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Abstract 
We present a system for generation and recog- 

nition of oscillatory gestures. Inspired by 
gestures used in two representative human-to- 
human control areas, we consider a set of oscilla- 
tory motions and refine from them a 24 gesture 
lexicon. Each gesture is modeled as a dynami- 
cal system with added geometric constraints to  
allow for real time gesture recognition using a 
small amount of processing time and memory. 
The gestures are used to control a pan-tilt cam- 
era neck. We propose extensions for use in areas 
such as mobile robot control and telerobotics. 

1 Developing A Gesture Lexicon. 

Sociological and biological research on human 
created gestures suggests that while gestures 
have standard meanings within a society, no 
known body motion or gesture has the same 
meaning in all societies [l]. Even in American 
Sign Language, few signs are so clearly transpar- 
ent that a non-signer can guess their meaning 
without additional clues [6]. Thus we are free to 
create gestures for device control as we see fit. 

1.1 Examples of a Human Gestural 
Control Environment. 

Two areas in which gesture languages have devel- 
oped to  communicate commands are crane and 
excavator control’ and runway traffic control. A 
sample set of crane control gestures, shown in 
figure 1 [3], is composed of oscillating planar mo- 
tions, that is, circles or back-and-forth lines made 
in two dimensions in real world three dimensional 
space. Certain gestures used to  signal aircraft on 
a runway are also planar oscillators [IO]. 

The use of gestures in these environments 
shows that oscillatory motions are useful for sev- 
eral reasons. First, oscillatory motions are rec- 
ognizable by other humans and used in critical 
and potentially dangerous areas. Second, hu- 
mans can easily and consistently make oscilla- 
tory motions. Third, some oscillatory gestures 
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Figure 1: Sample crane control gestures. 

have time dependent content which, can be cre- 
ated and understood by humans. For example, 
the “travel ahead” gesture’s circular velocity is 
increased when a faster response is desired. 

1.2 An “Oscillating Motion” 

The oscillating circles and lines used in the crane 
and runway lexicons form the basis of the ges- 
tures used in our system. When the geometric 
features of size and direction are added, the lexi- 
con is expanded to encompass 24 gestures (figure 

Gesture Lexicon. 

2) .  

2 Identification Method for 
Gestures Represented as a 
Dynamical System. 

A representative planar gesture, used through- 
out this section to exemplify our method, con- 
sists of a family of oscillating motions which form 
a (roughly) horizontal line segment (“x-line mo- 
tion”). Humans are incapable of reliably generat- 
ing a perfect sinusoidal motion, as we suggest by 
the illustrated x-line motion shown figure 3.  We 
find it most convenient to represent such motions 
as they evolve over time in the x-velocity plotted 
against the x-position “phase plane” space. This 
figure, in its evident departure from a pure sinu- 
soid, suggests the natural range of variation that 
we would nevertheless like to  associate with the 
same gesture. We desire a computationally ef- 
fective mathematical representation for such ges- 
tures. 

Out of the enormous variety of possible rep- 
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Figure 2: The 24 Gesture Lexicon. 
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Figure 3: Illustration of a Human Created One 
Dimensional X-Line Oscillating Motion. 

resentations, we choose to  rely on the dynamic 
properties of simple physical motions. A dynam- 
ical system is a mathematical model describing 
the evolution of all possible states in some state 
space as a function of time [5]. Given an ini- 
tial state, the evolution over time of subsequent 
states is called a "trajectory" or "motion". We 
use a differential equation representation af a dy- 
namical system. Specifically, a vector field, f, pa- 
rameterized by a carefully chosen combination of 
tunable constants, 8, comprises our representa- 
tion of gestures and the motions associated with 
them. 

2.1 Notation and Terminology. 
For ease of exposition, we present in this section 
the abbreviations and definitions used through- 
out this paper. Parameterized differential equa- 

tion models can be divided into two types: 
non-linear-in-parameters (NLIP) and linear-in- 
parameters (LIP) (which include linear sys- 
tems). The two models can be further subdivided 
into linear-in-state (LIS) and non-linear-in-state 
(NLIS). Given such a representation, the instan- 
taneous output of our model takes the form of a 
tangent vector, k ,  that depends upon the present 
state ("input", z) and parameter setting, 8. 

