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Abstract

This paper explores the possibility of using vector
�elds to design and implement reactive schedules
for safe cooperative robot patterns on graphs.
We consider Automated Guided Vehicles

(AGV's) operating upon a prede�ned network of
pathways, contrasting the simple cases of locally
Euclidean con�guration spaces with the more
topologically intricate non-manifold cases. The
focus of the present inquiry is the achievement of
safe cooperative patterns by means of a succes-
sion of edge point �elds combined with a circulat-
ing �eld to regularize collisions at non-manifold
vertices.

1 Introduction

Recent literature suggests the growing aware-
ness of a need for \reactive" scheduling wherein
one desires not merely a single deployment
of resources but a plan for successive re-
deployments against a changing environment [24].
But scheduling problems have been traditionally
solved by appeal to a discrete representation of
the domain at hand. Thus the need for \tracking"
changing goals introduces a conceptual dilemma:
there is no obvious topology by which proxim-
ity to the target of a given deployment can be
measured. In contrast to problems entailing the
management of information alone, problems in
many robotics and automation settings involve
the management of work | the exchange of en-
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ergy in the presence of geometric constraints. In
these settings, it may be desireable to postpone
the imposition of a discrete representation long
enough to gain the bene�t of the natural topol-
ogy that accompanies the original domain.

This paper explores the use of vector �elds for
reactive scheduling of safe cooperative robot pat-
terns on graphs. The word \safe" means that
obstacles | designated illegal portions of the
con�guration space | are avoided. The word
\cooperative" connotes situations wherein physi-
cally distributed agents are collectively responsi-
ble for executing the schedule. The word \pat-
tern" refers to tasks that cannot be encoded sim-
ply in terms of a point goal in the con�guration
space. The word \reactive" will be interpreted
as requiring that the desired pattern reject per-
turbations: conditions close but slightly removed
from those desired remain close and, indeed, con-
verge toward the exactly desired pattern.

1.1 Motivation: Reactive Schedul-

ing Suggests Feedback Con-

trollers on Graphs

Graphs arise as a natural data structure by which
to encode assembly plans, executive logic in ma-
chine tool cells, many other aspects of automa-
tion, and, indeed, many more diverse and ab-
stract instances of plans and schedules. There
is a well understood formal equivalence between
graphs and �nite automata [17], and the growing
DES literature attests to the rich questions about
controller synthesis that can arise in this context.
The question further arises whether there might
be merit to bringing scheduling problems into
more intimate contact with the topology of con-



tinuous spaces wherein such notions as feedback
and asymptotic stability have proven so useful in
conferring robustness against unforseen perturba-
tions. This paper explores a domain of scheduling
problems whose setting is so tightly bound to the
continuous world that the resolution of this ques-
tion is motivated by more than purely intellectual
speculation.
Graphs, and the desirability of imposing (or

analyzing already imposed) dynamics upon them
arise in robotic contexts in several di�erent set-
tings:

� As a representation of some designated cover
of state space. The nodes of the graph cor-
respond to the cells (subsets of the state
space) in the cover, and connecting arcs de-
note non-empty intersection. Dynamically
induced movement along the graph corre-
sponds to the construction of vector �elds
whose ow brings an entire cell into into its
intersection with the adjacent cell to be vis-
ited.

For example, in [9], the second author and
colleagues de�ne a prepares relation | a
partial order that prunes this graph into a
tree | via controllers with point attractors
in a speci�ed neighborhood whose domain of
attraction includes the entire cell (which is
also positive invariant). We will in fact adopt
the framework of that paper as a point of
departure in the present work.

� When the state space admits the structure of
a simplicial complex. The nodes of the graph
correspond to the (varying dimensional) cells
of the complex, and the arcs denote adja-
cency.

For example, in robotic manipulations re-
quiring successively higher order contact, it
has proven possible to actually compute a
topologically valid representation of the re-
sulting simplicial complex in some cases [8].
Brockett [7] has introduced the graph de-
scribed above and explored some aspects of
dynamics imposed upon it.

� When the workspace is itself organized as
a graph whose one-dimensional \viaducts"
connect workstation locations.

For example, many factory materials han-
dling systems are built using AGVs that
must track a guidepath network embedded
in the oor.

In all of these settings it makes sense to speak
of patterns. In most of them are issues of safety,
but typically passage to a graph presumes that
the obstacles have been avoided by the manner

in which the graph is embedded in the original
con�guration space. In some of these settings it
makes sense to speak of multiple agents. In the
last setting all of these considerations come to-
gether in a common problem, and the paper shall
concentrate here in consequence.

