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Visual Servoing via Navigation Functions
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Abstract—This paper presents a framework for visual servoing nonlinear) properties are well characterized has remained a sig-
that guarantees convergence to a visible goal from almost every nificant challenge to visual servoing.
initially visible configurations while maintaining full view of all The classical approach to visual servoing attempts to impose
the feature points along the way. The method applies to first- and . . . . . . .
second-order fully actuated plant models. The solution entails straight-line trajectories on image feature p_0|nt5. To |Ilustra'Fez
three components: a model for the “occlusion-free” configura- SUPPOSe a camera observes four feature points affixed to a rigid
tions; a change of coordinates from image to model coordinates; body controlled by a six-degrees-of-freedom (6-DOF) all-revo-
and a navigation function for the model space. We present three |yte joint robot. The configuration space of the robot is parame-
example applications of the framework, along with experimental terized by six joint angleg, € R and the image space is defined
validation of its practical efficacy. . . ’ . 3

in terms of the four image plane pairg,€ R®. Locally, then,

Index Terms—bynamics, finite field of view (FOV), navigation the camera’s image may be modeled by a maR® — R®
functions, obstacle avoidance, occlusions, vision-based control, vi-

. T
sual servoing. y=c(q) =[ur v1 -+ ug w4
where

|. INTRODUCTION u; _
NCREASINGLY, engineers employ computer vision to [%} =1
sense the projection of features of a rigid body as it moves . : .
in some scene. Closing a visual servo loop around image plaarg the image plan_e_ featurg Iocatpns .Of the four_feature_s being
. . . . observed. The traditional (kinematic) visual servoing law is then

measurements requires a reliable machine vision system—in-
corporating image processing, feature extraction and featuje= —J' (y —y*), where J' = (JTJ)f1 JT € R6*8
correspondence—to supply a controller with the image plane Q)
coordinates of the features of the body. Traditionally, visuéd a pseudoinverse of the Jacobian mafil ; = dy;/dq;.
servoing algorithms impose motion upon a body’s actuatedVisual servoing systems based on the above approach have
configuration space variables so as to align its image-plane feaany well-established merits, but may be improved in several
tures with a previously stored desired view. When the mappikgy ways. First, they result inlacal basin of attraction whose
from configuration variables to the image plane is one to one @xtent is poorly or not at all characterized. For example, the in-
some vicinity of the goal image, then traditional visual servoingursion of spurious (attracting) critical points may arise when
generally results in (at least local) closed-loop convergencesto- »* aligns with the null space of T in (1). Consequently,
the desired position. Hutchinsagt al. [1] provide a general the local basin of attraction aroud may exclude seemingly
introduction and extensive bibliography to this approach.  reasonable initial conditions [3]. The second challenge to vi-

Visual position regulation leaves few challenges: high perfosual servoing involves the vulnerability to transient loss of fea-
mance, dynamic (albeit local) vision-based controllers whidhres—either through self-occlusions or departure from the field
fit into the framework of linear control have existed for somef view (FOV). To the best of our knowledge, no prior work
years [2]. This complete characterization is owed primarily tguarantees that these obstacles will be avoided (while ensuring
the local nature of such regulation tasks. However, the creatioonvergence). However, as we will show, both of these chal-
of a richer set of behaviors whosggobal (and, hence, highly lenges—local convergence and transient loss of features—can

be overcome quite readily.
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merely a means to an end, tracking those trajectories exactly y(0) y*
may not be necessary. By contrast, our approach generates o IIIIIIIIIIIITT T e
controllers capable of extremely high performance, which (a) e N

exhibit global convergence to the end-point goal, without the
burden of precisely tracking a (clearly somewhat arbitrary) (b) 0\'0,
reference trajectory. Without prescribing specific reference
trajectories, the proposed methodology nevertheless affords > A
certain guarantees on the trajectories that result. For exam|
features are guaranteed to remain visible throughout transie(c) @ @@Q
(even in the presence of Newtonian dynamics).
A. Image-Based Navigation

In a naive attempt to improve (1), note that it may be con-(d)
ceived as the gradient of the potential function *__

e

4
= _ 1 *(12 2 ) . . . e . .
Qo(y) = 5 Z IIy, —Y; || ( ) Fig.1. Simulation results for three different artificial-potential-function-based
i=1 visual servo controllers using the same initial positigf) and goal position

y*. (@) Image-plane feature trajectories resulting from the proposed navigation

. . _ ~ function (NF) in the Appendix. In this case, all of the features reach their

_ T 1pT

by lettingg = —(J* J)~*D; (¢ o c). Suppose the four featuresrespective goal. (b)-(d) Snap-shot of the body at five times during the trajectory

are coplanar, e.g., they are all on the same face of a polyhedoaihree different strategies; (b) based on the proposed NF; (c) based upon the
body A self-occlusion occurs when the plane Containing ttpatential function in (2) resulting in failure due to self-occlusion; (d) based

’ . . . upon the potential function in (3) resulting in failure due to a spurious local
features intersects the camera pinhole, causing the four poliSmum.
to project onto the same line on the image plane. To avoid this
scenario, consider a naive improvement of (2) that avoids self-

occlusions by “blowing them up,” namely,

3) visibility-obstacle freeavoiding configurations that lose
features due to either self occlusion or departure from the