2.2 Representing Oscillatory 

We "invent" certain differential equations, com- 
posed of state variables and parameters, which 
intuition suggests may represent human gestures. 
It is advantageous to  use a NLIP/NLIS model be- 
cause it covers a much broader range of systems 
than an LIP model. However, for reasons to be 
discussed below, we find it expedient to use a 
LIP model. We choose to represent planar oscil- 
latory gestures as second order systems with the 
intuition that a model based on the acceleration 
(physical dynamics) of a system is sufficient to  
characterize the gestures in which we are inter- 
ested. 

Mot ions . 

An LIP representation has the form: 

where 8 represents tunable parameters. Fixing 
the parameters yields a unique set of motions, 
with different initial conditions. With the intu- 
ition in mind of capturing the variability of hu- 
man motion, each such set of motions we take 
to  represent one specific gesture. Now, choosing 
different values of 8 in a given representation re- 
sults in a family of sets of motions or trajectories 
- a "gesture family". 

For example, we might represent an oscillatory 
circular gesture as combinations of two (x and 
y axis) two-dimensional state space representa- 
tions: 

where x1 and y1 represent the position of the ges- 
ture on the x and y-axis, x2 and y2 are its x and 
y-axis velocity, and 8,1 and 8,1 are specified pa- 
rameters. For any constant 8 < 0, all trajectories 
(on each axis)satisfy -812: + xi = const, as can 
be seen by direct differentiation (figure 4). A ges- 
ture begun at any point (initial condition) in its 
trajectory should still be identified as the same 
oscillating line. 
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Figure 4: Formation of a Circular Gesture. 

Our family of gestures (the family of sets of 
trajectories) is a mathematical model which con- 
tains a finite number of tunable parameters (al- 
though, in the final implementation, parameters 
will not be the sole basis of gesture classification). 
In order to  categorize a finite number of gestures 
in this family and to permit further variability 
in the exact motions associated with a particular 
gesture within this family, we partition the pa- 
rameter space into a finite number of cells - the 
“lexicon” - and associate all the parameter val- 
ues in the same cell with one gesture. We use 
off-line simulations to  determine the location of 
these cells. 

2.3 Tuning Gesture Model 

Our gesture model and parameter determination 
scheme arises from the following considerations. 
First, we abandon off-line “batch” techniques in 
favor of on-line “sequential” ones because we de- 
sire our recognition system to identify gestures 
as they are generated. 

Previously, in an attempt to use only position 
data, we considered the possible role of an adap- 
tive estimator (which estamates unknown states 
for purely LIP/LIS systems). We abandoned this 
approach because we found the limitation to LIS 
models could not adequately handle imperfect 
human gestures. 

Parameters. 
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We also examined an on-line gradient descent 
method, but for presently available methods appli- 
cable to sequential estimates of NLIP systems, there 
is no guarantee that the parameters will converge to- 
wards their optimal values. In consequence, the pa- 
rameters computed via this method are data order 
dependent. 

Plot 01 above ctrcuiar gesture’s 
individual x a x i ~  and y axis 
m o t i m  as a I~nction ol time. 

A Linear Least Squares method (LLS), which 
makes use of all the data independent of ordering, 
is our choice for parameter identification. The 
recursive LLS technique works for LIP, but not 
NLIP, models. Given an LIP nth order system 
(equation l), the identification error due to  8 for 
all sampled times from 0 to t is: 

The planar gesture shown 
as an out 01 phase combination 
01 the x ads and y axis mollon 

(3) 

Because the system is LIP, we can uniquely 
(assuming a good data set) determine 8 based on 
all the input and output data by a formula which 
minimizes the above error function. However, 
an equivalent sequential version of this batch ap- 
proach can be derived by considering each succes- 
sive error, e k ,  as the data arrives. Taking the gra- 
dient of eb  and using appropriate algebra yields 
the sequential update law [7]: 

-1 T = o k  + Rk+lfk+i(ik+l - f k + 1 8 k ) .  

R;il R-l k - R-‘ fk T (fkRklf? + l)-lfkR;l. 

(4) 
where 81, denotes the present parameter estimate, 
and Rk denotes the local expression of the batch 
LLS pseudo-inverse. 

