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Visual Servoing via Navigation Functions
Noah J. Cowan, Joel D. Weingarten, Student Member, IEEE, and Daniel E. Koditschek, Senior Member, IEEE

Abstract—This paper presents a framework for visual servoing
that guarantees convergence to a visible goal from almost every
initially visible configurations while maintaining full view of all
the feature points along the way. The method applies to first- and
second-order fully actuated plant models. The solution entails
three components: a model for the “occlusion-free” configura-
tions; a change of coordinates from image to model coordinates;
and a navigation function for the model space. We present three
example applications of the framework, along with experimental
validation of its practical efficacy.

Index Terms—Dynamics, finite field of view (FOV), navigation
functions, obstacle avoidance, occlusions, vision-based control, vi-
sual servoing.

I. INTRODUCTION

I NCREASINGLY, engineers employ computer vision to
sense the projection of features of a rigid body as it moves

in some scene. Closing a visual servo loop around image plane
measurements requires a reliable machine vision system—in-
corporating image processing, feature extraction and feature
correspondence—to supply a controller with the image plane
coordinates of the features of the body. Traditionally, visual
servoing algorithms impose motion upon a body’s actuated
configuration space variables so as to align its image-plane fea-
tures with a previously stored desired view. When the mapping
from configuration variables to the image plane is one to one in
some vicinity of the goal image, then traditional visual servoing
generally results in (at least local) closed-loop convergence to
the desired position. Hutchinsonet al. [1] provide a general
introduction and extensive bibliography to this approach.

Visual position regulation leaves few challenges: high perfor-
mance, dynamic (albeit local) vision-based controllers which
fit into the framework of linear control have existed for some
years [2]. This complete characterization is owed primarily to
the local nature of such regulation tasks. However, the creation
of a richer set of behaviors whoseglobal (and, hence, highly
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nonlinear) properties are well characterized has remained a sig-
nificant challenge to visual servoing.

The classical approach to visual servoing attempts to impose
straight-line trajectories on image feature points. To illustrate,
suppose a camera observes four feature points affixed to a rigid
body controlled by a six-degrees-of-freedom (6-DOF) all-revo-
lute joint robot. The configuration space of the robot is parame-
terized by six joint angles, and the image space is defined
in terms of the four image plane pairs, . Locally, then,
the camera’s image may be modeled by a map

where

are the image plane feature locations of the four features being
observed. The traditional (kinematic) visual servoing law is then

where
(1)

is a pseudoinverse of the Jacobian matrix .
Visual servoing systems based on the above approach have

many well-established merits, but may be improved in several
key ways. First, they result in alocal basin of attraction whose
extent is poorly or not at all characterized. For example, the in-
cursion of spurious (attracting) critical points may arise when

aligns with the null space of in (1). Consequently,
the local basin of attraction around may exclude seemingly
reasonable initial conditions [3]. The second challenge to vi-
sual servoing involves the vulnerability to transient loss of fea-
tures—either through self-occlusions or departure from the field
of view (FOV). To the best of our knowledge, no prior work
guarantees that these obstacles will be avoided (while ensuring
convergence). However, as we will show, both of these chal-
lenges—local convergence and transient loss of features—can
be overcome quite readily.

Another major problem is that most visual servoing algo-
rithms do not specifically address dynamics. Of course, given
the multitude of successful inverse dynamics based control
strategies [4], trajectories generated from (1) (or any other
kinematic controller) could be tracked very precisely with a
high performance robot control system. However, such control
techniques require precise parametric knowledge of the robot’s
kinematics and dynamics, the extra complexity of which
seems superfluous given the simple end-point convergence
objective of most visual servoing algorithms. Moreover, such
heavy reliance on robot kinematic and dynamic parameters
may be undesirable, especially when manipulating objects of
imprecisely known size and weight. In other words, the specific
reference trajectories generated by kinematic controllers are
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merely a means to an end; tracking those trajectories exactly
may not be necessary. By contrast, our approach generates
controllers capable of extremely high performance, which
exhibit global convergence to the end-point goal, without the
burden of precisely tracking a (clearly somewhat arbitrary)
reference trajectory. Without prescribing specific reference
trajectories, the proposed methodology nevertheless affords
certain guarantees on the trajectories that result. For example,
features are guaranteed to remain visible throughout transients
(even in the presence of Newtonian dynamics).

A. Image-Based Navigation

In a naive attempt to improve (1), note that it may be con-
ceived as the gradient of the potential function

(2)

by letting . Suppose the four features
are coplanar, e.g., they are all on the same face of a polyhedral
body. A self-occlusion occurs when the plane containing the
features intersects the camera pinhole, causing the four points
to project onto the same line on the image plane. To avoid this
scenario, consider a naive improvement of (2) that avoids self-
occlusions by “blowing them up,” namely,

(3)

where . The
denominator will go to zero as the projected features become
collinear and, thus, the gradient will point away from the
self-occlusion obstacle. However, as can be seen from Fig. 1,
even though self-occlusions are avoided, convergence is not
necessarily achieved. Other such naive approaches may suffer
similar peril.