1.2 Setting: AGV's on a Guide-

path Network of Wires

An automated guided vehicle (AGV) is an un-
manned powered cart \capable of following an ex-
ternal guidance signal to deliver a unit load from
destination to destination" where, in most com-
mon applications, the guidepath signal is buried
in the oor [10]. Thus, the AGV's workspace is
a network of wires | a graph.1 The motivation
to choose AGV based materials handling systems
over more conventional �xed conveyors rests not
simply in their ease of recon�gurability but in
the potential they o�er for graceful response to
perturbations in normal plant operation. In real
production facilities, the ow of work in process
uctuates constantly in the face of unanticipated
workstation downtime, variations in process rate,
and, indeed, variations in materials transport and
delivery rates [12]. Of course, realizing their po-
tential robustness against these uctuations in
work ow remains an only partially ful�lled goal
of contemporary AGV systems.
Choreographing the interacting routes of multi-

ple AGVs in a non-conicting manner presents a
novel, complicated, and necessarily on-line plan-
ning problem. Nominal routes might be designed
o�ine but they can never truly be traversed with
the nominal timing, for all the reasons described
above. Even under normal operating conditions,
no single nominal schedule can su�ce to coor-
dinate the workow as the production volume or
product mix changes over time: new vehicles need
to be added or deleted and the routing scheme
adapted. In any case, abnormal conditions |
unscheduled process down times; blocked work
stations; failed vehicles | continually arise, de-
manding altered routes.
The tra�c control schemes deployed in con-

temporary AGV systems are designed to simplify
the real-time route planning and adaptation pro-
cess by \blocking zone control" strategies. The
workspace is partitioned into a small number of
cells and, regardless of the details of their source
and destination tasks, no two AGVs are ever al-
lowed into the same cell at the same time [10].
Clearly, this simpli�cation results in signi�cant

1This is not necessarily the case for beacon guided vehi-
cles. However, their obvious advantages in exibility and
recon�gurability notwithstanding, their greater cost, com-
plexity and relative fragility conspire to relegate their use
to a small minority of installations [10].



loss of a network's tra�c capacity.

The contemporary robotic motion planning lit-
erature does not seem to o�er much in the way of
an alternative. Starting with pioneering work of
Alami [1] there has been a small literature on mul-
tiple coordinated robots, but almost all papers
seem to be concerned with o�ine versions of the
problem. Latombe, in his excellent monograph
[15] distinguishes between \centralized" and \de-
coupled" approaches to this problem. In the lat-
ter case, motion planning proceeds using multiple
copies of the con�guration space within which to
situate a set of non-interacting robot vehicles. For
a recent example of what Latombe terms a \coor-
dinated" view of the decoupled case, Svestka and
Overmars [25] introduce a \supergraph" on which
multiple vehicles can be stepped through their
individually speci�ed paths, and vehicle-vehicle
collisions prohibited by detaining one or another
vehicle. For a recent example of what Latombe
terms a \prioritized" view of the decoupled case,
Lee et al. [16] compute k-shortest paths for each
vehicle's source-destination pair, and work their
way down the list of prefences based upon a ve-
hicle's priority. It should be clear that in neither
of these approaches has the recourse to blocking
zone control been eliminated. Thus, while the
decentralized approach side steps the inevitable
curse of dimensionality, passing to the underly-
ing con�guration space seems to be required if
the rigidity and ine�ciency of blocking zone con-
trol strategies is to be eliminated.

The Industrial Engineering AGV literature
seems chiey concerned with higher level issues of
layout and capacity [20] or dispatching and more
general scheduling [2]. One interesting approach
to layout seeks to avoid the subsequent tra�c
control problem entirely by clustering pickup and
delivery stops in decoupled single vehicle loops
[4]. In general, modeling the real-time factory
oor is challenging enough that even the most re-
cent treatments of these higher level layout and
dispatching problems seem to rely on simulation
rather than analysis for understanding the impli-
cations of one or another policy [3]. Here, again,
is an indication that a dynamical systems point
of view might shed additional light. For recent
years have witnessed increasingly successful ef-
forts to characterize such ensemble properties as
the \mean transit time" induced by a ow. Thus,
it seems to us entirely possible that a dynamics
based network tra�c control strategy might yield
more readily to statistical analysis than present
practice a�ords.

In this paper, we will consider a centralized ap-
proach that employs dynamical systems theory to
focus on real-time responsiveness and e�ciency as
opposed to computational complexity or average
throughput. No doubt, beyond a certain maxi-

mum number of vehicles, the necessity to com-
pute in the high dimensional con�guration space
will limit the applicability of any algorithms that
arise. However, this point of view seems not to
have been carefully explored in the literature. In-
deed, we will sketch some ideas about how an
approach that starts from the coupled version of
the problem may lend su�cient insight to move
back and forth between the individuals' and the
group's con�guration spaces even in real time.
For the sake of concreteness we will work in the
so-called \pickup and delivery" (as opposed to
the \stop and go" [4]) paradigm of assembly or
fabrication, and we will not be concerned with
warehousing style AGV applications.
In this context, a \pattern" amounts to a repet-

itive route through the graph (the particular se-
quence of workstations on the factory oor that
the AGV must service). We desire a feedback
policy that causes the robot to return to this pat-
tern no matter what temporary obstructions or
dislocations it experiences. We next desire to in-
troduce two (or more) robots into the same graph,
and seek a means of \juggling" them together
that interleaves their patterns in an asymptoti-
cally stable and safe manner. That is, given a
collection of patterns and a collection of corre-
sponding feedback laws that achieve them for a
single robot, we are interested in modifying the
individual control strategies as modestly as possi-
ble so that a collection of robots can achieve those
patterns simultaneously on the same graph with
the guarantee of no collisions.