2.4 Various Gesture Models. 
The following five LIP models are candidates 
for circle and line gesture representations. Each 
model represents only one dimension of motion. 
An oscillating circle or line is formed when two of 
these decoupled models are present, one for each 
planar motion dimension. The position and ve- 
locity states are denoted x1 and x~ respectfully. 
They are of the form, i 1  = 2 2 ,  and for 

To use the models described here on a digital 
a computer, a fourth-order Runge-Kutta integra- 
tion method is used. Simulations showed that a 
sampling rate of 60 Hz is sufficiently small to al- 
low the use of this method. 
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2.5 

A predictor bin, composed of a model with pa- 
rameters tuned to represent a specific gesture, 
determines a gesture’s future position and veloc- 
ity based on its current state. To measure the 
accuracy of the bin’s prediction, we compute an 
instantaneous residual error, which is the nor- 
malized difference between the bin’s prediction 
and the next gesture state (normalized version of 
e k  in equation 3). The total residual error is an 
exponentially decayed summation of the residual 
error. A bin that predicts the future state of a 
gesture it truly represents should have a smaller 
residual error than a bin tuned to other gestures. 

For the residual error calculations, we used po- 
sition and velocity data from slow, medium and 
fast circular gestures. In simulations, the total 
residual error was calculated by subjecting each 
predictor bin to  each gesture type. For exam- 
ple, table 1 lists the residual errors for one of the 
proposed models. 

A measure of a model’s usefulness is deter- 
mined by examining the ratio of the lowest resid- 
ual error to the next lowest residual error in each 
column. The worst “residual error ratio” is the 
smallest ratio from all the columns because it is 
easier to classify a gesture when the ratio is large. 
A comparison of the worst “residual error ratio” 
of each model we consider is summarized in figure 
5, and suggests that the velocity damping model 
is the best choice for our application. However, 
for our on-line gesture recognition experiments, 
we will use the model with the clearest physical 
meaning, Linear with Offset Component, so we 
can most intuitively assess our results. 

Choosing a Gesture Model via 
Residual Calculation. 

0.1 

gesture input 

medium bin 
fast bin 0.23 

~- 

Table 1: Residual Errors of Linear with Offset 
Component Model. 

3 A Dynamical Gesture 
Recognition and Control System 

In this section we detail the specific compo- 
nents of the dynamical gesture recognition sys- 
tem. Figure 6 illustrates the signal flow from ges- 
ture creation, sensing, identification, and trans- 
formation into an executed robot response. The 
gesture recognition system is implemented on a 

1 worst residual 
error rat10 

Figure 5: Model residual ratios: the Velocity 
Damping model discriminates most effectively, 
and the Van der Pol model discriminates least 
effectively, for the data considered. 

INMOS based distributed transputer control sys- 
tem built by Rizzi e t .  al. (see [9]), that also 
inspired this architecture. 
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Figure 6: Gesture Recognition System Architec- 
ture. 
3.1 System Modules. 
In module G I  the Gesture Creator, a human mov- 
ing a flashlight against a black background cre- 
ates a gesture. Our gesture lexicon, the set of 
gestures our system can recognize, consists of 24 
planar oscillators. The user signals the start and 
stop of a gesture by turning the flashlight on and 
off, thus enabling isolation of gestures, one from 
another. The sensor module detects the light 
from the flashlight. 

The Sensor Module, SI using the Cyclops vi- 
sion system [9], detects the gesture by transform- 
ing the light from a flashlight bulb into x and y 
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position and velocity coordinates, sending them 
to the Predictor Module at a rate of 60 Hz. 

The Predictor Module, P, contains a bank of 
predictor bins (inspired by Narendra and Bal- 
akrishnan’s work [SI), as shown in figure 7. Each 
predictor bin contains a dynamical system model 
with parameters preset to  a specific gesture. We 
assume that the motions of human circular ges- 
tures are decoupled in x and y. Therefore, there 
are separate predictor bins for the x and y axes. 
Since there are three basic gestures, a total of six 
predictor bins is required. 

I 
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Figure 7: Predictor Module. 