Although the naive potential function approach above neither
adequately addresses occlusions nor guarantees convergence,
one suspects that some appropriately designed potential might
overcome these serious limitations of traditional visual ser-
voing. Indeed, we will show in this paper that the obstacles
presented by self occlusion and a finite FOV can be obviated by
addressing in a methodical fashion the relationships between
the domain and range of the camera map,, from which the
obstacles arise.

Specifically, we introduce a framework for visual servoing
yielding feedback controllers which are:

1) dynamic:applicable to second-order (Lagrangian) as well
as first-order (kinematic) actuation models;

2) global: guaranteeing a basin of attraction encompassing
almost every1 initial configuration that presents full fea-
ture visibility;

1That is, all but a set of measure zero.

Fig. 1. Simulation results for three different artificial-potential-function-based
visual servo controllers using the same initial positiony(0) and goal position
y . (a) Image-plane feature trajectories resulting from the proposed navigation
function (NF) in the Appendix. In this case, all of the features reach their
respective goal. (b)-(d) Snap-shot of the body at five times during the trajectory
for three different strategies; (b) based on the proposed NF; (c) based upon the
potential function in (2) resulting in failure due to self-occlusion; (d) based
upon the potential function in (3) resulting in failure due to a spurious local
minimum.

3) visibility-obstacle free:avoiding configurations that lose
features due to either self occlusion or departure from the
camera FOV.

B. Related Work

Many implementations in the literature offer strong anecdotal
evidence that suggests convergence for visual servoing systems
is robust with respect to large parametric uncertainty, though re-
searchers rarely establish formally large basins of attraction for
visual servoing systems (parametric uncertainty aside). Maliset
al. [5] and Taylor and Ostrowski [6] introduce visual servo con-
trollers incorporating partial pose reconstruction to guarantee
convergence even in the presence of large parametric uncer-
tainty. Rizzi et al.design a globally convergent nonlinear dy-
namical observer for a falling point mass viewed by a binoc-
ular camera pair [7], by mapping the observer feedback into the
image plane. Similar machinery applies to binocular quasistatic
visual servoing [8] to yield a controller with a large basin of at-
traction.

In addition to our preliminary results [9]–[11], there have
been some recent efforts to address the FOV problem. For
6-DOF visual servoing, Maliset al. [5] guarantee that a single
feature point remains within the FOV while, as noted above,
guaranteeing convergence for a large basin of attraction. Morel
et al. [12] extend this idea by decoupling the image-plane mo-
tion of a cleverly chosen feature vector—a circle containing all
the feature points—from the rotational motion of the camera;
by keeping this conservative feature vector within the image
plane, one is guaranteed that all feature points remain within
the FOV (though self-occlusion avoidance is not guaranteed).
Corke and Hutchinson [13] present a novel “partitioned”
kinematic visual servo strategy for which simulations suggest
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a large basin of attraction while maintaining all features within
the FOV boundary.

Two recent papers use path planning to address the FOV
problem. Mezouaret al.[14] adopt the approach of image-based
path planning and local visual servoing along those paths to
avoid mechanical limits and visibility obstacles. For non-
holonomic plants, Zhang and Ostrowski [15] implement path
planning to find kinematic trajectories that keep features within
the FOV.

Zhang and Ostrowski [16] develop a dynamical controller for
an unpiloted aerial vehicle (UAV) with an on-board camera.
Hamel and Mahony [17] present a dynamical visual servo for
stabilizing a scale helicopter over a landing pad (implemented
in simulation) which treats image measurements as unit vectors,
thus preserving rotational symmetry that a flat image plane ap-
pears to break.

Potential field methods are employed for a wide variety of
robot navigation problems (for a survey, see [18, Ch. 7]). Tra-
ditionally, gradient fields are used to generate reference trajec-
tories which are then tracked by a lower-level robot controller.
Potential functions often encode obstacles as local maxima, or
at least ensure that the gradient flow runs parallel to obstacles.
The refinement to navigation functions (NFs), first articulated
by Koditschek and Rimon [19]–[21], provides us machinery to
“lift” potential functions to second-order plants, while still en-
suring obstacle avoidance with convergence guarantees and no
need for intermediate trajectories.

C. Organization

First, we review NF-based robot control in Section II and then
introduce our sensor model in Section III. The central contribu-
tion of the paper is found in Section IV where we propose a
novel framework for dynamic, occlusion-free global visual ser-
voing. We show how to apply this framework using three illus-
trative examples that provide insight into the specific geometries
of some prototypical visual servoing systems. In Section V we
present our experimental results for two of the example setups
and in Section VI we provide some concluding remarks. Refer
to Table I for a list of symbols introduced in subsequent sec-
tions.

