
Representation of Color Space
Transformations for Effective Calibration

and Control

Richard E. Groff Daniel E. Koditschek Pramod P. Khargonekar
EECS, University of Michigan, Ann Arbor, Michigan USA

Tracy E. Thieret
J.C. Wilson Center for Research and Technology, Xerox Corporation

Webster, New York USA

Abstract

We propose the “minvar” algorithm for computing con-
tinuous, continuously invertible, piecewise linear (PL) ap-
proximations of color space transformations that can serve
as functional replacements wherever look-up tables are pres-
ently used. After motivating the importance of invertible
approximants in color space management applications, we
review the parameterization and computational implemen-
tation of PL functions as representing one useful instance
of this notion. Finally, we describe the present version of
the minvar algorithm and compare the approximations it
yields with standard industrial practice — interpolation of
look-up table data.

1. Introduction

In color image reproduction, a device must determine the
recipe for mixing the available colorants to form each de-
sired output color within its gamut. This recipe may be
modeled as a transformation from the input (colorant) space
to the output (measurement) space. Since this recipe func-
tion is affected by a variety of disturbances, we seek to
perform real-time control on the system to stabilize color
reproduction. For this purpose, it is useful to have access
to an effectively computable approximation to both the
transformation and its inverse. The term “effectively com-
putable” means that the approximation should be both nu-
merically simple and parsimoniously parameterized, which
would ensure that the control action could be imposed in
a timely manner using a small number of data patches. In
this paper, we explore the class of piecewise linear (PL)
functions as affording an effectively computable approxi-
mation of the color space transformation and its inverse.

All computable functions are defined by some finite
dimensional parameter space. A continuous, continuously

�This work is supported in part by NSF Award ECS-96322801

(and closed-form) invertible PL function on a multi-dimen-
sional space is parameterized by a set of knot points and a
connectivity. The knot points are defined by pairs of “ver-
tices” in the domain (input) and codomain (output) spaces.
The connectivity defines a triangulation (of the domain and
codomain) with the knots serving as vertices — triangles
for a two dimension space; tetrahedra for a 3d space; and,
more generally, n-simplices for an n-dimensional space.
The resulting PL approximant is invertible if the triangula-
tion has no “tangles” — knots whose domain vertices have
codomain images contained within the interior of codomain
cells for which they do not serve as vertices. A PL func-
tion is computed by first determining in which domain cell
the input lies, and then multiplying that input by a matrix
constructed from the knots that govern that cell. When in-
vertible, the inverse of a PL function may be computed in
closed form by simply reversing the roles of the domain
and codomain triangulations. Thus, a PL function is com-
putationally quite simple.

The degree of parsimony of an approximant reduces to
the question of how approximation errors decrease as the
dimension of the defining parameter space is allowed to in-
crease. In the case of a PL, the dimension of the parameter
space is a linear function of the number of knot points. It is
standard practice in the color systems management indus-
try [6] to use PL interpolation on calibrated lookup tables
(LUT) wherein the input-output data are treated as knots.
Unfortunately, the resulting PL is not generally invertible.
Moreover, since the grid density of an LUT is typically
quite high (e.g., entailing thousands of color patches) the
resulting PL cannot be considered parsimonious. Given
an LUT data set, it seems natural to inquire whether some
better means of locating the knots might yield an invertible
and far more parsimonious PL representation.

In this paper, we introduce the “minvar” algorithm for
computing piecewise linear (PL) approximations of color
space transformations. For a given set of sampled (input-

output) data, an initial set of knots and a specified con-
nectivity, these algorithms seek to improve the derived PL
approximation of the sampled data by iteratively moving
the knots. Thus, the minvar algorithm yields continuous
PL approximations that can serve as functional replace-
ments wherever look-up tables are presently used, while
adding the guarantee of closed form invertibility. At the
present early stage of inquiry, for the specific variants we
have examined, the minvar procedure yields several factors
of improvement relative to standard industrial practice. We
believe that further refinement of the algorithm might well
yield considerably greater improvement.