4 ) camera FOV.
; llyi — il
P(y) = — 172 () B, Related Work
N det | Y Yi Yk
H{z,g,k}el" 1 1 1 . . . .
Many implementations in the literature offer strong anecdotal

evidence that suggests convergence for visual servoing systems
where I' = {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}. The jsrobustwith respect to large parametric uncertainty, though re-
denominator will go to zero as the projected features beco@€archers rarely establish formally large basins of attraction for
collinear and, thus, the gradient will point away from thgjsual servoing systems (parametric uncertainty aside). Malis
self-occlusion obstacle. However, as can be seen from Fig.al_,[5] and Taylor and Ostrowski [6] introduce visual servo con-
even though self-occlusions are avoided, convergence is §@llers incorporating partial pose reconstruction to guarantee
necessarily achieved. Other such naive approaches may suftfvergence even in the presence of large parametric uncer-
similar peril. tainty. Rizzi et aldesign a globally convergent nonlinear dy-
Although the naive potential function approach above neithgamical observer for a falling point mass viewed by a binoc-
adequately addresses occlusions nor guarantees convergefl§ecamera pair [7], by mapping the observer feedback into the
one suspects that some appropriately designed potential mighdge plane. Similar machinery applies to binocular quasistatic

overcome these serious limitations of traditional visual sefisual servoing [8] to yield a controller with a large basin of at-
voing. Indeed, we will show in this paper that the obstaclegction.

presented by self occlusion and a finite FOV can be obviated by, addition to our preliminary results [9]-[11], there have

addressing in a methodical fashion the relationships betwg§dbun some recent efforts to address the FOV problem. For
the domain and range of the camera mapirom which the g_pOF visual servoing, Malist al. [5] guarantee that a single

obstacles arise. . ~ feature point remains within the FOV while, as noted above,

_Specifically, we introduce a framework for visual servoingyaranteeing convergence for a large basin of attraction. Morel
yielding feedback controllers which are: et al.[12] extend this idea by decoupling the image-plane mo-
1) dynamic:applicable to second-order (Lagrangian) as welilon of a cleverly chosen feature vector—a circle containing all
as first-order (kinematic) actuation models; the feature points—from the rotational motion of the camera;

2) global: guaranteeing a basin of attraction encompassing keeping this conservative feature vector within the image
almost every initial configuration that presents full fea- plane, one is guaranteed that all feature points remain within

ture visibility; the FOV (though self-occlusion avoidance is not guaranteed).
Corke and Hutchinson [13] present a novel “partitioned”

IThat is, all but a set of measure zero. kinematic visual servo strategy for which simulations suggest
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a large basin of attraction while maintaining all features within TABLE |
the FOV boundary. LIST OF SYMBOLS AND SECTIONS IN
. WHICH THEY ARE INTRODUCED

Two recent papers use path planning to address the FOV
problem. Mezouaet al.[14] adopt the approach of image-based Description Section
path planning and local visual servoing along those paths to Q | configuration space . I
avoid mechanical limits and visibility obstacles. For non- 3’, f;c;rg(ie“;;zifor QqeR IIIII
holonomic plants, Zhang and Ostrowski [15] implement path v | coordinates for Y 10
planning to find kinematic trajectories that keep features within F, | body frame III
the FOV. F. | camera frame III

Zhang and Ostrowski [16] develop a dynamical controller for I; i‘g‘d ltrf?nSforffmattlgnbf“’I;n F to F. gi
an unpiloted aerial vehicle (UAV) with an on-board camera. R rf)i:fisn“g;; EF ;I w}i,th columns 7; I
Hamel and Mahony [17] present a dynamical visual servo for m | perspective projection, 7 : E3 — R2 I
stabilizing a scale helicopter over a landing pad (implemented  J | limited image plane, J = [-1,1]> C R? I
in simulation) which treats image measurements as unitvectors, 2 | camers O“ttp‘g model, ¢: Q — ) 11
thus preserving rotational symmetry that a flat image plane ap-  , zb:tzslﬁfeé (vifib?e) set, V=0 -0 g R/f
pears to break. D | safe configurations, D C V IL, IV

Potential field methods are employed for a wide variety of F | configurations facing the camera v
robot navigation problems (for a survey, see [18, Ch. 7]). Tra- W | configurations completely within FOV v
ditionally, gradient fields are used to generate reference trajec- g camera image of safe domain, 7 =¢(D) | 1V

A ) simple model space, diffeomorphic to D v
tories which are then tracked by a lower-level robot controller. g | diffeomorphism to model space v
Potential functions often encode obstacles as local maxima, or & | model space navigation function (NF) v
at least ensure that the gradient flow runs parallel to obstacles. ¢ | configuration space NF, ¢ = gogoc ILIV

The refinement to navigation functions (NFs), first articulated

by Koditschek and Rimon [19]-{21], provides us machinery t@cted NF provides ample freedom to provide extremely high
“lift” potential functions to second-order plants, while still eNpberformance.

suring obstacle avoidance with convergence guarantees and ng¢ course, if a well-tuned robot control system is already in

need for intermediate trajectories. place, the NF may be used in the more traditional manner to gen-
erate trajectories via the gradient flow (in the case of a position
C. Organization controller) or field itself (in the case of a velocity controller). We

First, we review NF-based robot control in Section Il and theffill efer to this alternative as the “first-order” approach (i.e.,
introduce our sensor model in Section I11. The central contrib@S€d upon mfegratlng the 9rad|ent dynamics directly) in dis-
tion of the paper is found in Section IV where we proposeté{mt'on to the “second-order” approach.
noyel framework for dynamic, ogclusion—free glqbal visua! Sel:  plant Model
voing. We show how to apply this framework using three illus-
trative examples that provide insight into the specific geometriesASsume we have a holonomically constrained, fully actuated
of some prototypical visual servoing systems. In Section V wabot with known kinematics, affording a suitable set of local
present our experimental results for two of the example setugrdinatesy € R™ and denote the-dimensional free config-
and in Section VI we provide some concluding remarks. Reféfation space a@. The system dynamics
to Table | for a list of symbols introduced in subsequent sec M(q)i+ C(g, )i+ Clq) = ™+ Fot (¢, )

tions.
may be found using Lagrange’s equations (see, for example,
[22] and [23]) whereF.,. are external forces (such as friction)
Il. ROBOT CONTROL VIA NAVIGATION FUNCTIONS which do not arise from Hamilton’s variational principle and