II. ROBOT CONTROL VIA NAVIGATION FUNCTIONS

For many visual servoing tasks, the objective is to bring a
robot to rest at a desired configuration,, known only through
its image, . The task of moving to a goal while
avoiding obstacles along the way can be achieved via a nonlinear
generalization of proportional–derivative (PD) control deriving
from Lord Kelvin’s century-old observation that total energy al-
ways decreases in damped mechanical systems [19]. Formally,
this entails the introduction of a gradient vector field from anav-
igation function(hereafter, NF—a refined notion of an artificial
potential function [20], [21]), together with damping to flush out
any unwanted kinetic energy. As with any controller, tuning the
parameters is still required for good performance. However, the
NF method affords certain guarantees of reliability even in the
absence of good tuning, as we will show. Moreover, a well-con-

TABLE I
LIST OF SYMBOLS AND SECTIONS IN

WHICH THEY ARE INTRODUCED

structed NF provides ample freedom to provide extremely high
performance.

Of course, if a well-tuned robot control system is already in
place, the NF may be used in the more traditional manner to gen-
erate trajectories via the gradient flow (in the case of a position
controller) or field itself (in the case of a velocity controller). We
will refer to this alternative as the “first-order” approach (i.e.,
based upon integrating the gradient dynamics directly) in dis-
tinction to the “second-order” approach.

A. Plant Model

Assume we have a holonomically constrained, fully actuated
robot with known kinematics, affording a suitable set of local
coordinates, and denote the-dimensional free config-
uration space as . The system dynamics

may be found using Lagrange’s equations (see, for example,
[22] and [23]) where are external forces (such as friction)
which do not arise from Hamilton’s variational principle and
are the input torques. We assume exact knowledge of the gravi-
tational term as well as the external forces .2 Letting the
input torque be , where is our control
input, the plant equations are

(4)

B. Task Specification

The state space is constrained by the presence of forbidden
configurations, theobstacle set . The free spaceis de-

2The generalized PD approach to control, detailed below, will not require
knowledge or computation of the mass-inertia matrixM or the Coriolis term
C. In principle, some of the kinematic and dynamic parameters may be required
for G andF , though in our experiments we neglected these terms.
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fined as the obstacle-free configuration space and
we will be concerned only with a subset ofsafe configurations

comprising a smooth compact connected manifold with
boundary.3 The positioning objective is described in terms of a

goal . The task is to drive to asymptotically sub-
ject to (4) by an appropriate choice ofwhile avoiding obsta-
cles. Moreover, the basin of attractionmust include a dense
subset of the zero velocity section of , the tangent space of
positions over , so that we may guarantee convergence from
almost every initial zero velocity state (, 0) whose position
component lies in . For obstacle avoidance, we require that
the trajectories avoid crossing the boundary, i.e., ,
for all .

C. First-Order Gradient Systems

Let be an -dimensional Riemannian manifold. The gra-
dient in local coordinates is given by the vector of partial deriva-
tives weighted by the inverse of the Riemannian metric. Suppose

are local coordinates on. Then, in local coordinates

where and is the local representation of
the Riemannian metric. Gradient descent can now be achieved
in local coordinates via

(5)

A smooth scalar valued function whose Hessian matrix is
nonsingular at every critical point is called aMorse function
[24]. Artificial potential controllers arising from Morse func-
tions impose global steady state properties that are particularly
easy to characterize, as summarized in the following proposi-
tion.

Proposition 1: ([19]) Let be a twice continuously differ-
entiable Morse function on a compact Riemannian manifold,

. Suppose that is transverse and directed away from the
interior of on any boundary of that set. Then, the negative
gradient flow has the following properties.

1) is a positive invariant set.
2) The positive limit set of consists of the critical points

of .
3) There is a dense open set whose limit set consists

of the local minima of .
These first-order dynamical convergence results do not apply

for Lagrangian systems. We now briefly review machinery to
“lift” the gradient vector field controller to one appropriate for
second-order plants of the kind introduced in (4).

D. Second-Order Damped Gradient Systems

Introducing a linear damping term, yields a nonlinear “PD”
style feedback, in local coordinates,

(6)

3Of course, in the general obstacle avoidance literature, the connectedness of
the configuration space is very much at issue, but the issue does not arise in our
present application.

that is appropriate for second-order plants. Lord Kelvin’s obser-
vation is now relevant and it follows that the total energy

where (7)

is nonincreasing.
Note that if the total initial energy exceeds the potential en-

ergy at some point on the boundary , trajectories may inter-
sect the boundary. Fortunately, further refining the class of po-
tential functions will enable us to construct controllers for which
the basin of attraction contains a dense subset of the zero-ve-
locity section of . The following definition has been adapted
from [19], [25].

Definition 1: Let be a smooth compact connected man-

ifold with boundary and be a point in its interior. A
Morse function, is called anNF if:

1) takes its unique minimum at ;
2) achieves its maximum of unity uniformly on the

boundary, i.e., .
This notion, together with Lord Kelvin’s observation, now

yield the desired convergence result for the Lagrangian system
(4).

Proposition 2: (Koditschek [19]) Given the system described
by (4) subject to the control (6), almost every initial condition

within the set

(8)

converges to asymptotically. Furthermore, transients remain
within such that for all .

Proposition 2 generalizes the kinematic global convergence
of Proposition 1. Note that, for the second-order system,im-
poses a “speed limit” as well as a positional limit, since the total
energy must be initially bounded [25].