1.3 Contributions of the Paper

The paper is organized as follows. In x2, we
review fundamental facts about the topology of
graphs, without which, objects such as vector
�elds and gradients make little sense. We use this
information to de�ne the class of edge point �elds
| locally de�ned dynamics that realize single let-
ter patterns. These act collectively as a toolbox
from which to build a hybrid controller for achiev-
ing arbitrary patterns with a single AGV. This
represents a slight generalization of the scheme
the second author and colleagues have proposed
in [9].
In x3, we turn to the problem of introducing

multiple AGV's in the context of graphs which
are manifolds. In this simpler case, it is often, but
not always, possible to interleave controllers for
single AGV's into a safe controller on the product
con�guration space.
The problem of dynamics and control on non-

manifold graphs is then considered in x4. We
present a fairly detailed analysis of the con�g-
uration space for a pair of AGV's on a Y-shaped
graph | the simplest nontrivial situation. Here,



a clari�cation of the con�guration space presen-
tation leads easily to a vector �eld construction
that brings all initial conditions of two robots on
the graph to any desired pair of goal points while
guaranteeing safety (i.e., no collisions along the
way). The desire for a more decoupled controller
| the hope of an \interleaving" of otherwise in-
dependent individual patterns | impels a revised
approach to safe navigation leading to the con-
struction of a vector �eld that enables the AGV's
to \dance" about one other at a vertex.
The dynamical features of this circulating �eld

are suggestive of future hybrid constructions that
would allow multiple independent patterns to be
safely interleaved. We comment on the form such
juggling algorithms might take in x5.

2 Notation and Background

2.1 Graph Topology

A graph, �, consists of a �nite collection
of 0-dimensional vertices V :=fvig

N
1 , and 1-

dimensional edges E :=fejg
M
1 assembled as fol-

lows. Each edge is homeomorphic to the closed
interval [0; 1] attached to V along its boundary
points f0g and f1g.2 We place upon � the quo-
tient topology given by the endpoint identi�ca-
tions [21]: Neighborhoods of a point in the in-
terior of ej are homeomorphic images of inter-
val neighborhoods of the corresponding point in
[0; 1], and neighborhoods of a vertex vi consist of
the union of homeomorphic images of half-open
neighborhoods of the endpoints for all incident
edges.
The con�guration spaces we consider in x3-4

are self-products of graphs. The topology of ��
� is easily understood in terms of the topology
of � as follows [21]. Let (x; y) 2 � � � denote
an ordered pair in the product. Then any small
neighborhood of (x; y) within ��� is the union of
neighborhoods of the form N (u) � N (v), where
N (�) denotes neighborhood within �. In other
words, the products of neighborhoods form a basis
of neighborhoods in the product space.
Given a graph, �, out�tted with a �nite num-

ber n of noncolliding AGV's constrained to move
on �, the con�guration space of safe motions is
de�ned as

C:= (�� : : :� �)�N (�);

where �:=f(xi) 2 �� : : :� � : xj = xk for some
j 6= kg denotes the pairwise diagonal and N (�)
denotes (small) neighborhood.

2We will assume away in the sequel the possibility of
\homoclinic" edges whose boundary points are attached
to the same vertex.

For general graphs, the topology of C can be
extremely complicated, as measured by, say, the
rank of the fundamental group (see [21] for de�-
nitions). Even in the case where the workspace,
�, is contractible (and thus, the product of its
n copies is contractible), removal of this colli-
sion diagonal often creates spaces with large fun-
damental group. For example, given a graph
�K with K edges all connected at a single point
(forming anK-pronged \star"), we can show that
the fundamental group of the con�guration space
�K ��K �N (�) is a free group on K2� 3K+1
generators | i.e., the number of \independent"
closed paths in this space (with respect to contin-
uous deformation) grows quadratically with K.

We do not treat the general aspects of this
problem comprehensively in this paper; rather,
we restrict attention to several simple prepara-
tory examples and one basic but nontrivial exam-
ple which illustrates nicely the relevant features
present in the more general situation.

In order to proceed, it is necessary to clarify
what we mean by a vector �eld on a simplicial
complex that fails to be a manifold. This is a non-
trivial issue: for example, in the case of a graph,
the tangent space to a vertex with incidence num-
ber greater than two is not well-de�ned. Clearly,
graphs posessing such vertices are not manifolds.
But every graph can be embedded in a Euclidean
space with edges \pinched together" so that the
tangent vectors at each vertex all lie within the
same well-de�ned one-dimensional tangent space
to the embedding [22]. The possible ambigu-
ity in pairwise orientation between the tangent
spaces to each edge endpoint is resolved by choice
of some convention: here we will always assume
that positive vectors are outward directed on the
right boundary, 1, and inward directed on the left
boundary, 0, of an edge. The pinched embedding
yields an existence and (forward time) uniqueness
guarantee for solutions to the di�erential equa-
tions de�ned in this manner [22].

For present purposes, we �nd it convenient to
work with an intrinsic formulation (i.e., directly
in the graph rather than via an embedding in a
Euclidean space) of this property. To this end, de-
note by v a vertex with K incident edges feig

K
1 ,

and by fXig
K
1 a collection of nonsingular vec-

tor �elds locally de�ned on a neighborhood of
the endpoint of each ei (homeomorphic to [0; �)).
These meet the conditions for existence of solu-
tions with respect to some \pinched" embedding
of � if and only if (1) the magnitude of the end-
point vectors kXi(0)k (taken with respect to the
attaching homeomorphisms) are all identical; and
(2) the signs of the endpoint vectors Xi(0) (either
positive if pointing into [0; �) or negative if point-
ing out) are not all the same. Heuristically, condi-
tion (1) implies that we may identify all the end-



points to the vertex while respecting the vector
�eld, and condition (2) means that the negative
directions ow into the vertex and the positive di-
rections ow out. If there are only positive or only
negative directions, we do not have a well-de�ned
vector �eld at the vertex | i.e., the existence of
solutions may not be guaranteed.

