 vertices were computed: (i) the least squares continuous PL approximation on
a fixed uniform triangulation of the domain (referred to as “uniform LS”), (ii) minvar,
initialized on a uniform triangulation of the domain (referred to as “minvar”), and
(iii) the least squares continuous PL approximation on the final triangulation from
minvar (referred to as “minvar LS”). Recall that when the domain triangulation
is fixed, the least squares continuous PL approximation problem becomes linear-in-
parameters and the solution can be computed directly [7, 35]. Figure 5.1 shows the
test function and several exemplars of the minvar approximations. Table 5.1 and
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Table 5.1
RMSE of approximations by uniform LS, minvar, and minvar LS.

Vertices Uniform LS minvar minvar LS

22 1.79801e-01 1.79818e-01 1.79801e-01
32 9.85617e-02 4.56123e-02 4.48297e-02
42 4.45294e-02 1.92465e-02 1.89605e-02
52 2.47517e-02 1.38427e-02 1.36523e-02
62 1.55282e-02 7.35190e-03 7.25304e-03
72 1.05933e-02 5.40420e-03 5.34596e-03
82 7.63439e-03 4.63040e-03 4.56706e-03
92 5.84815e-03 3.38636e-03 3.34218e-03
102 4.53419e-03 2.96688e-03 2.92793e-03
112 3.71421e-03 2.50778e-03 2.47792e-03
122 2.99647e-03 2.34302e-03 2.32279e-03
132 2.49846e-03 1.86386e-03 1.84316e-03

PL vertices

R
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E

uniform LS

minvar

32 42 52 62 72 82 92 102112122132

10-1

10-2

10-3

Size of data set

R
M
S
E

uniform LS

minvar

302 402 502 602 702 802 902 1002

10-1

10-2

10-3

(a) (b)

Fig. 5.2. RMSE performance of minvar compared to a least squares continuous PL approxima-
tion on a uniform triangulation. (a) Vertices in approximation vs. RMSE for approximations to the
80×80 data set. (b) Density of training data set vs. RMSE on validation data for approximations
with 62 vertices.

Figure 5.2(a) show the root mean square error (RMSE) of the approximations as a
function of the number of vertices. For 22 domain vertices, all of them are on the
corners of the domain and must remain fixed, so minvar can change only the range
vertices. Since minvar is not guaranteed to give the least squares continuous PL
approximation for a given triangulation, it is not surprising that the uniform LS ap-
proximation’s RMSE is slightly lower than minvar’s in this case. The RMSE difference
between minvar and minvar LS approximations is less than 2%. Least squares could
be applied as a post processing step to minvar, but since the differences are relatively
small, this might not be necessary in application settings. From the triangulations
of the minvar approximations in Figure 5.1, the domain triangulations move farther
for lower numbers of vertices. As the number of vertices increases, the triangulations
visually seem to deviate less from the initial uniform triangulation. The RMSE per-
formance of minvar reflects this, giving the biggest reductions in RMSE as compared
to uniform LS for triangulations with 32 to 62 vertices. Since this study uses initial
conditions in which the vertices are on a uniform grid, approximations with large
numbers of vertices may be getting caught in local minima near their initial condi-
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tions. In this case, performance could be improved by refining converged less dense
approximations to create initial conditions for the dense approximations [39].

In the second set of experiments, PL approximations with 62 vertices were trained
using data sets of varying size. The PL approximations were chosen to have 62 vertices
because, as mentioned above, this is in the region of sizes where the performance gains
from minvar are greatest. The data sets were generated by sampling the test function
on a uniform n× n grid, n = 25, 30, 35, . . . , 100. The approximations were compared
using a validation data set generated by evaluating the test function at 1000 points
sampled from a uniform probability distribution over the domain. Figure 5.2(b) shows
the validation set RMSE for minvar and uniform LS. With a 20×20 data set, minvar
fails to run with a 62 vertex approximation, because as the vertices move, several
simplices shrink to the point that they do not contain enough data to make the linear
least squares approximation unique. Data sparsity is a serious issue in this type of
local approximation.

From this example, minvar shows marked benefit when the approximation has
relatively few vertices compared to the complexity of the test function. We expect
that minvar’s performance on higher order (more vertices) approximations could be
improved by seeding initial conditions based on lower order approximations. The
algorithm produces a consistent approximation to variously sized data sets, so long
as there is enough data for it to run.

6. Conclusion. Numerous applications require the simultaneous approximation
of a function and its inverse from a set of discrete data. While there is a substantial
literature on function approximation, very little of it addresses the constraint of in-
vertibility. The inverse of a continuous PL function can be computed in closed form,
which is ideal for applications requiring the approximation of a function and its in-
verse. In the PL literature, the partition is often fixed, in which case the minimum
squared error approximation problem is linear-in-parameters. The problem becomes
nonlinear-in-parameters when the domain partition is allowed to move.