E. Invariance Under Diffeomorphism

One last key ingredient in the mix of geometry and dynamics
underlying the results we present involves the realization that
an NF in one coordinate system is an NF in another, if the two
coordinate systems are related by a diffeomorphism [19]. This
affords the introduction of geometrically simple model spaces
and their correspondingly simple model NFs.

III. SENSORMODEL

To sense a robot’s configuration with a camera, we seek a
map from the robot configuration space to an appropriate
output space . The exact form of depends on several fac-
tors, for example the type and number of features being viewed,
the number of cameras, the robot kinematics and so forth. The
examples presented in this paper are restricted to a monocular
view of a fully actuated rigid body endowed with a set of point
or “vector” features. However, the general methods presented in
Section IV may in principle be applied to a wide variety of set-
tings, including other feature types (e.g., conic sections or area
features), so-called “eye-in-hand” servoing where the camera is
moved by the robot relative to a fixed environment or systems
incorporating binocular vision [26].
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A Euclidean point is represented in homogeneous
coordinates by the array . Assume that there is a
camera fixed coordinate frame such that the ( )-plane is
parallel to the image plane and coincident with the optical center
or “pinhole.” A robot is assumed to move a rigid body with
distinguishable features and body-fixed frame. A superscript
preceding a point denotes the frame with respect to which it is
written, e.g., is expressed with respect to . We interpret
the rigid transformation

SE

where

SO and

as a change of coordinates from the body frame to the camera
frame, i.e., . In general, is a function of through
the robot kinematics and so we write .

Because we are interested in potentially large displacements
over the camera FOV, we employ a full-perspective camera
model. The methods in this paper require that the camera
intrinsic parameters (e.g., focal length, pixel scale and so forth)
have been calibrated. Fortunately, we gain some robustness
to parametric uncertainty since the feedback loop is closed
around the image-plane measurement.4 As such, we model a
perspective projection camera, ,
by

where GL

(9)
Typically, camera images are rectangular, so we choose
and to map the image plane pixel values (for example
[0,640] [0,480]) to the box . The
algorithms presented below are designed to keep the feature
projections within , to account for the finite FOV.

As an example, suppose we have a set of point features,
. Then the composition of the camera model with the

kinematics as applied to all of the features generates the camera
map

...

where

(10)

The map is parameterized by the (constant) feature locations
in body coordinates, the robot kinematic parameters and the
camera parameters. The output space in this example is simply

.

4As mentioned in Section I, prior contributions establish this formally in some
settings [6], [27] and we believe (although we have not formally shown) that
similar results are possible here.

IV. NAVIGATION -FUNCTION-BASED VISUAL SERVOING

We wish to create visual servoing algorithms that offer high
performance and enjoy global guarantees respecting both con-
vergence and the avoidance of FOV boundaries and self-oc-
clusions. To achieve our objective we compute thevisible set
for a particular problem. This is the set of all configurations

in which all features are visible to the camera and on
which is well defined. We then design a safe, possibly conser-
vative, subset to provide additional safety with respect to
visibility obstacles. Theimage spaceis defined
and the camera map must be a diffeomorphism . For
each problem, is analyzed to construct a model spaceand
a diffeomorphism . Given a configuration space goal

we define thegoal image .
We propose a new framework for visual servoing that incor-

porates three ingredients:

1) amodel space, , for the “safe” configurations, ;
2) anNF, , for the model space;
3) adiffeomorphism, , from the image space to

the model space.
Recalling that NFs are invariant with respect to diffeomor-

phism, an NF with respect to the configuration variables is given
by with gradient given by

(11)

Hence, the three ingredients above are assembled with the feed-
back control strategy (6). With this approach, almost all ini-
tial configurations5 within dynamically convergeto the goal
while ensuringocclusion-freetransients.

By recourse to the general framework outlined above we de-
velop controllers for several specific configurations of a robot
and monocular camera in the sections that follow. Section IV-A
considers a planar body on which three collinear feature points
project to a planar camera. In Section IV-B, we present a so-
lution to the problem of visually servoing a high performance
custom robot. Finally, in Section IV-C, we present a solution for
visually servoing a 6-DOF body. Interestingly, the very different
visual servoing problems of Sections IV-B and IV-C share a
common model space for and
respectively, so the Appendix presents a new, highly tunable NF
for the more general model space for all
and in .

A. Example 1: Planar Rigid Body Servoing

Consider the problem of visually servoing a planar rigid body,
viewed by a planar pinhole camera, as depicted in Fig. 2, first
presented in [9]. The intuition for this example is very simple:
the projection of three collinear feature points onto the image
plane provides a set of generalized coordinates for the three de-
grees of rigid body freedom. To maintain visibility, the three fea-
ture point projections must remain in order left to right (so that
the body faces the camera) and must remain within a bounded
interval on the image plane (due to the finite FOV).