Since graphs need not be manifolds, results
such as uniqueness of solutions are not guaran-
teed, and, in fact, are not true in general. The
best one can hope for is to have a vector �eld
generating a semiow | that is, a continuous dy-
namical system with unique forward orbits. Pur-
suing the intrinsic formulation of such a \forward
uniqueness property," observe that for a vector
�eld on a graph, it is clear that a semiow is de-
�ned if and only if there is a unique edge along
which the vector �eld is positive. In other words,
all orbits through the vertex emanate along a sin-
gle edge. Note that running a semiow in back-
wards time does not generate unique orbits, un-
less the semiow is in fact a ow.
These notions of intrinsic vector �elds generat-

ing semiows on graphs extend naturally to the
cross products of graphs we consider later. Again,
the theme is to embed such spaces smoothly into
a higher dimensional Euclidean space inducing
well-de�ned tangent space. For the remainder of
this work, we will de�ne all vector �elds intrinsi-
cally, without worrying about the speci�c embed-
ding required.

2.2 Edge Point Fields

In the context of describing and executing pat-
terns or periodic motions on a graph, one desires
a set of building blocks for moving from one goal
to the next. We thus introduce the class of edge
point �elds as a dynamical toolbox for a hybrid
controller. Given a speci�ed goal point g 2 ej
within an edge of �, an edge point �eld is a lo-
cally de�ned vector �eld Xg on � with the follow-
ing properties:

Locally De�ned: Xg is de�ned on a neighbor-
hood N (ej) of the goal-edge ej within the
graph topology. Furthermore, forward orbits
under Xg are uniquely de�ned.

Point Attractor: every forward orbit of Xg

asymptotically approaches the unique �xed
point g 2 ej .

3

Navigation-Like: Xg admits a C0 Lyapunov
function, �g : �! R.

3When it is not clear from the context, we shall denote
the goal point achieved by an edge point ow as g(Xg) =
fgg:

Lemma 1 Given any edge ej � � which is con-
tractible within �, there exists an edge point �eld
Xg for any desired goal g 2 ej.

Proof: Fix the desired goal g 2 �. By hypoth-
esis, ej (and thus a neighborhood N (ej)) is con-
tractible; hence, given any point x 2 N (ej), there
exists up to reparametrization a unique one-to-
one path from g to x in N (ej). For, if there were
two such paths, this would imply the existence of
a one-to-one map of a circle into N (ej), contra-
dicting contractibility. Place any bounded metric
d on � and de�ne the function � : N(ej) ! R
via �(x) is equal to the d-length of the unique
path from g to x. The properties of the metric
then guarantee that � is a function whose gra-
dient �eld is an edge point �eld for g, where we
de�ne the gradient to be the induced gradient on
the interior of each edge under the homeomor-
phisms to [0; 1] via the topology on �. At the
vertex, the gradient is taken with respect to the
unique edge along which the function descends.
This is compatible with the given de�nitions for
vector �elds on graphs. 2

The only occasion for which an edge ej is not
contractible in � is in the \homoclinic case" when
both endpoints of ej are attached to the same
vertex, forming a loop. In such instances, one
may avoid the problem by subdividing the edge
to include more vertices, which is very natural in
the setting of this paper, since vertices correspond
to workstations along a path.

2.3 Discrete Regulation of Pat-

terns

We adopt the standard framework of symbolic dy-
namics [17]. By an excursion on a graph is meant
a (possibly in�nite) sequence of edges from the
graph, E = ei1 : : : eiN : : : 2 EZ , having the prop-
erty that each pair of contiguous edges, eij and
eij+1 share a vertex in common. The set of ex-
cursions forms a language, L: the so-called sub-
shift on the alphabet de�ned by the named edges
(we assume each name is unique) [17]. The shift
operator, �, de�nes a discrete dynamical system
on the set of excursions, mapping the set of in-
�nite sequences into itself by decrementing the
time index. An M-block extension of the original
language arises in the obvious way from grouping
together each successive block of M contiguous
letters from an original sequence, and it is clear
how � induces a shift operator, �M on this de-
rived set of sequences.
Given a legal block, B = ei1 : : : eiM 2 L, we

will say that an excursion realizes that pattern
if its M -block extension eventually reaches the
\goal" BBBBB : : : under the iterates of �M . In
other words, after some �nite number of applica-



tions of �, the excursion consists of repetitions of
the block B (terminating possibly with the empty
edge).
In a previous paper [9], the second author and

colleagues introduced a very simple but e�ective
discrete event controller for regulating patterns
on graphs from all reachable initial edges by prun-
ing the graph back to a tree (imposing an or-
dering). Of course, this simple idea has a much
longer history. In robotics it was introduced in
[18] as \pre-image backchaining;" pursued in [19]
as a method for building veri�able hardened au-
tomation via the metaphor of a funneling; and
in [11] as a means of prescribing sensor speci�ca-
tions from goals and action sets. In the discrete
event systems literature an optimal version of this
procedure has been introduced in [6] and a gen-
eralization recently has been proposed in [23].
Let E0:=B � E denote the edges of � that ap-