2. Rationale

Historically, xerographic process control has focused on
stabilization of the process itself. It is common practice
to calibrate the xerography during setup or warm-up and
run largely open loop during printing. High quality, high
speed color printing at high throughput rates requires ac-
tive feedback and feedforward controls to maintain sta-
ble, predictable color performance. Xerox has practiced
closed-loop control in copiers and printers for nearly 20
years. For monochrome and early color printing, stabiliz-
ing the process alone was sufficient. However, the number
of process actuators available is very limited and the num-
ber of observables that require stabilization are many.

A 3 level control architecture was devised and patented
in 1995 [8]. The first two levels of this structure stabilize
the process by sensing internal variables (TC, Temp, RH,
P/R voltages, etc.) and actuating (biases, corotron volt-
age, toner dispense, etc.) to remediate the process varia-
tions. Recent innovations have been productized first in
the DocuColor 40 and more recently in the DocuColor
2060. These innovations involve color sensing at the out-
put and feedback to the Tone Reproduction Curves (TRC)
in the imaging system. Many short term variations in color
reproduction are compensated for in this way. However,
these three control processes only stabilize the single sepa-
ration TRCs and do not address the disturbances that affect
the color mixing recipes. Materials and process variability
still require that these disturbances be addressed. The cus-
tomer’s frequent need for printer recalibration is testimony
to this fact.

The next level to be addressed is the color mixing ta-
bles. These large LUTs are constructed by printer calibra-
tion and interpolated to yield the halftone densities of the
individual primaries that are layered to construct the cus-
tomer’s desired colors. The data used to construct these
tables is typically 1000 or more color patches each printed
using a specified recipe (CMYK) and then colorimetrically
read to determine the color value that resulted. Thus the
forward table is constructed by interpolation of these data
values [5,7].

Figure 1: Decomposition of a xerographic printer into the print
engine and pre-processor. The engine embodies the transforma-
tion � , while the pre-processor performs an approximation of the
inverse ����, such that � Æ

���� is approximately the identity for
within gamut colors.

There are two difficulties that attend migrating this pro-
cess to real time in the machine. The first is the number
of patches required and the allowable real estate needed
to place them. Making paper prints reduces the produc-
tivity of the device and also requires that the patches be
read. Input scanners would be useful for this purpose but
there are large regions of color space where their sensi-
tivity is inadequate. The second is that if the patches are
made slowly and read by machine sensors, the number of
patches required would consume a time comparable to the
disturbances and thus are without value. This situation ar-
gues for a technique that will yield sufficient accuracy but
require many fewer patches. If such a technique were re-
alized, the goal of real-time control of color mixing might
be accomplished.

The color space transformation problem may be ab-
stracted to that of finding a parsimonious representation of
multi-dimensional, non-linear transformations. The print
engine embodies the transformation � from device depen-
dent coordinates CMY to device independent coordinates
L*a*b*, which is only observable through a set of color
patch experiments as described above. Color science in-
dicates that � is invertible when the domain is suitably
restricted. An approximate inverse of the printer trans-
formation ���� should be embedded in the printer’s pre-
processor, so that the composition � Æ ���� is approxi-
mately the identity map within gamut colors. In other
words, the color requested of the printer is the color printed.

A LUT is one possible representation of such trans-
formations, but LUTs are highly parameterized, and hence
do not admit rapid update from sparse data, a requirement
for xerographic process control. Experiments only provide
knowledge of the forward transformation� , but to produce
a uniform LUT some knowledge of the inverse transfor-
mation is necessary in order to select the appropriate color
patches. An approximation technique which is closed form
invertible would be beneficial, since control at the lower
levels directly effects the forward transformation � , while
��� is required by the preprocessor.

In light of these requirements we have chosen to pursue

��

��
��

��

��
��

�� ��

��

��

��

��

�� ��

��

��
��� ��

�

��
�

���
��
�

Domain Range

Figure 2: An example of a two-dimensional piecewise linear
function. Since the connectivity of the ��’s, inherited from the
��’s, is also a valid triangulation, the function is invertible. More-
over, it may be inverted simply by switching the labels of Domain
and Range. The ��

� are the least squares fits for cells surround-
ing ��, computed in the first step of the minvar algorithm. Notice
that ��

� and ��

� are also called �
�
�

and ��
� , respectively, since,

as is generally the case, these cells are owned by more than one
interior vertex.

piecewise linear (PL) approximation of continuous invert-
ible functions. This is a problem of general interest, arising
when a relationship with some known invariant between
inputs and outputs must be deduced from data. Applica-
tions exist in nearly every field of engineering.