For many visual servoing tasks, the objective is to bring @€ the input torques. We assume exact knowledge of the gravi-
robot to rest at a desired configuratiasi, known only through tational term(x as well as the external forcés,; > Letting the
its image,y* = c(¢*). The task of moving to a goal while iNPUt torque ber = u — Fexi + G(g), wherew is our control
avoiding obstacles along the way can be achieved via a nonliné¥ut, the plant equations are
generalization of proportional-derivative (PD) control deriving . _1 -
from Lord Kelvin’s century-old observation that total energy al- 0= M(q)™ (v~ Clg,0)4). “)
ways decreases in damped mechanical systems [19]. Formally,
this entails the introduction of a gradient vector field fromea- B. Task Specification

igation function(hereafter, NF—a refined notion of an artificial The state space is constrained by the presence of forbidden

potential function [20], [21]), together with damping to flush OUEonfigurations, thebstacle se® ¢ Q. Thefree spaces de-

any unwanted kinetic energy. As with any controller, tuning the

parameters is still required for good performance. However, th&The generalized PD approach to control, detailed below, will not require
hod affords certain auarantees of reliability even in tknowle(_igg or computation Qf the rr_lass—lnertla rT_1aMxor the Coriolis term ‘

NF method & 9 y * In principle, some of the kinematic and dynamic parameters may be required

absence of good tuning, as we will show. Moreover, a well-cofor G andF..., though in our experiments we neglected these terms.
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fined as the obstacle-free configuration spice Q — O and thatis appropriate for second-order plants. Lord Kelvin’s obser-
we will be concerned only with a subsetsadfe configurations vation is now relevant and it follows that the total energy

D C V comprising a smooth compact connected manifold with

boundan Ihe positioning objective is described in terms of a n=ap+r, wherex = %q-TM(q)q 7)

goal ¢* € D. The task is to drive to ¢* asymptotically sub-

ject to (4) by an appropriate choice ofwhile avoiding obsta- is nonincreasing.

cles. Moreover, the basin of attractiénmust include a dense  Note that if the total initial energy exceeds the potential en-
subset of the zero velocity sectionBD, the tangent space of ergy at some point on the boundap, trajectories may inter-
positions overD, so that we may guarantee convergence frogect the boundary. Fortunately, further refining the class of po-
almost every initial zero velocity statgq( 0) whose position tential functions will enable us to construct controllers for which
component lies irD. For obstacle avoidance, we require thathe basin of attraction contains a dense subset of the zero-ve-
the trajectories avoid crossing the boundé®, i.e.,q(t) € D, locity section of"D. The following definition has been adapted

forall ¢ > 0. from [19], [25].
Definition 1: Let D be a smooth compact connected man-
C. First-Order Gradient Systems ifold with boundary and;* € D be a point in its interior. A

Let D be ann-dimensional Riemannian manifold. The graMorse function,o € C*[D, [0, 1]] is called arNF if:
dientin local coordinates is given by the vector of partial deriva- 1) ¢ takes its unique minimum ai(¢*) = 0;
tives weighted by the inverse of the Riemannian metric. Suppose2) ¢ achieves its maximum of unity uniformly on the

g € R™ are local coordinates o@. Then, in local coordinates boundary, i.e.9D = ¢~1(1).
. . This notion, together with Lord Kelvin’s observation, now
Vi(q) = M~ (q)Dy »(q) yield the desired convergence result for the Lagrangian system
(4)

where(Dyp); = dp/dq; and M is the local representation of - proposition 2: (Koditschek [19]) Given the system described
the Riemannian metric. Gradient descent can now be achieygd(4) subject to the control (6), almost every initial condition
in local coordinates via qo Within the set

G=—-M""(q)D] ¢(q). (5) £={(q,9) €TD:1(q,q) < o} (8)

A smooth scalar valued function whose Hessian matrix gonverges tg* asymptotically. Furthermore, transients remain
nonsingular at every critical point is calledMorse function Wwithin D such that(t) € D for all ¢ > 0.
[24]. Artificial potential controllers arising from Morse func- Proposition 2 generalizes the kinematic global convergence
tions impose global steady state properties that are particula@fyProposition 1. Note that, for the second-order syst@mm-
easy to characterize, as summarized in the following propopises a “speed limit” as well as a positional limit, since the total
tion. energy must be initially bounded [25].

Proposition 1: ([19]) Let ¢ be a twice continuously differ-
entiable Morse function on a compact Riemannian manifolfi; Invariance Under Diffeomorphism
D. Suppose thaVy is transverse and directed away from the One last key ingredient in the mix of geometry and dynamics
interior of D on any boundary of that set. Then, the negativénderlying the results we present involves the realization that

gradient flow has the following properties. an NF in one coordinate system is an NF in another, if the two
1) D is a positive invariant set. coordinate systems are related by a diffeomorphism [19]. This
2) The positive limit set ofD consists of the critical points affords the introduction of geometrically simple model spaces
of . B and their correspondingly simple model NFs.
3) There is a dense open getC D whose limit set consists
of the local minima ofp. [ll. SENSORMODEL

These first-order dynamical convergence results do not applyry sense a robot's configuration with a camera, we seek a
for Lagrangian systems. We now briefly review machinery tﬁlap ¢ from the robot configuration spaa@ to an appropriate
“lift” the gradient vector field_coqtroller to one appropriate foroutput space). The exact form of: depends on several fac-
second-order plants of the kind introduced in (4). tors, for example the type and number of features being viewed,
the number of cameras, the robot kinematics and so forth. The
examples presented in this paper are restricted to a monocular
Introducing a linear damping term, yields a nonlinear “PDView of a fully actuated rigid body endowed with a set of point

D. Second-Order Damped Gradient Systems

style feedback, in local coordinates, or “vector” features. However, the general methods presented in
Section IV may in principle be applied to a wide variety of set-
u=—aD,p(q)" — Kag (6) tings, including other feature types (e.g., conic sections or area