5That is, all but a set of measure zero. Due to topological constraints, smooth
global visual servos are technically impossible in some cases [26].
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Fig. 2. Setup for a planar pinhole camera and planar rigid body with collinear feature points showing three typical configurations of a rigid body withrespect to
the camera, to illustrate the notion of visibility. Left: features face the camera, but the leftmost point lies out of view; center: although within the camera workspace,
the body occludes the features; right: features are all visible.

Suppose we have a planar rigid body SE with three
distinguishable collinear feature points . We use for
local coordinates on the rigid body position and orientation

, i.e.,

where

We conveniently collocate theaxis of the body frame with the
edge containing the feature points so that in body coordinates

where

and in camera coordinates

The body frame -axis is oriented “into” the body, as depicted
in Fig. 2.

For this simplified example, we reduce the calibrated camera
of (9) to

(12)

where is a point expressed with respect to the camera frame.
The bounded image plane reduces to .

For all the feature points to be visible, the rigid body must
be facing the camera and all the features must be in the FOV.
We define the workspace as those configurations for which all
features are within the FOV, namely,

SE

Those configurations that face the camera are given by

SE

where

and the visible set is the intersection SE .

Knowing which configurations can be “seen” allows us to
define the camera output map as the projection
of the three feature points on the body, namely,

(13)

(In an abuse of notation, we will write when using local
coordinates, .)

The map is a diffeomorphism from to its image

the proof of which follows from the fact thatis a homeomor-
phism from to and at each point in , is a local diffeo-
morphism. To verify the first fact, note that, for , the
points ( ) and ( ) are related by the unique ho-
mography6

for some , which can be used to construct the unique
inverse of for each . To show that is a local diffeo-
morphism, note that the pinhole camerais differentiable ev-
erywhere in front of the camera and henceis differentiable on

. Moreover, direct computation reveals that

which is different from zero at every point in and hence
is a local diffeomorphism at every point in (inverse function
theorem).

We seek a compact manifold with boundary on which to im-
pose an NF. Note that is not a closed set. However it is prac-
tical to impose impose a “collar” around the points on the image
plane by enforcing the requirement that they maintain a min-
imum distance from one another, as well as maintaining their

6A homography or projective transformation,Z 2 PL(1) is uniquely deter-
mined by the correspondence of three distinct points [28]
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Fig. 3. Buehgler arm [4], [7] has been modified with an “arrow” feature on the tip of the arm, which is observed by a perspective projection camera. The body
frame is coincident with the tip of the arm and thez axis is pointing into the arm. The camera image is segmented to extract the position (u; v) and orientation�
of the arrow. Roughly speaking, the waist motor and shoulder motors (q ; q ) move the image feature left-and-right and up-and-down, respectively, and the wrist
q rotates the image feature. The camera is positioned so the feature may reach the entire image plane.

distance from the edge of the image plane. This will also have
the practical benefit of keeping the body within a certain dis-
tance of the camera. Letting and denote the
left and right edge of the image plane, we define the compact set

where denotes the (arbitrarily) small “safety” collar
around each feature point. The set is compact and hence
we define the “safe” compact domain

As required by our general framework, the camera map pro-
vides a change of coordinates . By choosing ,
the mapping of our formal methodology is the identity map-
ping. For this model space we refine a class of NFs designed
in a separate context [29]. For , the objective
function

(14)

is convex on

where are constants. Moreover,

(15)

is an NF on [29].
For planar servoing, and so we require to

ensure that is convex. As such, is an NF on and
is an NF on .

B. Example 2: Buehgler Arm Servoing

The Buehgler arm, a direct-drive robot built previously in our
laboratory [7], [4], has allowed us to explore experimentally a
dynamical implementation of our visual servoing methodology.
Moreover, it turns out that the construction of a good NF for
this problem will, with appropriate generalization (see the Ap-
pendix), apply to 6-DOF visual servoing (Section IV-C).

The Buehgler arm, depicted in Fig. 3, has three actuated rev-
olute degrees of freedom parameterized in local coordinates by
angles and its configuration space is

. We affix a body frame to the “tip” of
the paddle, as depicted in Fig. 3. The Buehgler kinematics, de-
tailed in [7], parameterize the rigid transformationfrom the
body frame to the camera frame.

We affixed a “pointer” to the tip of the arm, which we model
as the position and unit orientation of a vector in space, namely,7

. The feature point is centered at the
body frame origin, and “pointing” along the
body -axis, . The pointer moves with respect to
the camera via

Note that, in the camera frame, .
A camera (9) is positioned to view the robot end effector as

depicted in Fig. 3. The workspace is the set of configurations
that keep the projected feature point within, namely,

(16)

which may have two connected components. Considering only
those configurations facing the camera,

(17)

7T X � TX is the unit tangent bundle ofX [24].
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we show in [30] that, for reasonable camera positions, the visible
set has a single connected component.

The camera map is given by the projection of the feature and
its orientation on the image plane, namely,

(18)

where computes the angle of the vector on the image plane.
Hence, the function yields the position and orientation of our
projected feature on the image plane, i.e., , where

.
For reasonable camera positions relative to the robot, we

show in [30] that is a diffeomorphism . In this
case, is compact, so we set and , which
is diffeomorphic to . (Additional safety
may be added with respect to the FOV quite readily if desired.)
The change of coordinates, is just the natural
identification of the two spaces. The Appendix defines a new
NF, , for this space [see (24) and (25)].