3. Introduction to Multidimensional
Piecewise Linear Functions

Since we are predominantly interested in approximating
invertible functions, we assume the domain and codomain
have the same dimension, � � �� � �

� . We will refer to
PL functions of this type as � dimensional. A continuous
piecewise linear function, �� , admits a parsimonious rep-
resentation. The domain of the function is partitioned into
simplices. (A simplex is the convex hull of � � � points:
a line segment in one-dimension; a triangle in 2-D; a tetra-
hedron in 3-D; and so on.) Such a partition is called a tri-
angulation. Call the vertices ��. For each �� assign a point
in the codomain, ��. This implicitly defines �� such that
�� � �� ����. We refer to the pair ���� ��� as a knot point of
the piecewise linear function, and � is the set of all knot
points. The triangulation of the domain implies a potential
triangulation of the range. If ��� � 	 	 	 � ����� are the vertices
of a simplex in the domain, then in this simplex the PL
function takes on values from the simplex in the codomain
with vertices ��� � 	 	 	 � ����� . If the codomain simplices
form a partition of the range, (i.e. they do not overlap or
“tangle”) then the PL function is invertible in closed form,
and the inverse may be computed by simply switching the
roles of the domain and range vertices. A PL function is
parameterized by the location of its knot points and their
“connectivity,” the triangulation of the knots. (Generally

for �
 �, there is more than one possible triangulation for
a given set of vertices.) Figure 2 shows an example of a
two dimensional PL function.

3.1. Evaluating the PL function
Suppose we have an �-dimensional piecewise linear func-
tion �� and a query point � and we would like to find
�� ���. First we must determine in which simplex � lies,
say the ��� simplex with vertices ��� � 	 	 	 � ����� . We may
verify that � does indeed lie in this simplex by checking
that the �� � barycentric coordinates of � with respect to
the vertices are � �. This condition may be written as

��

�
�

�

�
� � (1)

where is defined below. Then �� ��� is simply com-
puted as �

�� ���
�

�
� ���

�
�

�

�
(2)

where

 �

�
��� 	 	 	 �����
� �

�
� � �

�
��� 	 	 	 �����
� �

�
(3)

For a fixed PL function, performance can be increased by
precomputing the family of matrices � ��, which re-
duces the computational cost of evaluating the approxima-
tion to a matrix multiplication.

4. The minvar algorithm

Let � � ���� ���
�

�	� be a data set of � input-output pairs.
In function approximation, we search through a parame-
terized family of functions in order to minimize some error
criterion, such as mean squared error (MSE) or maximum
error. The piecewise linear functions are parameterized by
the location of the knots and their connectivity. For the
present we will treat knot location as the only changeable
parameter, reserving the discussion of changing connectiv-
ity till the end of the section. Moreover, we generally fix
any �� which is an extreme point of the domain, that is,
on a “corner” of the domain. This prevents the algorithm
from unwittingly shrinking the domain of the approxima-
tion. Often, approximation schemes use a gradient scheme
to minimize the mean squared error. The mean square er-
ror is

��� �
�

�

��
�	�

��� � �� �����
� (4)

In the case of a piecewise linear function, �� ��� is as de-
fined in �3.1. While gradient descent algorithms guarantee

a reduction in the MSE from the point in the parameter
space at which they start, the descent can often get stuck in
a local minimum of the MSE, which could be much worse
than the global minimum. Also, gradient descent tends to
be computationally expensive and slow.

The minvar algorithm is a non-gradient method for com-
puting a good �-dimensional piecewise linear approxima-
tion to a set of data. It is a generalization of the graph
intersection (GI) algorithm, for one-dimensional approxi-
mations [3,4]. Numerical evidence shows that the GI al-
gorithm is less computationally costly than a gradient de-
scent algorithm for computing piecewise linear approxi-
mations. Moreover, piecewise linear approximations from
the GI algorithm have a similar error per parameter rate
as compared to other approximation techniques such as
neural networks and Taylor series polynomials. Moreover,
there is a local convergence proof for the GI algorithm.
The success of the one-dimensional algorithm motivated a
generalization to higher dimensions.