_ _ _ features), so-called “eye-in-hand” servoing where the camera is
30f course, in the general obstacle avoidance literature, the connectedness of d by th bot relative t fixed . ¢ t
the configuration space is very much at issue, but the issue does not arise infQ{#V€d DY the robot relative 1o a lixed environment or systems

present application. incorporating binocular vision [26].
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A Euclidean pointp € E? is represented in homogeneous V. NAVIGATION -FUNCTION-BASED VISUAL SERVOING
coordinates by the arrdy , p2, ps, l]T. Assume that there is a
camera fixed coordinate frani®. such that the«A, y)-plane is e
parallel to the image plane and coincident with the optical cen{?;é

g_r :_plnh_olﬁ.”bﬁ frOtht IS aszubmgd ft_o rgcf)ve axgld body _Wt'tl'l:lusions. To achieve our objective we compute Vistble set
Istinguishable features and body-fixed fraRie A superscrip for a particular problem. This is the set of all configurations

preceding a point denotes the frame with respect to which itl'/s: Q-0 inwhich all features are visible to the camera and on
written, e.g.’p is expressed with respect ,. We interpret

- ! which ¢ is well defined. We then design a safe, possibly conser-
the rigid transformation vative, subseD C Vto provide additional safety with respect to
visibility obstacles. Thémage spacés definedZ = ¢(D) C )
H = L{; ﬂ € SK(3) and the camera map must be a diffeomorphisnD ~ 7. For
each problem] is analyzed to construct a model spa€and
a diffeomorphisny : Z =~ Z. Given a configuration space goal
q* € D we define thegoal imagey™* = ¢(q*).
R=[r 1 m]€SO3) and deR? We propose a new framework for visual servoing that incor-
porates three ingredients:

as a change of coordinates from the body frame to the cameral) @model spacez, for the “safe” configurationsp;
frame, i.e.p = H'p. In general  is a function ofg through ~ 2) anNF, ¢ : 2 — [0, 1], for the model space;
the robot kinematics and so we wrif&(q). 3) adiffeomorphismg : Z — Z, from the image space to
Because we are interested in potentially large displacements the model space. _ _
over the camera FOV, we employ a full-perspective cameraRecalling that NFs are invariant with respect to diffeomor-
model. The methods in this paper require that the camdiaism, an I\~IF with respectto the.conﬂguratlon variables is given
intrinsic parameters (e.g., focal length, pixel scale and so forthy #(¢) = ¢ © g o c(q) with gradient given by
have been calibrated. Fortunately, we gain some robustness
to parametric uncertainty since the feedback loop is closed D" = Dc"Dg" D" (11)
around the image-plane measurentferts such, we model a
perspective projection camera,: {p eE3:p3> 0} — R?%,  Hence, the three ingredients above are assembled with the feed-
by back control strategy (6). With this approach, almost all ini-
tial configurations within D dynamically convergeo the goal
41l m 2 while ensuringocclusion-fredransients.
m(p) = Ap—3 [pJ o, where 4 € GL(2), be R By recourse to the general framework outlined above we de-
) velop controllers for several specific configurations of a robot
Typically, camera images are rectangular, so we chabseand monocular camera in the sections that follow. Section IV-A
and b to map the image plane pixel values (for examplgonsiders a planar body on which three collinear feature points
[0,640]x [0,480]) to the box7 = [-1,1] x [-1,1]. The project to a planar camera. In Section IV-B, we present a so-
algorithms presented below are designed to keep the featifigon to the problem of visually servoing a high performance
projections within7, to account for the finite FOV. custom robot. Finally, in Section IV-C, we present a solution for
As an example, suppose we have a set of point featurgually servoing a 6-DOF body. Interestingly, the very different
{pi}L,. Then the composition of the camera model with thgisyal servoing problems of Sections IV-B and IV-C share a

We wish to create visual servoing algorithms that offer high
rformance and enjoy global guarantees respecting both con-
rgence and the avoidance of FOV boundaries and self-oc-

where

kinematics as applied to all of the features generates the camgimmon model spacg = [—1,1]" x S forn = 2 andn =5
mapc : Q — Y respectively, so the Appendix presents a new, highly tunable NF
for the more general model spage= [—1,1]" x T for all n
m(“p1) andm in N.
y =c(q) := :
7(°pn) A. Example 1: Planar Rigid Body Servoing
where Consider the problem of visually servoing a planar rigid body,

viewed by a planar pinhole camera, as depicted in Fig. 2, first
presented in [9]. The intuition for this example is very simple:

the projection of three collinear feature points onto the image
@Iane provides a set of generalized coordinates for the three de-

‘p; =H(q)’p;y i=1,...,N. (10)

The mapc is parameterized by the (constant) feature locatio
in body coordinates, the robot kinematic parameters and
camera parameters. The output space in this example is si
Y =RV,

Tees of rigid body freedom. To maintain visibility, the three fea-
ure point projections must remain in order left to right (so that
MR body faces the camera) and must remain within a bounded
interval on the image plane (due to the finite FOV).

4As mentioned in Section |, prior contributions establish this formally in some
settings [6], [27] and we believe (although we have not formally shown) that5That is, all but a set of measure zero. Due to topological constraints, smooth
similar results are possible here. global visual servos are technically impossible in some cases [26].
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Out of the FOV Not facing the camera visible features

Completel

Fig. 2. Setup for a planar pinhole camera and planar rigid body with collinear feature points showing three typical configurations of a rigid bespyewitto
the camera, to illustrate the notion of visibility. Left: features face the camera, but the leftmost point lies out of view; center: althougtewihieth workspace,
the body occludes the features; right: features are all visible.