The minvar algorithm is a novel method for computing continuous PL approx-
imations to data. Rather than using gradient descent on the parameters, minvar
takes advantage of the structure of PL functions, iteratively moving the vertices of
the approximation based on local least squares fits. The minvar algorithm is proven
to converge locally in the special case when the data generating function is itself PL
and available directly rather than through discrete data. While this result seems very
natural, complexity in the proof arises from the interaction of the domain triangula-
tions of the data generating function and its approximation. Indeed, many difficulties
in constructing PL approximations, such as triangulation tangles, arise primarily from
the combinatorial properties of PL functions. For general approximation problems,
this added complexity may cause PL approximation to appear less attractive than
other nonlinear-in-parameters approximation techniques, but for an important subset
of applications the PL function’s closed form invertibility makes the combinatorial
complexity cost effective.

The present work can be extended in several directions. The analysis here ad-
dresses the approximation rather than the estimation version of the problem. A
formal connection between the approximation and estimation versions could be con-
structed in the appropriate statistical framework. Similarly, there is no study of the
effects of noise on the convergence properties of minvar. Since data from the data
generating function are used only for computing the least squares approximations,
and least squares has good noise properties, the authors expect that the minvar al-
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gorithm will also have good noise properties. The present analytical work considers
only PL data generating functions. A desirable extension would be to show that the
algorithm converges to the locally best PL approximation, given that one exists. For
scalar functions there are generalized convexity conditions that characterize existence
and uniqueness of (possibly discontinuous) PL approximations [4, 18, 26], but the
authors are unaware of similar results for dimensions greater than one or with con-
tinuous piecewise approximations. Numerical experience suggests that minvar does
have good convergence properties on other types of functions. Practical application of
minvar raises a number of challenging issues such as constrained motion of vertices on
the boundary of the domain, methods to avoid and correct triangulation tangling, and
retriangulation or adaptation of the combinatorial parameters of the PL approxima-
tion. Due to space limitations, these topics will be addressed in detail in a subsequent
paper on the use of minvar in engineering applications.

Appendix A. Geometric properties of simplices and triangulations.
Proving properties of the minvar algorithms requires some insight into the under-
lying geometric structures upon which PL functions are constructed. This appendix
presents a number of geometry facts used in the proof of convergence. Proofs of these
facts are available in [20].

A.1. Barycentric coordinates as distances. It is often convenient to repre-
sent points in R

d using barycentric coordinates with respect to the vertices of some
d-simplex. Let p1, . . . , pd+1 be affinely independent points in R

d. Let x ∈ R
d and

let ᾱ =
[
α1 · · · αd+1

]
T be such that x =

∑d+1
i=1 αipi and

∑d+1
i=1 αi = 1. ᾱ are

called the barycentric coordinates of x with respect to p1, . . . , pd+1. If ᾱ ∈ ∆d+1 :=

{ᾱ ∈ R
d+1|αi ≥ 0,

∑d+1
i=1 αi = 1}, then x ∈ conv(p1, . . . , pd+1), and ∆d is called the

standard d-simplex.
The distance between a point x ∈ R

d and a nonempty set A ⊆ R
d is well defined

[41] and written as δ(x,A) := infz∈A ‖x− z‖. Let Hi = aff({p1, . . . , pd+1} − {pi}),
the hyperplane opposing pi. Let (ai, ci) be an implicit representation for Hi, that is,
Hi =

{
z ∈ R

d|aiTz + ci = 0
}
. The distance of a point x ∈ R

d to Hi is given by

δ(x,Hi) =

∣∣aiTx+ ci
∣∣

‖ai‖ .

We define δs(x,Hi) as the signed distance of x fromHi. That is, |δs(x,Hi)| = δ(x,Hi),
and δs(x,Hi) > 0 for x on the same side of Hi as pi, and δs(x,Hi) < 0 for x on the
opposite side of Hi as pi.

By the following claim, the barycentric coordinates of x can be interpreted as the
scaled distances of x from hyperplanes H1, . . . , Hd+1.