Each iteration of the minvar algorithm, like the GI al-
gorithm, consists of two basic steps. In the first step, for
each simplex in the domain triangulation the least squares
linear fit is computed for the data in that cell. These are
locally optimal, but in general will be discontinuous at
the simplex boundaries. The least squares linear fit can
be computed in closed form. For example, if � � � � is
the subset of data which lies in cell �, (That is, the domain
points of the data lie in the simplex given by � �� � 	 	 	 � ����� .)
then the least squares map, ���� � ��� �, is given by�

�

�

�
� ���� (5)

� �
�

	��	

�
�����

�
�

�

� �
�
 �

�
(6)

� �
�

	��	

�
�����

�
�

�

�
�
 (7)

The second step in the minvar algorithm moves the
knots of the PL function to enforce continuity while try-
ing to match the least squares fits. In the GI algorithm,
this step moves the knot point to the intersection of the
least squares fits from knot’s two neighboring cells. The
�-dimensional case is more difficult since a vertex is gen-
erally shared by more than two cells, so there is no unique
intersection point. For example, in Figure 2, the vertex
�� is a member of 5 different cells, ��

�
� 	 	 	 � ��

�
. Since

there will not in general be a unique intersection point, we
choose to move the domain vertex to the point where the
surrounding least squares fits have the most tightly clus-
tered outputs. Mathematically we express this as a mini-
mization of the variance of the least squares fits over the

domain. Explicitly,

���� � �� � 	
� ��
����

�	
��
� ��� � � ��� ������

� (8)

where

�	
��
� ��� �

	��
�	�

�
�
�
� ����

�

��

	��

	�

�

����

��

	 (9)

The � term is a regularization that restrains the vertex from
moving long distances. This is necessary to prevent a ver-
tex from moving through one of its opposing faces, “tan-
gling” the triangulation. Notice that (8) is quadratic and
can be minimized in closed form,

���� � �� � ����� (10)

where

� �
�

��

	��
�	�

��

�
��� � �� � �

�

��

	��
�	�

��

� �� � ������

��� � �� � �� ��� � �� � ��

�� �

	��
�	�

��
�� �

	��
�	�

��

where �� is the number of simplices that share the vertex
��. The range value �� is then computed as a weighted
average of the least squares fits.

���� � �� �
��	�

�	� ��

	��
�	�

���
�
� ����� � ��� (11)

There are a number of reasonable alternatives for these
weights, the easiest being uniform weights, �� � �. Alter-
natively, using �� � 	�� 	 (i.e. the cardinality of the popu-
lation in ��) gives a lower mean squared error by giving a
weightier vote to cells with more data points. Another al-
ternative would be weighting based on cell volume or cell
location.

In our problem, the domain of the approximation is a
cube, and it is necessary to use vertices on the cube’s faces
and edges in addition to the corners in order to yield a good
approximation. Rather than rigidly fixing these boundary
points which are not extreme, it is possible to derive a con-
strained version of the minimization above, which will re-
strict movement of the vertex to an affine subspace, such
as a plane or edge.

One recurring problem with the current implementa-
tion of the algorithm is mesh tangles. The minvar algo-
rithm often adjusts the knots in such a way that one knot
moves toward and through one of its opposing faces, giv-
ing an invalid triangulation of the domain. There are sev-
eral ways to deal with this problem. One is to add weights
to the cost function that would penalize making a cell too
thin. Alternatively, we may view tangling as an indica-
tion from the algorithm that the underlying function should
be approximated using a different triangulation of the knot
points, and change the triangulation appropriately. This is
an appealing solution to the tangling problem, but progress
has been slowed by a scarcity of retriangulation algorithms
for dimensions higher than three, though some recent work
looks promising [2].

5. Comparison to Industry Practice

Xerox has provided a set of data from CMY to L*a*b*
generated from a color model [1] of a commercial printer.
This data forms a 21x21x21 uniform grid in CMY space.
Three uniform LUTs, with sizes 3x3x3, 6x6x6, and
11x11x11, were subsampled from the data, in order to com-
pare the minvar algorithm against a typical industry LUT.
Note that these LUTs go from CMY to L*a*b*, whereas a
printer requires the inverse LUT, which is more difficult to
construct. However, these results give a flavor of the per-
formance of PL against a LUT for an interesting nonlinear
function. A validation set, one tenth of the total amount
of data, was selected from the points remaining after the
subsampling. All data except the validation data was used
for building the piecewise linear approximation using the
minvar algorithm.