C. Example 3: 6-DOF Rigid Body Servoing

In this example, we consider a free convex polyhedral rigid
body, with configuration space SE and let ,

, be a set of coplanar distinguishable points on a face of
the body. For convenience, we place the body frameso that
the plane contains our coplanar features, the-axis points
“into” the body and the body origin coincides with the center of
the smallest sphere containing all the feature points. Denote the
radius of this sphere. Our camera map is now given by

where

It is now routine to define the visible set,, as in previous
examples. Denote the set of configurations facing the camera

SE where

and denote the workspace

SE

The visible set, as before, is given by .
Construction of a suitable image-based coordinate system for

this problem represents work in progress. Therefore, we employ
three–dimensional (3-D) or task-space visual servoing for this
scenario, wherein we use feature-point locations on the image
plane to estimate and from their respective images. For

, this can be done quite readily by noting that, in body
coordinates,

and, hence, the feature locations and body coordinates are re-
lated by the homography

for some

(19)

where and are the camera calibration parameters given in
(9). Note that the matrix is nonsingular if and only if

, which our visual servoing algorithm will ensure.
Hence, given , and , then for , one may
solve (19) for and .

Task-based visual servoing presents only a minor twist to our
overall program. As before, we will construct a model space for
visible configurations and define an NF on that model space.
However, in this case, our diffeomorphismmaps from the con-
figuration space directly to the model space, without the camera
map intervening. To construct, we adopt a very specific param-
eterization of the rigid body configuration to aid in our construc-
tion of the safe domain. Denote the translation of the rigid body
origin by and Euler angles by ( ). The Euler angles have
been selected to parameterize the motion in such a way that for

, the -axis of the body parallel to the translation,
i.e.,

where (20)

(21)

(22)

and where , and are the standard Euler angle
rotation matrices (see, for example, [22]).

Consider a “safe” subset of configurations that face the
camera

where is parameterized by (20)–(22) and . Also,
consider a “safe” workspace

SE

where denotes a ball of radius around the point . In
other words, is the set of all configurations which keep a ball
of radius completely within the FOV and impose upper and
lower limits, and , on the distance of the body from
the camera. Recall that the ball contains all the feature
points and, hence, . We now define the “safe” domain

. For the translations are
constrained as seen in Fig. 4.

Within , the body translation is confined to move within
a diffeomorphic copy of . Recall that the body coordi-
nate frame is attached such that theaxis is orthogonal to
the face (facing into the body) and the ( ) plane contains the
feature points. Consider the fact that SOis an SO bundle
over and identify the orientation of theaxis with the base
point in . The requirement that the body faces the camera is
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Fig. 4. In the safe domain, translations are constrained to move in a trapezoidal
box (an orthogographic projection of which is shown by the thick lines), so that
the body may not move too far from or close to the camera and so that the
smallest sphere containing all the feature points remains within the FOV. The
minimum and maximum distances� and � from the camera are free
design parameters.

a constraint on the axis, namely that it always has a positive
projection of onto the line of site. This yields an open hemi-
sphere; i.e., a diffeomorphic copy of . An SO bundle over

is diffeomorphic to SO . Constraining the Euler an-
gles further yields a diffeomorphic copy of

SO . Therefore,

SO

The above coordinates (20)–(22) may now be used as local
coordinates on , with no singularities. Hence, constructingis
now straightforward—for the three translational DOFs, simply
map the trapezoidal box depicted in Fig. 4 to the box
and map the two constrained Euler angles to . Hence,

(the details can be found in [30] and
[31]). As for the Buehgler, we employ the more general model
space and NF described in the Appendix and hence ,
where is given by (25) for , , is an NF for spatial
visual servoing.

V. EMPIRICAL VALIDATION

To validate the practical efficacy of our proposed framework
we constructed two experimental platforms. On the first system,
the custom 3-DOF direct-drive Buehgler arm described in Sec-
tion IV-B, we implemented a fully dynamical controller (6)
based on the NF given in the Appendix, for and .
Our second set of experiments employ an industrial 6-DOF RTX
robot from Universal Machine Intelligence on which we tested a
kinematic controller (5) using the NF in the Appendix, for
and .

In both experimental setups discussed below, we used simple
linear camera calibration (see, for example, [32]). For the RTX
kinematic parameters, we used the manufacturer specified De-
navit–Hartenberg parameters. For the Buehgler setup, we mea-
sured the kinematic parameters roughly by hand. To refine this
estimate, we affixed a point to the tip of the paddle and moved
it to a known grid of joint space locations and observed the
corresponding grid of image plane points. Using these corre-
spondences, gradient decent based on a simple pixel disparity

cost function refined our parameter estimates for the 13 param-
eters—two kinematic, six extrinsic, and five intrinsic camera pa-
rameters.