Claim 1. Let x ∈ R
d. Let ᾱ =

[
α1 · · · αd+1

]
T be the barycentric coordi-

nates of x with respect to the affinely independent points p1, . . . , pd+1 ∈ R
d. Then

δs(x,Hi) = αiδ(pi, Hi).
Similarly, the barycentric coordinates of x can be used to measure the distance

to an affine subspace that is the intersection of two or more of H1, . . . , Hd+1.
Claim 2. Let x ∈ R

d. Let ᾱ =
[
α1 · · · αd+1

]
T be barycentric coordinates

of x with respect to the affinely independent points p1, . . . , pd+1. The distance from
x to the affine subspace A = aff({p1, . . . pk}) is given by δ(x,A) = ᾱs

TGᾱs, where
ᾱs =

[
αk+1 αk+2 · · · αd+1

]
T and G ∈ R

(d−k+1)×(d−k+1) is a positive definite
matrix whose entries depend only on p1, . . . , pk.
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The explicit form for G, which derives from the Gram determinants used in the
proof, is provided in [20].

A.2. Properties of the dilation. The dilation arises in Lemma 4.2 in measur-
ing how the approximation’s mismatched triangulation affects the least squares affine
approximations. The first claim establishes the general properties of the dilation,
and the second claim establishes a relationship between incident d-simplices that is
required for the proof of Lemma 4.2.

Claim 3. Let S ⊆ R
d be a d-simplex with vertices p1, . . . , pd+1. Let

εmin = −
(

d+1∑
i=1

1/δ(pi, Hi)

)−1

,(A.1)

where Hi is the opposing hyperplane to pi, as defined above. D(S, εmin) is a single
point. For ε > εmin, D(S, ε) is a d-simplex, with faces parallel to and translated
distance |ε| away from the faces of S. For εmin ≤ ε ≤ 0, D(S, ε) ⊆ S, while for ε ≥ 0,
S ⊆ D(S, ε).

Claim 4. Let Sa, Sb ⊆ R
d be incident d-simplices, that is, Sa ∩ Sb = sab, where

sab ≤ Sa, Sb is a (k − 1)-simplex, 1 ≤ k < d − 1. Let vertSa = {p1, . . . , pd+1},
vertSb = {p1, . . . , pk, qk+1, . . . , qd+1}, and vert sab = {p1, . . . , pk}. Let A = aff sab.
Then ∃κa,b > 0 such that for all ε > 0, if x ∈ D(Sa, ε) ∩ Sb, then δ(x,A) < κa,bε.

A.3. Properties of PL functions. Claims pertaining to the parameterization,
continuity, and invertibility of PL functions are provided below.

Claim 5. Let fP be a continuous PL function parameterized by (P,Q,S). Let
Si, Sj ∈ T (P,S) be such that Si ∩ Sj �= ∅. Let Si ∩ Sj be a (k − 1)-simplex, so
then Si and Sj share k vertices in common. Let vertSi = {pi1 , . . . , pid+1

}, vertSj =
{pi1 , . . . , pik , pjk+1

, . . . , pjd+1
}, and vertSi ∩ Sj = {pi1 , . . . , pik}. Then,

1. fP in Si and Sj is given by

fP
∣∣
Si
(x) = UiVi

−1
[
xT 1

]
T, fP

∣∣
Sj
(x) = UjVj

−1
[
xT 1

]
T,

Ui =
[
qi1 · · · qid+1

]
, Uj =

[
qi1 · · · qik qjk+1

· · · qjd+1

]
,

Vi =

[
pi1 . . . pid+1

1 1

]
, Vj =

[
pi1 . . . pik pjk+1

. . . pjd+1

1 1 1 1

]
.

Then UiVi
−1
[
xT 1

]
T = UjVj

−1
[
xT 1

]
T for x ∈ aff(Si ∩ Sj).

2. In nonhomogeneous form, let fP
∣∣
Si
(x) = Aix + bi and fP

∣∣
Sj
(x) = Ajx + bj.

Let L be the linear subspace parallel to aff(Si ∩ Sj). Then L ⊆ N (Ai −Aj).
Claim 6 (continuity in vertices). Consider two continuous PL functions, f∗

P
parameterized by P∗ = (P ∗, Q∗,S∗) and fP parameterized by (P,Q,S∗), such that
|T (P,S∗)| = |T (P ∗,S∗)|. Let c > 0. There exists c′ = c′(P∗, c) such that, for
0 < ε < r3, where

r3 = min
S∗∈T (P∗,S∗)

sup
{
ε
∣∣∣D(S∗, ε) ⊆ |Cl StS∗|

}
.(A.2)

If ‖pi − p∗i ‖ < ε and ‖qi − q∗i ‖ < cε for all i, then

‖fP − f∗
P‖∞ < c′ε.

That is, a continuous PL function is continuous in its vertices.
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The explicit form for c′ is provided in [20].
Claim 7. Let fP be a PL function parameterized by P = (P,Q,S). If T (Q,S) is

also a triangulation, then the PL function is invertible on its range, and the inverse,
fP−1, is parameterized by P−1 = (Q,P,S).
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