Tetrahedral interpolation is used on the lookup table.
This interpolation scheme breaks up each cube of data in
the LUT into six tetrahedra and does piecewise linear in-
terpolation on these tetrahedra. Thus, in this case the LUT
is itself a PL function, with very rigidly located knots. The
potential benefit of the PL comes from the flexibility of
moving the knots, locating more approximation effort in
areas that need it.

Three different error measures are given for compar-
ison. The first is the root mean squared error (RMSE),
which is square root of MSE as defined in (4), so that the
units are sensible. The second error measure is called ��
(or average ��). This is an average Euclidean distance in
L*a*b* space, given by

�� �
�

�

��
�	�

��� � �� ����� (12)

This quantity will be less than or equal to the RMSE. A
�� of 1 corresponds to a just noticeable color difference.
The third error measure is the �� norm, or “max” norm,

Table 1: Comparison of various error measures for tetrahedral
interpolation LUTs and PL approximations computed by the min-
var algorithm. PL(�� �� ��) is a PL function with � knots fixed in
the domain, � knots constrained to a 1D affine subspace in the do-
main, � knots constrained to a 2D affine subspace in the domain,
and 	 freely movable knots.

Parameters RMSE �� ��
PL (8,0,0,1) 30 5.01 4.19 16.98
PL (26,0,0,8) 126 2.95 2.46 10.59
PL (28,0,0,8) 132 2.72 2.31 8.42
PL (28,0,0,9) 138 2.73 2.32 8.87
PL (23,4,2,8) 143 2.36 2.07 6.89
LUT 3x3x3 81 6.94 6.17 16.92
LUT 6x6x6 648 1.31 1.10 3.66
LUT 11x11x11 3993 0.62 0.40 2.35

given by

�� � �	�
�	���

��� � �� ����� (13)

This error measure is important, because sometimes, as in
the case of trademark colors, it is necessary to print specific
colors very accurately. Thus, it necessary to bound the
maximum color error over the entire space.

It is instructive to compare the errors of these approx-
imations in relation to the number of parameters each ap-
proximation has at its disposal. For a uniform lookup table,
the domain points are rigidly fixed. The only parameters
are the range values of the table. Since the range is three
dimensional, there are three parameters per point. Thus
there are ��� parameters in a �
�
� LUT. In the minvar
algorithm, the domain values of knots on the exterior of the
cube are fixed. Like the lookup table, these knots have 3
parameters each, because only the range value can change.
For knots on the interior, both the domain and range can
change, and thus these knots have 6 parameters each. If �
is the total number of knots, and � is the number interior
knots, then the total number of parameters is ���� �����.

To show the potential benefit of moving knots we com-
pared the 3x3x3 lookup table against a PL function with 9
knot points. The PL function had eight fixed vertices on
the corners of the domain, and one movable interior ver-
tex, giving a total 30 parameters. Though the PL has less
than half the number of parameters as the LUT, it performs
slightly better in terms of MSE and similarly in terms of
�� error.

Increasing the number of parameters in the PL to around
130 drops the MSE to under 3. In this case, it often appears
that the initial triangulation is as important in forming a
good approximation as the number of knots. This can be
seen between PL(28,0,0,8) and PL(28,0,0,9). The latter,
even though it has an additional knot point, has a “worse”

Figure 3: A visualization of the domain (left) and range (right)
triangulations of a PL approximation to color data. The function
has 8 knots which have fixed domain values, the corners of the
cube, and 5 knots which are freely movable. The colored trails
mark the movement of the knots under the minvar algorithm.

triangulation, with one knot connected to knots on all six
faces of the cube. The former ends up with better error
statistics even though it has less parameters. This under-
lines the importance of the triangulation as a parameter in
the PL representation.