Suppose we have a planar rigid bo@y= SE2) with three Knowing which configurations can be “seen” allows us to
distinguishable collinear feature poinfp;}?_,. We use for define the camera output map: V — R? as the projection
local coordinates o® the rigid body position and orientationof the three feature points on the body, namely,

= [y, ds. 0]" e, ,
0= et Y= (i) =[x (H'pr) = (H'ps) = (H'ps) . (19)

- R d hereR — cosf —sinf . ) ) .
=lor 1| Whereli = 1.0 cosf |- (In an abuse of notation, we will write{q) when using local
coordinatesq = [d1, d, 0]T".)
We conveniently collocate theaxis of the body frame withthe  The mapc is a diffeomorphism fronV to its image
edge containing the feature points so that in body coordinates , 3
T={yeR:—1<y <yp<y; <1}

b T
=1l 0 1], herely <y < . .
pi = | ] Wherei < & < fs the proof of which follows from the fact thatis a homeomor-

and in camera coordinates phism fromV to 7’ and at each point i, c is a local diffeo-
morphism. To verify the first fact, note that, féaf € V, the

°p; = H'p; = [d1 4+ l;cosf dy + l;sinf 1]T. points 1, v2,ys) and {1, ls,l3) are related by the unique ho-
mography
The body framey-axis is oriented “into” the body, as depicted
in Flg 2. (o] |:y1:| = |:C.030 d1:| |:l1:|7 i:172737
For this simplified example, we reduce the calibrated camera 1 sinf dy | [ 1

of (9)tor : {p €E*:p2 > 0} — R for somew; # 0, which can be used to construct the unique

P inverse ofc for eachy € Z’. To show that: is a local diffeo-
m(p) := P2 12) morphism, note that the pinhole cameras differentiable ev-
erywhere in front of the camera and hende differentiable on

wherep is a point expressed with respect to the camera frame. Moreover, direct computation reveals that
The bounded image plane reducesie= [-1, 1].

For all the feature points to be visible, the rigid body mugbc(q” _ (=) - 23) (Is =) (d220039 — dysin 92)
be facing the camera and all the features must be in the FOV. (dg + 11 sin0)"(da + lasin ) (dy + I3 sin 6)

We define the workspace as those configurations for which all —v(H) (li=1)(Ia=13) (I3 = 1y)
features are within the FOV, namely, - (dy + I sin 9)2(d2 + lysin 9)2(d2 + I3 sin 0)2

W={H€SHE2):d,>0,7 (pri) €eJ, i=1,2,3}. which is different from zero at every point ¥ and hence:
is a local diffeomorphism at every point  (inverse function
Those configurations that face the camera are given by theorem).
We seek a compact manifold with boundary on which to im-
F ={H € SHE2):v(H) > 0} pose an NF. Note thaf is not a closed set. However it is prac-
where tical to impose impose a “collar” around the points on the image
plane by enforcing the requirement that they maintain a min-
V(H) = (ds cos § — dy sin 6) imum distance from one another, as well as maintaining their

o . . . 6A homography or projective transformatiaofi, € PL(1) is uniquely deter-
and the visible set is the intersectibvn= F N W C SE?2). mined by the correspondence of three distinct points [28]
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Fig. 3. Buehgler arm [4], [7] has been modified with an “arrow” feature on the tip of the arm, which is observed by a perspective projection cameha. The bo
frame is coincident with the tip of the arm and thexis is pointing into the arm. The camera image is segmented to extract the pasjtigratd orientatiort

of the arrow. Roughly speaking, the waist motor and shoulder moforg{) move the image feature left-and-right and up-and-down, respectively, and the wrist
q3 rotates the image feature. The camera is positioned so the feature may reach the entire image plane.

distance from the edge of the image plane. This will also hat’e Example 2: Buehgler Arm Servoing
the practical benefit of keeping the body within a certain dis- thg gyehgler arm, a direct-drive robot built previously in our

tance of the camera. Letting = —1 andys = +1 denote the |ahqratory [7], [4], has allowed us to explore experimentally a
left and right edge of the image plane, we define the compact §hamical implementation of our visual servoing methodology.
Moreover, it turns out that the construction of a good NF for
this problem will, with appropriate generalization (see the Ap-
pendix), apply to 6-DOF visual servoing (Section IV-C).

The Buehgler arm, depicted in Fig. 3, has three actuated rev-
olute degrees of freedom parameterized in local coordinates by
anglesq = [q1,q2,q3]" and its configuration space i§ =
S x 81 x 8t = T3, We affix a body frame to the “tip” of
the paddle, as depicted in Fig. 3. The Buehgler kinematics, de-

As required by our general framework, the camera map prté;\_lled in [7], parameterize the rigid transformatiéihfrom the

vides a change of coordinates D — 7. By choosingz = 7, body frame to the camera frame.

. . . . We affixed a “pointer” to the tip of the arm, which we model
the mapping; of our formal methodology is the identity map- o o . .

. ? . . asthe position and unit orientation of a vector in space, narely,
ping. For this model space we refine a class of NFs designgd ", 3 3. a2 L
in a separate context [29]. Fér> (2N + 3)/2, the objective p,"w) € TiE® ~ B x §%. The feature point s centered at the

P ' ' ) body frame originp? = [0,0,0,1]7 and “pointing” along the

I={yeR’:yp1—yi>p, i=0,...3}
wherep > 0 denotes the (arbitrarily) small “safety” collar
around each feature point. The et- Z’ is compact and hence
we define the “safe” compact domain

D=c'(I)cCV.

function bodyy-axis,’w = [0, 1, 0]T. The pointer moves with respect to
|z — z*||** the camera via : Q — T,E3
@(z) = N P 5 (14) b
[Tizo (zit1 = 2i)" = p wioy — | H@)'p] _. [ pla)
. @= | Rigpw | = |wig) |-
is convex on
} Note that, in the camera framg(q) = [d(¢q)T, 1]T.
Z = {z ERN 241 — 2 > p, 1=0..., N} A camera (9) is positioned to view the robot end effector as
depicted in Fig. 3. The workspace is the set of configurations
wherezy = —1,zy41 = +1 are constants. Moreover, that keep the projected feature point wittify namely,
N W={qeQ:ds(q)>0, w(p(q)) €T} (16)
Y= T N1k (15)
(1+)Y

which may have two connected components. Considering only
is an NF onZ [29]. those configurations facing the camera,