A. Buehgler Arm Results

The Buehgler Arm is controlled by a network of two Pen-
tium II computers running LynxOS, a commercial real-time op-
erating system. The first captures 8-bit 528512 pixel images
at 100 Hz using an Epix Pixci D frame grabber connected to
a DALSA CAD6 high-speed digital camera. The second com-
puter implements servo control at a servo rate of 1 kHz, based
on the dynamical controller in (6).

Two sets of experiments were implemented with two different
gain settings (i.e., assignments for the gainsand from (6)
and from (25)) chosen to contrast performance resulting from
a well tuned critically damped closed loop using relatively high
gains, as against a “detuned” low gain and underdamped cir-
cumstance. Each trial consisted of driving the feature position
and orientation to a model space goal ( ) from some ini-
tial condition in joint space ( ). Initial configurations were
chosen by hand to be near the edge of the FOV, with initial ve-
locity vectors chosen so as to drive the robot out of the FOV (i.e.,
to “defeat” the controller). The initial conditions were prepared
with a simple joint-space trajectory planner and joint-space PD
controller that drove the robot to the starting state at which time
the control switched to the NF based controller. In other words,
we forced the robot to literally “fling” itself toward an obstacle
before turning on our visual servoing controller. Both the goal
positions and initial conditions where chosen to span the visible
robot workspace.

For the “tuned” gain experiments, there were eight goals and
forty initial conditions, for a total of 320 trials. We chose rela-
tively high gains that provided a critically damped response and
settling times on the order of 1 s.8

For the “detuned” gain experiments, a smaller set of more ag-
gressive initial conditions and goal locations was used and the
damping gain was reduced to provide “underdamped” perfor-
mance. There were four goals and eight initial conditions, for a
total of 32 trials.

Fig. 5 shows the the error coordinates of a typical run for both
“tuned” and “detuned” gains. With well-tuned gains, the con-
troller drove the feature to the goal location with a rate of success
of 97%. Of the 11 errors, one was due to the robot exceeding a
software velocity limit, one to a software driver error, and one
to a feature leaving the FOV of the camera during initializa-
tion. The remaining eight failures were caused by not allowing
enough time for convergence as each experiment ran for a max-
imum of 6 s. These errors generally arose when the robot was
close to a saddle of the NF so the controller was slow to over-
come the robot’s unmodeled friction. However, with “detuned”
gains and high initial velocity the feature left the FOV 25% of
the time. These failures were probably because the initial kinetic

8Of course, the allusion to linear notions of damping is merely an intuitive
designer’s convenience. We chose gainsK;K using standard PD tuning rules
to ensure the local linearized system was nearly critically damped at the equi-
librium state and then turned up the “boundary” gain� (6) to force reasonably
snappy descent into the domain wherein the linearized approximation was dom-
inant.
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Fig. 5. For the dynamical image-based visual servoing implementation on the Buehgler, we executed two batches of experiments: “tuned” gains and “detuned”
gains, as described in the text. The first portion of motion correspond to joint-space limb motion setting up the initial condition, at which time (indicated by the
vertical line in the error versus time plots) the NF—based controller was switched on, in order to bring the paddle back to the desired image-plane position and
orientation. Left: pixel error and corresponding image plane feature trajectory for a typical “well tuned” trial on the Buehgler robot; 2-D level sets of the NF are
superimposed on the image plane trajectory; middle: typical “detuned” trial, with different initial and goal locations; right: Buehgler convergence results. Top:
mean steady-state pixel error for each of the eight goal positions; bottom: 5% settling time for each of the eight high-gain goal positions.

energy caused the arm to escape the artificial potential well—by
using a lower “detuned” gain on the potential energy feedback
term, the potential barrier is reduced. (It would not be difficult
to compute the invariant domain, as in [25].) These experiments
give some sense of the relatively graceful performance degra-
dation consequent upon imperfectly tuned gains. Fig. 5 shows
image-based error plots and the image-plane trajectory for two
typical runs.

We designed our controller to have a very rapid and dex-
terous response. The Buehgler arm has a mass in excess of 100
kg, making precise, quick, and efficient movement quite chal-
lenging. Fig. 5 (top right) shows our navigation-based controller
produced a 1-s or less 5% settling time for seven of the eight
primary goal positions. Fig. 5 (bottom right) presents the mean
pixel error averaged over the final second of each trial. As can
be seen the errors are in the neighborhood of 1–2 pixels over
each of the eight goal positions.

B. RTX Arm Results

The RTX is commanded through the serial port of a single
Pentium PC running a Linux 2.0 kernel. The PC is equipped
with a Data Translations DT3155 frame grabber connected to a
standard 30-Hz NTSC video camera.