The remaining two LUTs have huge numbers of pa-
rameters and very good error statistics. The 6x6x6 LUT
has about 5 times as many parameters as the highest com-
plexity PL function presented here, and a little less than
half the MSE. Unfortunately we can not present a compar-
atively parameterized PL approximation at this time, be-
cause progress on complex triangulations is inhibited by
our lack of a local retriangulation scheme.

Anecdotally, the color space transformation is more
complicated along the boundary of the domain. From nu-
merical experience with the Xerox data, it was found that
the points have the highest error norm were generally on
the exterior. Generally the more knots a cell has on the
boundary, the higher the MSE, suggesting that extra knots
should be put on the boundary to drive down the errors,
which is what PL(26,0,0,8), PL(28,0,0,8) and PL(28,0,0,9)
do. For example, PL(26,0,0,8) has fixed knots on the cube
on each corner (8), the middle of each edge (12) and the
center of each face, for a total of 26 knots with fixed do-
main. Allowing constrained movement of the knots on the
boundary greatly improves the efficacy of the PL approxi-
mations. Note that PL(28,0,0,8) and PL(23,8,4,2) have the
same number of knots, but the extra degrees of freedom
provided by the constrained motion greatly improves the
error statistics.

As the minvar algorithm continues to mature and we
improve our treatment of triangulation and retriangulation,
we expect PL to perform better in terms of error as com-
pared to LUT for approximations with a similar number of
parameters. The PL representation has the benefit of being

closed form invertible.

6. Conclusions

Our present version of the minvar algorithm requires a great
deal of hand tuning to yield good results. Many of the
parameters that require such tuning are being automated.
Currently boundary vertex constraints must be hand spec-
ified, but yield significant improvements. This fits well
with anecdotal claims that much of the non-linearity of the
color space transformation are near the boundaries of the
cube where colors saturate.

Another area for algorithm improvement is retriangula-
tion. By locally reworking the triangulation based on some
local criterion it might be possible to completely avoid
mesh tangles, and guarantee convergence of the algorithm.
Triangulations of spaces with dimension higher than three
have received relatively little study in the past.

We remain cautiously optimistic that a more systematic
approach to the placement of knots may yield PL approxi-
mants to color space transformations that are far more par-
simonious than the industrial standard LUT yet offer the
benefits of closed form invertibility as well.

The performance evaluation of color calibration algo-
rithms resides, as always, in the analysis of printed out-
put. Once the remaining parameterization issues are re-
solved, we will exercise the resulting calibration statically
by printing a set of standard test images. The goal of this
research is to provide printers with real-time calibrations
that stabilize color predictability from monitor to print.
With the a parsimonious representation of the transforma-
tion in hand, our focus will move to the level 4 control
algorithms.

7. References
[1] Raja Balasubramanian, The Use of Spectral Regression in

Modeling Halftone Color Printers, Optical Society of Amer-
ica Annual Meeting, October, 1996.

[2] H. Edelsbrunner and N.R. Shah, Incremental topological flip-
ping works for regular triangulations, Algorithmica,
15(3):223–41, 1996.

[3] Richard E. Groff, Daniel E. Koditschek, and Pramod P. Khar-
gonekar, Training Piecewise Linear Homeomorphisms for
Approximation of Maps with Known Invariants: The Scalar
Case, Journal of Complexity, submitted.

[4] Richard E. Groff, Daniel E. Koditschek, and Pramod P. Khar-
gonekar, Piecewise Linear Homeomorphisms: the Scalar Case,
IJCNN 2000, to appear.

[5] K. Kanamori and H. Kotera, Color-correction technique for
hard copies by 4-neighbors interpolation method, J. Imaging
Sci. Technol., 36(1):73–80, 1992.

[6] Henry R. Kang, Color Technology for Electronic Imagining
Devices, SPIE Optical Engineering Press, 1997.

[7] J. M. Kasson, S. I. Nin, W. Plouffe, and J. L. Hafner, Per-
forming color space conversions with three dimensional lin-
ear interpolation, J. Electron Imaging, 4(3):226–50, 1995.

[8] Tracy E. Thieret, Thomas A. Henderson, Michael A. But-
ler, Method and Control System Architecture for Control-
ling Tone Reproduction in a Printing Device, U.S. Patent
5,471,313, November 28, 1995.