For planar servoingV = 3 and so we requiré > 9/2 to _ ) T
ensure thatp is convex. As suchy is an NF onZ andy := F= {q € Q:d(g) rs(q) > 0} (17)
pogocisanNFonD. T\ X C TX is the unit tangent bundle of [24].
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we show in [30] that, for reasonable camera positions, the visildad, hence, the feature locations and body coordinates are re-

setY = F N W has a single connected component. lated by the homography
The camera map is given by the projection of the feature and ;
its orientation on the image plane, namely, i A b Li
a; | v | = [Tl T2 d] lZi
0 0 1
1 1
“ m(p(q)) for some
= v = C = 18
R AT T w0 et 19

where/ computes the angle of the vector on the image planghereA andb are the camera calibration parameters given in
Hence, the functiom yields the position and orientation of our(9)- Note that the matrik-,, 5, d] is nonsingular if and only if
projected feature on the image plane, ie:,V — Y, where v(H) > 0, which our wsugl servoing algorithm will ensure.
Y = T\R2 ~ R2 x S. Hence, givery, y* and{p;}Y_,, then forH, H* € V, one may
For reasonable camera positions relative to the robot, welve (19) ford andH*. _ _

show in [30] that: is a diffeomorphism: : V ~ 71.7. In this Task-based visual servoing presents only a minor twist to our
case,V is compact, so we s€® = V andZ = 7,7, which overall program. As before, we will construct a model space for
is diffeomorphic toZ = [~1,1]> x S'. (Additional safety visible configurations and define an NF on that model space.

may be added with respect to the FOV quite readily if desired}Pwever, in this case, our diffeomorphignmaps from the con-
The change of coordinateg, : 7 ~ Z is just the natural figuration space directly to the model space, without the camera

identification of the two spaces. The Appendix defines a néRj@P intérvening. To construgtwe adopt a very specific param-

NF, 3, for this space [see (24) and (25)]. eterization of the rigid body configuration to aid in our construc-
tion of the safe domain. Denote the translation of the rigid body
C. Example 3: 6-DOF Rigid Body Servoing origin by d and Euler angles byj 1, ). The Euler angles have

been selected to parameterize the motion in such a way that for

In this example, we consider a free convex polyhedral rigl(g — 4 = 0, the z-axis of the body parallel to the translation,

body, with configuration spac® = SE3) and let{p;}Y,,

p; € E2, be a set of coplanar distinguishable points on a face o
the body. For convenience, we place the body fr@neso that H(d,¢,,0) := Hi(d)Ha(p,1,0), where (20)
thez,y plane contains our coplanar features, thaxis points exxd dx(eaxd) — d_ g
“into” the body and the body origin coincides with the center of Hy(d) := [ NleaxedlllidxCeaxa)llfidl 1] (21)
the smallest sphere containing all the feature points. Denote the
radius of this spherp. Our camera map is now given by Hy(¢p,9,0) := [R””(qb)Rg(Tw)Rz(e) ﬂ (22)
y=[uy v - un vN]T =c(H) and whereR,,, R, and R, are the standard, y, z Euler angle
where rotation matrices (see, for example, [22]).
Consider a “safe” subset of configurations that face the
camera

F ={HeF:-9<¢p<v

It is now routine to define the visible séf, as in previous where H is parameterized by (20)—(22) and < 7/2. Also,
examples. Denote the set of configurations facing the camergonsider a “safe” workspace
F={HeSH): v(H)>0} where v(H)=Tq "V ={HESE3):ds € [bminbmax].  7(By(d)) T}
where3,(d) denotes a ball of radius around the pointl. In
and denote the workspace other words)V' is the set of all configurations which keep a ball
of radiusp completely within the FOV and impose upper and
W ={H e SE3):d; >0, n(H"p;) € J, i=1,...,N}. lower limits, §min andémax, 0N the distance of the body from
the camera. Recall that the b#),(d) contains all the feature
The visible set, as before, is given by= W n F. points and, hencé)’ C W. We now define the “safe” domain
Construction of a suitable image-based coordinate systemfr= W' NF" C V. FOrp < dmin < dmax the translations are
this problem represents work in progress. Therefore, we emplegnstrained as seen in Fig. 4.
three—dimensional (3-D) or task-space visual servoing for thiswWithin D, the body translation is confined to move within
scenario, wherein we use feature-point locations on the imageliffeomorphic copy of—1, 1]3. Recall that the body coordi-
plane to estimatél and H* from their respective images. Fornate frameF,, is attached such that theaxis is orthogonal to
N > 4, this can be done quite readily by noting that, in bodthe face (facing into the body) and the ;) plane contains the
coordinates, feature points. Consider the fact that @Dis an SG@2) bundle
over S? and identify the orientation of the axis with the base
"pi=[ly ly O l]T point in S2. The requirement that the body faces the camera is
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FOV /
D

p A. Buehgler Arm Results

cost function refined our parameter estimates for the 13 param-
eters—two kinematic, six extrinsic, and five intrinsic camera pa-
rameters.