The theory presented in Section IV-C presumes the config-
uration space to be SE . However, unlike the Bue-
hgler arm for which the robot joint spacewasthe configuration
space, in this case is parameterized onlylocally by the robot
joint angles through the forward kinematics, namely,

. Of course, inevitably, all such kinematic param-
eterizations introduce singularities that may, in turn, inject spu-
rious critical points to the gradient fields, necessarily actuated
in the robot’s joint space rather than in the task space, as our
theory presumes. Similarly, since our formal theory “knows”
only about visibility bounds, the robot’s unmodeled joint-space
angles limits are not in principle protected against.9 However,
the weight of experimental evidence we present below suggests
that these discrepancies between presumed model and physical
reality do not seriously imperil the practicability of this scheme.
Regarding the first discrepancy, the absence of stalled initial
conditions suggests that any critical points so introduced were
not attractors. Regarding the second, we found that choosing

9Addressing the further practical realities of kinematic singularities and robot
joint-space limitations falls outside the scope of the present paper (and, indeed,
is rarely addressed in the traditional visual servoing literature). In principle, the
NF framework would be relevant to these problems as well: joint space limits
are analogous to the FOV obstacles, while the kinematic singularities are akin
to self-occlusion.
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Fig. 6. For the quasi-static implementation on the RTX arm, one batch of 203 trials was selected. Left: pixel error and corresponding image plane feature trajectory
for a typical trial; middle: another typical trial, with a different initial condition and goal location; right: RTX convergence results. Top: mean pixel error for each
of the four goal positions; bottom: 5% settling time for each of the four goal positions.

initial and goal locations away from the joint-space boundaries
was sufficient to avoid running into the end-stops.

The RTX controller employs first-order gradient descent on
the NF presented in the Appendix. Because the RTX arm accepts
only position commands, given goal and current images with
feature points extracted, the gradient update was implemented
iteratively, as follows:

where is the step size

To explore our algorithm, we conducted a set experiments
in which 58 initial conditions and four goal locations were
chosen randomly from a grid of 4096 points in model space
(configurations near kinematic singularities, not within the
robot workspace, or which resulted in feature projections
outside the FOV were removed, resulting in a total of 203
trials). Initially, the robot was moved to each goal location
to capture an image of the robot, respecting which the vision
system stored the desired location of feature points. Fig. 6
shows the pixel errors feature trajectories of two typical runs.
As shown, we used four coplanar feature points for the camera
map, . Of 203 trial runs, five were found to
have failed. In each case, the failure was due to the robot not
converging within our software-imposed limit of 30 iterations
(visual inspection of each such run revealed that convergence
was eminent).

Using the mean over the four feature points, we found an av-
erage final pixel error on the order of 1–2 pixels upon conver-
gence. Fig. 6 (upper right) shows the mean pixel error and stan-
dard deviation for each of the four unique goal positions. The
average 5% setting time, shown in Fig. 6 (lower right), was ap-
proximately 10–14 iterations for each of the four goal locations,
averaged over all successful trials.

VI. CONCLUSIONS

This paper has addressed the problem of driving image-plane
features to some goal constellation while guaranteeing their vis-
ibility at all times along the way. We cast the problem as an
instance of generalized dynamical obstacle avoidance, thereby
affording the use of navigation functions in a nonlinear PD-style
feedback controller.

Ideally, one creates an image based coordinate system
using direct feature information as in the two settings of
Sections IV-A and B. In those cases, the occlusion obstacles
manifest themselves inimage coordinatesand, hence, the
NF gradient in model-space coordinates will not depend on
the specific parameters of our camera or robot. Moderate
calibration uncertainty will lead to errors in our estimate of
the image Jacobian, but we believe that this will not imperil
successful obstacle avoidance. However, construction of a
6-DOF image-based coordinate system for 3-D rigid body
motion represents work in progress, thus, we have resorted to a
task-space visual servoing algorithm in Section IV-C.
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The two experimental systems—the custom 3-DOF Buehgler
Arm and the 6-DOF commercial RTX arm—confirmed the
practicability of the theoretical framework. For the Buehgler,
our experiments suggest that the navigation-function-based
controller indeed achieves extremely high performance, though
in a few cases we were able to “defeat” the controller with
deliberately adversarial initial conditions and poor gain tuning.
The kinematic experiments with the RTX validated our 6-DOF
task-space servo architecture. In both cases, our results show
systems with large basins of attraction that both avoid self-oc-
clusion and respect FOV constraints.

APPENDIX

A NAVIGATION FUNCTION FOR

Let

(23)

for some and let denote a goal. Consider
the function

Let be a positive-definite symmetric matrix and
, . Define

(24)

Proposition 3: The objective function

(25)

is a navigation function on , where is given in (24).
Proof: According to Definition 1, must be a smooth

Morse function which evaluates uniformly to unity on the
boundary of and has ( ) as the unique minimum.

The boundary of is given by

Clearly, evaluates to 1 on the boundary, i.e., as then
. Furthermore, , . Moreover,

iff , i.e., ( ) is
the global minimum.

To study the critical points of , we need only study those of
, because the function given by

has derivative , which does not
introduce any spurious critical points. The critical points of
are found by solving

(26)

noting that

diag

where

Since is nonsingular on , iff
and , which is true iff

, powerset .
There are 2 index sets which enumerate all possible critical
points. One readily verifies that the Hessian is nonsingular at
every critical point and ( ) is the only minimum. Hence,

is a Morse function which evaluates uniformly to unity on
the boundary, has saddles, and the goal is the unique
minimum.
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