pear in the block of letters specifying the desired
pattern. Denote by

En+1 � E �
[
k�n

Ek

those edges that share a vertex with an edge
in En but are not in any of the previously de-
�ned subsets. This yields a �nite partition of E
into \levels," fEpgPp=0, such that for each edge,

e
p
i 2 Ep, there can be found a legal successor edge,

e
p�1
j 2 Ep�1, such that epi e

p�1
j 2 L is a legal block

in the language. Note that we have implicitly as-
sumed E0 is reachable from the entire graph |
otherwise, there will be some \leftover" compo-
nent of E forming the last cell in the partition
starting within which it is not possible to achieve
the pattern. Note as well that we impose some

ordering of each cell Ep = fepi g
Mp

i=1: the edges of

E0 = B are ordered by their appearance in the
block; the ordering of edges in higher level cells is
arbitrary.
We may now de�ne a \graph controller" law,

G:E ! E as follows. From the nature of the par-
tition fEpg above, it is clear that the least legal
successor function,

L(e
p
i ):=

�
i+ 1modM : p = 0

minfj �Mp : e
p
i e
p�1
j 2 Lg : p > 0

;

(1)
is well-de�ned. From this, we construct the graph
controller:

G(e
p
i ):=e

p�1

L(p;i)
: (2)

It follows almost directly from the de�nition of
this function that its successive application to any
edge leads eventually to a repetition of the desired
pattern:

Proposition 2 The iterates of G on E achieve
the pattern B.

2.4 Hybrid Edge Point Fields

A semiow, (X)t, on the graph induces excur-
sions in L parametrized by an initial condition as
follows. The �rst letter corresponds to the edge
in which the initial condition is located (initial
conditions at vertices are assigned to the incident
edge along which the semiow points). The next
letter is added to the sequence by motion through
a vertex from one edge to the next.
We will say of two edge point �elds, X1; X2

on a graph, �, that X1 prepares X2, denoted
X1 � X2; if the goal of the �rst is in the domain
of attraction of the second,

g(X1) � N (X2):

Given any �nite collection of edge point �elds on
�, we will choose some 0 < � < 1 and assume that
their associated Lyapunov functions have been
scaled in such a fashion that X1 � X2; implies

(�1)
�1
[0; �] � N (X2):

In other words, an � crossing of the trajectory

�1 � (X1)
t
signals arrival in N (X2).

Suppose now that for every edge in some pat-
tern block, e0i 2 E0, there has been designated
a goal point, g0i , along with an edge point �eld
X0
i taking that goal, g(X

0
i ) = g0i . Assume as well

that the edge point �eld associated with each pre-
vious edge in the pattern prepares the ow asso-
ciated with the next edge, in other words, using
the successor function (1) we have,

g
�
X0
j

�
� N

�
X0
L(j)

�
:

Now construct edge point �elds on all the edges
of � such that the tree representation of their �
relations is exactly the tree pruned from the orig-
inal graph above | namely we have

g
�
X
p
j

�
� N

�
X
p�1

L(j)

�
:

We are �nally in a position to construct a hy-
brid semi-ow on �. This feedback controller will
run the piece-wise smooth vector �eld, _x = X , as
follows

X :=

�
X
p
j :x 2 e

p
j and �

p
j > �

X
p�1

L(j)
:x 2 e

p�1

L(j)
or �

p
j � �

: (3)

It is clear from the construction that progress
from edge to edge of the state of this ow echoes
the graph transition rule G, constructed above.

Proposition 3 The edge transitions induced by
the hybrid controller (3) are precisely the iterates
of the graph map, G, (2) in the language, L.



3 Single Letter Patterns on

Manifolds

In the voluminous literature concerned with ar-
ti�cial potential �elds for robotic path planning,
one often encounters the notion of a \locally re-
pelling" �eld | a C1 (and typically piecewise
analytic) gradient �eld capable of repelling in the
neighborhood of an obstacle but otherwise (i.e.,
away from that neighborhood) completely goal-
minded. In the context of multiple robots inhab-
iting the same workspace, this motivates the no-
tion of \interleaving" controllers that promote the
goals of each individual robot in isolation most of
the time, reacting (in an appropriately repelling
manner) to the presence of others only in con�gu-
rations near the diagonal. We suspect that there
may be fundamental obstructions to such strate-
gies in con�guration spaces with su�ciently large
fundamental group.
In this section we explore the notion of \inter-

leaving" in the simplest setting: where the goal of
each robot consists of a single point and where the
workspace is a manifold. Even here, it becomes
apparent that there may exist intrinsic obstruc-
tions to matching up fully decoupled goal-seeking
�elds with repelling �elds in the neighborhood of
the diagonal.

3.1 The Line Segment

A segmented line, �, is any graph homeomorphic
to [�1; 1] | for example, any connected graph
with one edge and two vertices.
Suppose g 2 � is a point goal and let hg:� !