\ A

Image plane

A

The Buehgler Arm is controlled by a network of two Pen-
Z tium Il computers running LynxOS, a commercial real-time op-
I —— erating system. The first captures 8-bit 52812 pixel images
Smin at 100 Hz using an Epix Pixci D frame grabber connected to
Smax a DALSA CADG6 high-speed digital camera. The second com-
o4 Inthe safe domai - ned _ pulter implements servo control at a servo rate of 1 kHz, based
b (an othogoaraphic pojection of which i shown by the thick nes). so - 1€ dynamical controller in (6). o
the body may not move too far from or close to the camera and so that the TWO Sets of experiments were implemented with two different
smallest sphere containing all the feature points remains within the FOV. Thain settings (i.e., assignments for the gdihsanda from (6)
gqe'g:g"n“g“agnn‘qj Miianll distancés,in and fm. from the camera are free 541 from (25)) chosen to contrast performance resulting from
a well tuned critically damped closed loop using relatively high
gains, as against a “detuned” low gain and underdamped cir-
a constraint on the axis, namely that it always has a positiveeumstance. Each trial consisted of driving the feature position
projection of onto the line of site. This yields an open hemand orientation to a model space goal,(*) from some ini-
sphere; i.e., a diffeomorphic copy BF. An SQO(2) bundle over tial condition in joint spaceg, 4o). Initial configurations were
R is diffeomorphic tdR* x SO(2). Constraining the Euler an- chosen by hand to be near the edge of the FOV, with initial ve-
gles further—9 < ¢,4 < ¥ yields a diffeomorphic copy of |ocity vectors chosen so as to drive the robot out of the FOV (i.e.,

[-1,1]* x SO(2). Therefore, to “defeat” the controller). The initial conditions were prepared
with a simple joint-space trajectory planner and joint-space PD

D= [-1,1* x SO2) x [-1,1]* ~[-1,1]° x S*. controller that drove the robot to the starting state at which time
T T the control switched to the NF based controller. In other words,

we forced the robot to literally “fling” itself toward an obstacle

The above coordinates (20)—(22) may now be used as lobgfore turning on our visual servoing controller. Both the goal
coordinates o, with no 5ingu|arities_ Hence, COﬂStI’UCtigll;lﬁ pOSitiOﬂS and initial conditions where chosen to span the visible
now straightforward—for the three translational DOFs, simplpbot workspace. _ _ _
map the trapezoidal box depicted in Fig. 4 to the pox, 1]3 For the “tuned” gain experiments, there were eight goals and
and map the two constrained Euler angle$-a, 1)2. Hence, forty initial conditions, for a total of 320 trials. We chose rela-
g:D — [-1,1]° x S* (the details can be found in [30] andtively high gains that provided a critically damped response and
[31]). As for the Buehgler, we employ the more general modggttling times on the order of 1%s.

space and NF described in the Appendix and heneeg o g, For the “detuned” gain experiments, a smaller set of more ag-
whereg is given by (25) fom = 5, m = 1, is an NF for spatial gressive initial conditions and goal locations was used and the
visual servoing. damping gain was reduced to provide “underdamped” perfor-
mance. There were four goals and eight initial conditions, for a

V. EMPIRICAL VALIDATION total of 32 trials.

_ _ ) Fig. 5 shows the the error coordinates of a typical run for both
To validate the practical efficacy of our proposed frameworl,ned” and “detuned” gains. With well-tuned gains, the con-

we constructed two experimental platforms. On the first systefgpller drove the feature to the goal location with a rate of success
the custom 3-DOF direct-drive Buehgler arm described in S&gr 9705 Of the 11 errors, one was due to the robot exceeding a
tion IV-B, we implemented a fully dynamical controller (6)software velocity limit, one to a software driver error, and one
based on the NF given in the Appendix, for= 2 andm = 1.t a feature leaving the FOV of the camera during initializa-
Our second set of experiments employ an industrial 6-DOF Riin. The remaining eight failures were caused by not allowing
robot from Universal Machine Intelligence on which we testedgnhough time for convergence as each experiment ran for a max-
kinematic controller (5) using the NF in the Appendix, fo&= 5 jmum of 6 s. These errors generally arose when the robot was
andm = 1. close to a saddle of the NF so the controller was slow to over-
In both experimental setups discussed below, we used simgifine the robot's unmodeled friction. However, with “detuned”
linear camera calibration (see, for example, [32]). For the RTgains and high initial velocity the feature left the FOV 25% of

kinematic parameters, we used the manufacturer specified s time. These failures were probably because the initial kinetic

navit—-Hartenberg parameters. For the Buehgler setup, we mea-

Sur'ed the klnem'atlc parameters rogghly by hand. To refine th|30f course, the allusion to linear notions of damping is merely an intuitive

estimate, we affixed a point to the tip of the paddle and moveesigner's convenience. We chose gdingk , using standard PD tuning rules

it to a known grid of joint space locations and observed tHgensure the local linearized system was nearly critically damped at the equi-
. . . . . librium state and then turned up the “boundary” gai(6) to force reasonably

corresponding grid of image plane points. Using these cor

- . ) . rsﬁ’)'appy descent into the domain wherein the linearized approximation was dom-
spondences, gradient decent based on a simple pixel dispainiyit.
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Fig. 5. For the dynamical image-based visual servoing implementation on the Buehgler, we executed two batches of experiments: “tuned” gainedihd “det
gains, as described in the text. The first portion of motion correspond to joint-space limb motion setting up the initial condition, at whichi¢smed(ioy the
vertical line in the error versus time plots) the NF—based controller was switched on, in order to bring the paddle back to the desired imagéiqricenadposi
orientation. Left: pixel error and corresponding image plane feature trajectory for a typical “well tuned” trial on the Buehgler robot; 2-Dslef¢heeXlF are
superimposed on the image plane trajectory; middle: typical “detuned” trial, with different initial and goal locations; right: Buehgler coeveméts. Top:
mean steady-state pixel error for each of the eight goal positions; bottom: 5% settling time for each of the eight high-gain goal positions.

energy caused the arm to escape the artificial potential well—byThe theory presented in Section IV-C presumes the config-
using a lower “detuned” gain on the potential energy feedbaakation space to b& = SHK3). However, unlike the Bue-
term, the potential barrier is reduced. (It would not be difficubigler arm for which the robot joint spaeeasthe configuration
to compute the invariant domain, as in [25].) These experimensigace, in this cas@ is parameterized onlpcally by the robot
give some sense of the relatively graceful performance degjaint anglesqg € R® through the forward kinematics, namely,
dation consequent upon imperfectly tuned gains. Fig. 5 shovs R — Q. Of course, inevitably, all such kinematic param-
image-based error plots and the image-plane trajectory for teterizations introduce singularities that may, in turn, inject spu-
typical runs. rious critical points to the gradient fields, necessarily actuated
We designed our controller to have a very rapid and deix the robot’s joint space rather than in the task space, as our
terous response. The Buehgler arm has a mass in excess ofthe0ry presumes. Similarly, since our formal theory “knows”
kg, making precise, quick, and efficient movement quite chabdnly about visibility bounds, the robot’'s unmodeled joint-space
lenging. Fig. 5 (top right) shows our navigation-based controllangles limits are not in principle protected agamstowever,
produced a 1-s or less 5% settling time for seven of the eighe weight of experimental evidence we present below suggests
primary goal positions. Fig. 5 (bottom right) presents the medmat these discrepancies between presumed model and physical
pixel error averaged over the final second of each trial. As camality do not seriously imperil the practicability of this scheme.
be seen the errors are in the neighborhood of 1-2 pixels oRegarding the first discrepancy, the absence of stalled initial
each of the eight goal positions. conditions suggests that any critical points so introduced were
not attractors. Regarding the second, we found that choosing

B. RTX Arm Results ) ) - ) o .
. . ) 9Addressing the further practical realities of kinematic singularities and robot
The RTX is commanded through the serial port of a sing|eint-space limitations falls outside the scope of the present paper (and, indeed,

Pentium PC running a Linux 2.0 kernel. The PC is equippéﬂrarely addressed in the traditional visual servoing literature). In principle, the
NE framework would be relevant to these problems as well: joint space limits

with a Data Tran5|ations_DT3155 frame grabber connected tgr@ analogous to the FOV obstacles, while the kinematic singularities are akin
standard 30-Hz NTSC video camera. to self-occlusion.
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Fig. 6. Forthe quasi-static implementation on the RTX arm, one batch of 203 trials was selected. Left: pixel error and corresponding image elnaje ttaity
for a typical trial; middle: another typical trial, with a different initial condition and goal location; right: RTX convergence results. Top:ire¢amnrpr for each
of the four goal positions; bottom: 5% settling time for each of the four goal positions.

initial and goal locations away from the joint-space boundariesUsing the mean over the four feature points, we found an av-
was sufficient to avoid running into the end-stops. erage final pixel error on the order of 1-2 pixels upon conver-
The RTX controller employs first-order gradient descent ogence. Fig. 6 (upper right) shows the mean pixel error and stan-
the NF presented in the Appendix. Because the RTX arm accegiégd deviation for each of the four unique goal positions. The
only position commands, given goal and current images wittverage 5% setting time, shown in Fig. 6 (lower right), was ap-
feature points extracted, the gradient update was implemenpedximately 10—14 iterations for each of the four goal locations,

iteratively, as follows: averaged over all successful trials.
U < — Dg¢ = —Dg(g o h)(qr) DT 20+ (21), VI. CONCLUSIONS
Qr+1 <qr + Pur,  (whereg is the step size This paper has addressed the problem of driving image-plane

features to some goal constellation while guaranteeing their vis-

To explore our algorithm, we conducted a set experimeritslity at all times along the way. We cast the problem as an
in which 58 initial conditions and four goal locations werénstance of generalized dynamical obstacle avoidance, thereby
chosen randomly from a grid of 4096 points in model spaedfording the use of havigation functions in a nonlinear PD-style
(configurations near kinematic singularities, not within théeedback controller.
robot workspace, or which resulted in feature projectionslIdeally, one creates an image based coordinate system
outside the FOV were removed, resulting in a total of 203sing direct feature information as in the two settings of
trials). Initially, the robot was moved to each goal locatio®ections IV-A and B. In those cases, the occlusion obstacles
to capture an image of the robot, respecting which the visiomanifest themselves ifmage coordinatesand, hence, the
system stored the desired location of feature pajfitsFig. 6 NF gradient in model-space coordinates will hot depend on
shows the pixel errors feature trajectories of two typical runthe specific parameters of our camera or robot. Moderate
As shown, we used four coplanar feature points for the camaaibration uncertainty will lead to errors in our estimate of
map,c : Q@ — Y. Of 203 trial runs, five were found to the image Jacobian, but we believe that this will not imperil
have failed. In each case, the failure was due to the robot msoiccessful obstacle avoidance. However, construction of a
converging within our software-imposed limit of 30 iteration$-DOF image-based coordinate system for 3-D rigid body
(visual inspection of each such run revealed that convergemuetion represents work in progress, thus, we have resorted to a
was eminent). task-space visual servoing algorithm in Section IV-C.
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The two experimental systems—the custom 3-DOF Buehgler
Arm and the 6-DOF commercial RTX arm—confirmed the fi(z) = 1— 22}
practicability of the theoretical framework. For the Buehgler, ! (1 —22)3/27
our experiments suggest that the navigation-function-based
controller indeed achieves extremely high performance, thou§imce D f is nonsingular on(—1,1)", Dp = 0 iff f = 0
in a few cases we were able to “defeat” the controller witand sin((; — () = 0, ¢ = 1,...,n which is true iff
deliberately adversarial initial conditions and poor gain tuningz, () = (z*,(* + > ,cpme;), I' € powersefl, ..., m}.
The kinematic experiments with the RTX validated our 6-DOFhere are 2 index sets which enumerate all possible critical
task-space servo architecture. In both cases, our results slpmints. One readily verifies that the Hessian is nonsingular at
systems with large basins of attraction that both avoid self-oevery critical point andA*, (*) is the only minimum. Hence,

1=1,...,

clusion and respect FOV constraints. @ is a Morse function which evaluates uniformly to unity on
the boundary, ha8™ — 1 saddles, and the goal is the unique
APPENDIX minimum. [ |
A NAVIGATION FUNCTION FOR[—1,1]™ x T™
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Z=[-11]" x 1™ (23)

forsomem,n € Nand let(z*, (*) € Z denote agoal. Consider
the functionf : (—-1,1)" — R”
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