[�1; 1] be a di�eomorphism that takes g to the
origin. Then

g(x):=(hg(x))
2=2 (4)

is a navigation function for g on � according to
the de�nition in [14].
We now show how to build a safe cooperative

version of this pattern with two robots. De�ne
�(x):=jx1 � x2j

2. Since the diagonal,

�:=��1[0] � �� � �= [�1; 1]� [�1; 1];

disconnects the con�guration space, it su�ces to
consider cooperation with two AGV's.4 Consider,
then, the case of a pair of AGV's within a con-
nected component C0 of the con�guration space,

x:=(x1; x2) 2 C0:

4Note, however, looking ahead to a discussion to follow,
that for m points on a line segment, the con�guration
space has (m�1)! path components, given by the ordering
of the points on the line.

Assume that there is some goal g = (g1; g2) 2 C0.
We have

g(x):=g1(x1) + g2(x2);

as a safe navigation function for (g1; g2) on the
square [�1; 1]� [�1; 1], but not safe, in general,
on the diagonally severed C0 .
It is established in [13] that

�(x):=g(x)=�(x)

is a safe navigation function for g = (g1; g2) 2 C0.
Thus, the gradient vector �eld associated with �
produces the safe pattern de�ned by the point
goal g.
One might have wished, instead, for a more

\decoupled" controller than one arising from the
vector �eld grad�. For example, variants on the
scaled cross product vector �eld

(grad (g1=�) ;grad (g2 =�))

appear to yield safe navigation functions on C0
as well [5]. Notice that such a construction still
presumes that centralized information regarding
the state of each agent is available to all of them
but relaxes their need to share information about
their individual goals. Moreover, this formula
might lend itself nicely to a C1 \blending" with
the fully decoupled gradient �eld gradg1�gradg2
away from the boundary.

3.2 The Circle

Matters are much less satisfactory on the circle
S1 | a manifold which is not contractible. To
begin with, every smooth edge point �eld will
incur an unstable �xed point | only essential
global attraction is possible. For example, iden-
tify S1 with the unit circle in the complex plane
S1 = fei� : � 2 [0; 2�)g. Then, given a goal �g ,
de�ne the navigation function

g(�):=1� cos(� � �g): (5)

Since every continuous function on a compact set
takes both a maximum and a minumum on that
set, this construction (and, indeed, any other)
necessarily introduces a spurious unstable �xed
point, in this case, at �u:=�g � �.
For understanding the con�guration space of

several AGV's on a circle, the following lemma
(whose simple proof we omit) is key.

Lemma 4 The con�guration space CC;n of n

points on a circle is homeomorphic to S1�CL;n�1,
where CL;m denotes the con�guration space of m
points on the line segment.



From the previous subsection, we know that CL;m
is disconnected for m > 1. Since taking a cross
product with S1 does not change the number of
connected components, we have that S1 � S1 is
not disconnected by the pairwise diagonal, but
triple and higher cross products are.
We now explore the suggestion that the topol-

ogy of the circle might preclude naive interleaving
of individual navigation functions, in contrast to
the situation for �. For example, consider the sit-
uation in which there are two AGV's with goals
g1 and g2. By construction, we have a pair of
navigation functions,

1(�):=1� cos(� � �g1) ; 2(�):=1� cos(� � �g2):

One may interleave to form a navigation function

(1(�1) + 2(�2)) =�(�1; �2);

where � is a nonegative function with ��1(0) = �,
such as 1� cos(�1 � �2). Upon so doing, one can
show that large regions of initial conditions do
not reach the goal state. For example, in the case
where g1 = 0, g2 = �=2, all initial conditions
� < �1 < �2 < 3�=2 are trapped by the position
of the sources and the diagonal repellor.
To construct safe navigation functions for at-

taining point goals of multiple AGV's on the cir-
cle, one may use the homeomorphism h : CC;n !
S1 � CL;n�1 of Lemma 4 to reduce to the cases
already considered without the problems noted
above. For example, in the case of two AGV's,
the homeomorphism

h(�1; �2):=(�1; arg(�2; �1));

takes CC;2 to S1 � (0; 2�). Here, we denote by
arg(�2; �1) the unique number z 2 (0; 2�) such
that �1 + z = �2 modulo 2�. Given a pair of
goals �g1 6= �g2 , we have the corresponding point
h(�g1 ; �g2) = (�g1 ; xg2), where xg2 :=arg(�g2 ; �g1 ;).
Construct the navigation function 1(�) for �g1 as
per (5). Then, construct the navigation function
2(x) for xg2 on the line segment (0; 2�) using the
obvious generalization of (4). Then, one obtains
a safe navigation function � on CC;2 by pulling
back the sum via the homeomorphism:

�(�1; �2):=(1; 2) � h(�1; �2):

This may be extended to the case of three (or
more) AGV's on the circle by using the product
navigation functions for multiple points on the
line segment via a similar homeomorphism h.
Unfortunately, the decoupled �eld grad 1 +

grad 2 on the \model space", S1 � CL;n�1, is
not at all decoupled when the pulled back to the
physical setting in CC;n. We shall explore a simi-
lar phenomenon in the far more complicated case
of the Y-graph.

The skeptical pragmatic reader may �nd mo-
tivation to persevere through our account of this
next complication by noting that even the ap-
parently contrived problem of scheduling AGVs
on a single loop discussed in this section may, in
itself, hold some practical value. For example,
the choice of optimal dispatching and scheduling
rules for multiple AGVs on a single loop seems
to be far from understood within the Industrial
Engineering community [2].

4 The Y-Graph

v1

v2v3

v0

e1

e2e3

Figure 1: The Y-graph �.

In this section, we consider the simplest non-
trivial example of a non-manifold con�guration
space: that associated to a Y-graph, �, having
four vertices fvig

3
0 and three edges feig

3
1, as il-

lustrated in Figure 1. The topological features
associated to such a system di�er starkly from
that of the previous examples. But this specical
case has more general interest, since all graphs
may be built up by gluing together K-pronged
stars, of which the K = 3 model, �, is the sim-
plest nontrivial example. In any case, this setting
certainly suggests the richness of the problem of
dynamics on general graphs.

Figure 2: The con�guration space C embedded in
R3.



Theorem 1 The con�guration space C associ-
ated to a pair of AGV's restricted to the Y -graph
� is homeomorphic to an annulus with six 2-
simplices attached as in Figure 2.

Figure 3: The space �����.

Proof: The cross product ��� with the di-
agonal removed appears as in Figure 3: here, we
have replaced every point of � with another copy
of � and subsequently removed diagonal points,
including the \center" of the graph. Note that
this object as presented does not embed in R3,
but rather has an arti�cial self-intersection. To
simplify the presentation, we deform the six \�ns"
created by the diagonal cuts as in Figure 4, yield-
ing the simplicial complex of Figure 5. This can
be easily deformed into the hexagonal \star" of
Figure 6, where the six radial lines correspond to
where the diagonally severed �ns were retracted.
The center point, all that remains of the punc-
tured diagonal set, has been removed. Upon reat-
taching these �ns, we may transform the con�g-
uration space by a homeomorphism which takes
the hexagonal star to a smooth annulus, yielding
the �nal form of Figure 2, which does embed in
R3. 2

Corollary 5 Given any pair of goals g:=(g1; g2)
where g1 and g2 live on di�erent branches of �,
there exists a navigation function (of class real-
analytic o� of the branch set) which sends all but
a �nite number of initial conditions to g under
the gradient ow.

Proof: On that portion of Figure 2 which is
an annulus, the conditions for the theorems of
Koditschek and Rimon [14] are met, since an an-
nulus is a sphereworld. Hence, a navigation func-
tion on this subspace exists. Since the individual
goals are not on the same branch of the graph,
one may extend the navigation function to a func-
tion on the entire con�guration space by de�ning

Figure 4: Retract the six �ns of C.

Figure 5: A simplicial complex with punctured
center.

the action of the ow on the �ns to monotoni-
cally \descend" away from the diagonal and onto
the annulus, where the implicitly de�ned function
takes over as per our de�nitions for gradients and
vector �elds on non-manifolds. Note that upon
prescribing the ow on the �ns to send orbits
onto the annulus, we have de�ned a semiow, and
hence have a well-de�ned navigational procedure.
2

This result is very satisfying in the sense that
it guarantees a navigational function by applying
existing theory to a situation which, from Fig-
ure 3 alone, would not appear to satify the condi-
tions of being related to a sphereworld. However,
it is not yet clear how such an application can
be generalized to situations where the number of
AGV's or the incidence number of the ambient
graph increases. Hence, we consider an alternate



Figure 6: Flattening out yields a punctured
hexagonal star.

solution to the problem of realizing compatible
goals by means of a vector �eld on the con�gura-
tion space. It is our belief that this method will
readily adapt to complicated settings.
Theorem 1 and Figure 2 suggest a natural cir-

culating ow on the con�guration space C which
has the e�ect of inducing a \dance" between the
pair of AGV's until the appropriate con�guration
is reached.

Theorem 2 There exists a piecewise-smooth
vector �eld X on C which has the following prop-
erties:

1. X de�nes a nonsingular semiow on C;

2. The diagonal � is repelling with respect to
X; and

3. Every orbit of X approaches a unique at-
tracting limit cycle on C which cycles through
all possible ordered pairs of di�erent edge-
states.

Proof: To construct the vector �eld, we intro-
duce the following coordinate system �tted with
respect to the topology of �. Let feig

3
1 denote the

three edges in �, parametrized so that ei �= [0; 1]
with each f0g identi�ed at the center v0 of �.
Denote by êi the unit tangent vector in each tan-
gent space Txei pointing in the positive (outward)
direction towards the endpoint vi. Any point
x 2 � is thus given by a vector (x1; x2; x3) in
the feig frame, where xi 2 [0; 1] and at least two
of these coordinates is zero. In other words, we
are embedding � as the positive unit axis frame
in R3. Likewise, a point in C is given as a pair
of distinct vectors (x; y), i.e., as a unit axis frame
in R3 � R3 �= R6 (see Figure 7). The reader
should think of this as a collection of six unit co-
ordinate planes, attached together pairwise along
axes with the origin removed.

(e1; 0)

(0; e3)

(e2; 0)

(0; e1)

(e3; 0)

(0; e2)

Figure 7: The coordinate system on the annular
region of C.

Any vector �eld on C may be uniquely rep-
resented as a pair of vectors in the fêig basis.
Given a point x 2 �, denote by �(x) the in-
dex of the nonzero coordinate of x (or by zero
if x = (0; 0; 0)). Denote also by jxj the value
of the nonzero coordinate of x (or by zero if
x = (0; 0; 0)). Thus, x = jxje�(x). Any addi-
tion operation on the level of indices will always
denote addition mod three.
The vector �eld we propose is the following:

given (x; y) 2 C,

1. If �(x) = �(y) then

�
_x = �jyjê�(x)
_y = jyj(1� jyj)ê�(y)

�
0 < jxj < jyj�

_x = jxj(1� jxj)ê�(x)
_y = �jxjê�(y)

�
0 < jyj < jxj

(6)

2. If �(x) = �(y) + 1 or �(x) = 0 then

�
_x = jyjê(�(y)+1)
_y = jyj(1� jyj)ê�(y)

�
0 � jxj < jyj�

_x = jxj(1� jxj)ê�(x)
_y = �jxjê�(y)

�
0 < jyj � jxj

(7)

3. If �(y) = �(x) + 1 or �(y) = 0 then

�
_x = �jyjê�(x)
_y = jyj(1� jyj)ê�(y)

�
0 < jxj < jyj�

_x = jxj(1� jxj)ê�(x)
_y = jxjê(�(x)+1)

�
0 � jyj � jxj

(8)



The vector �eld de�nes a nonsingular semiow as
follows: �rst, the vector �eld is by inspection non-
singular. Second, away from a neighborhood of
the non-manifold points (where the �ns attach to
the annulus), the vector �eld is well-behaved and
de�nes unique solution curves locally. Finally, at
the non-manifold points, the vector �eld at any
point is constructed so as to have two incoming
directions and one outgoing direction; hence, the
forward orbit of the vector �eld is uniquely deter-
mined.
This vector �eld admits a C0 Lyapunov func-

tion � : C ! [0; 1) of the form

�(x; y):=

�
1� j(jxj � jyj)j : �(x) = �(y)

1�max fjxj; jyjg : �(x) 6= �(y)
:

(9)
A simple calculation shows that on the �ns

(�(x) = �(y)), one has _� < 0, and furthermore
that on the annulus (�(x) 6= �(y)), � changes as

_�(x; y) = �(�� 1):

Hence, � strictly decreases o� of the boundary of
the annulus

L:= f(x; y) : jxj = 1 or jyj = 1g = ��1(0):

It follows from the computation of _� that the
diagonal set � of ��� is repelling, and that the
boundary cycle L is an attracting limit cycle. 2

Figure 8: The circulating �eld on the annular re-
gion of C.

The action of the vector �eld is to descend o� of
the \�ns" of C onto the annular region, and then
to circulate about the annulus while pushing out
to the boundary cycle L, as in Figure 8. The
Lyapunov function � decreases as the \height"

when �(x) = �(y) (on the �ns) and decreases as
the \radius" when �(x) 6= �(y) (on the annulus).
From this, it can be seen that the vector �eld
constructed is merely the image of the vector �eld

_r = r(1� r) : _� = 1

under the homeomorphism taking the closed unit
disc in the plane to the hexagonal star of Figure 7
by rescaling linearly along rays emanating from
the origin. Of course, we may tune the radius
of the limit cycle easily within this context and
push it forward to a modi�ed vector �eld on C
by changing every term of the form (1� jxj) and
(1� jyj) to, respectively, (R� jxj) and (R� jyj),
where 0 < R < 1 is the radius of the desired limit
cycle.

5 Control of Dynamics on

Graphs

The circulating vector �eld of x4 can be incor-
porated into a controller for dynamics on the Y-
graph and many generalizations thereof. In this
paper, we restrict ourselves to a brief sketch of
how this may be accomplished, leaving details for
a more comprehensive work.
The principal features of the vector �eld of x4

are as follows:

1. It generates a well-de�ned nonsingular semi-
ow on �.

2. Orbits of the semiow attract onto an orbit
which cycles transitively through all ordered
pairs of distinct edge combinations.

Consider the following simple hybrid controller
on a general graph � with trivalent non-manifold
points (i.e., there exists an atlas for � all of whose
charts are homeomorphic copies of �). When the
AGV's are geographically isolated (as measured
by some natural metric d), use the edge point
�elds of x2 to send each AGV to its predetermined
point goal, keeping track of the relative distances
between AGV's. The distance between a pair of
AGV's reaches a critical threshold when they are
on a \collision course". Upon crossing the thresh-
old, turn o� the edge point �elds, and turn on the
circultaing �eld associated to the current chart on
which the pair resides, using the chart homeomor-
phism to push forward the vector �eld of x4. The
induced semiow will by (1) and (2) above ensure
that the AGVs' relative ordering on the trouble-
some edge are eventually permuted. When one
of the AGV's has returned to its initial position
with the prior obstruction removed, turn o� the
circulating �eld and resume the edge point �eld
control.



In this way, the motion of the individual AGV's
is to descend monotonically towards the goal ex-
cept when a collision is imminent. Then, the cir-
culating controller induces a \dance" between the
pair which has the e�ect of moving the obstacle
out of the way, allowing for further progress to-
wards the goal. This prescribes an e�cient, and
courteous, tra�c ow.
The future direction of this line of inquiry is

clear: analogues of the circulating �elds should be
constructed for the more general cases of higher
graph incidence and more AGV's. This presents
a nontrivial topological problem, as noted earlier.
Finally, it would be advantageous to implement a
controller which is more modular | where incre-
menting the number of AGV's does not require
a retooling of the entire controller. However, as
noted in the case of dynamics on a circle, this is
not always possible by straightforward interleav-
ing of navigation functions.
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