Each bin’s model is used to  predict the future 
position and velocity of the motion by feeding 
the current state of the motion into the gesture 
model and computing a residual error. The bin, 
for each axis, with the least residual error is the 
best gesture match. If this lowest value is not 
below a predefined threshold, then the result is 
ignored; no gesture is identified. Otherwise, geo- 
metric information is used to  constrain the ges- 
ture further. A single gesture identification num- 
ber, which represents the combination of the best 
x bin, the best y bin, and the geometric informa- 
tion, is outputted to the transformation module 
upon the initiation of the gesture, and is contin- 
ually updated until the flashlight turns off. 

The predictor module also contains two bins, 
one for each axis, for identifying the actual pa- 
rameters of human generated motions using the 
linear least squares technique. During our re- 
search, these “gesture parameter identification 
bins” were used to recompute the parameters 
seeded in each predictor bin and to  allow users to  
confirm that they presented the gestures they in- 
tended. The states of the identification bins are 

reset at the beginning of each new gesture. 
The Transformation module, T, uses the ges- 

ture classification to determine an appropriate re- 
sponse for the controlled robot. The response in 
this system is a reference trajectory which, when 
followed by a camera neck, will “mimic” the ob- 
served gesture. This allows the person creating 
the gesture to  know immediately if the recogni- 
tion system properly identified the gesture. 

The actuated mechanism, module R, tracks 
the reference trajectory using an inverse dynam- 
ics controller. 

3.2 Experiments and Results. 
Two types of experiments were performed. The 
first experiment, trial “A”, was designed to  test 
the gesture recognition system’s ability to  recog- 
nize gestures despite the fact that humans vary 
the way they make the same gesture. In this ex- 
periment, the subject repeated each gesture in 
the lexicon twenty times. In the second experi- 
ment type, trials “B”, “C”, and “D”, we tested 
how well the system can recognize gestures when 
presented with different gestures in a random or- 
der by having subjects perform gestures from a 
randomly ordered list: “B” contained “large ges- 
tures” , “C” contained “circular gestures”, and 
“D” contained all types. 

The experimental results are summarized in 
table 2, showing that the system achieves a 
greater than 85% correct classification rate. Note 
that two subjects performed all experiments, 
while two others performed only “B” and “C”. 

Table 2: Recognition Experiment Results. 

3.3 System Features. 
As a natural byproduct of the gesture’s dynami- 
cal systems representation, our system requires a 

small amount of memory because it stores a rep- 
resentation of the gesture “generator” (equation 
l), rather than of the spatial array of data (figure 
3.  Specifically, the memory required increases 
linearly with the size of the gesture lexicon and 
with the number of model parameters. 

The use of a predictor results in small com- 
putational requirements for gesture recognition. 
These computations can be performed at  camera 



field rate (60 Hz) (other experiments have shown 
that the prediction module still functions at field 
rate at least up to a ten parameter model). Addi- 
tional small memory parallel processors could be 
added to allow for an increased lexicon, with the 
calculations farmed out to the added processors. 

4 Extensions. 

We can extend our gesture recognition by ex- 
panding the types of planar oscillators it can rec- 
ognize, using it to control a more complicated 
robot platform, and by using it for the remote 
control of devices. 

4.1 Non-linear Gestures. 
Human gestures consist of more than basic cir- 
cles and lines. The “come here” or “go there” 
motions represent a useful class of gestures that 
our system should be able to identify. A person 
creates a “come here” motion sweeping one hand 
repeatedly, first quickly toward their body then 
slowly away. A LIP/NLIS model is required to  
represent these types of gestures due to  the dy- 
namics of their motions. Therefore, we defined 
these motions as non-linear gestures, and used a 
variation of the velocity damping model to rep- 
resented them [ a ] .  

4.2 Gestural Mobile Robot Control. 
Our gestural control system could be mapped 
to  control a wheeled mobile robot with an at- 
tached camera. To design a viable device, we 
would match specific gestures to  appropriate sys- 
tem responses. Circular oscillator gestures would 
control the on-board camera’s pan and tilt mo- 
tion, while non-linear and line oscillator gestures 
would control the robot’s path. 

4.3 Gestural Control of Devices in a 
Two-way Visual 
Communications Environment. 

These gestures could also be used in special two- 
way video communication environments [4]. Fig- 
ure 8 depicts the two-way video feedback control 
architecture. A camera-based control view is sent 
from a remote location to a local control site. A 
video icon replaces the flashlight as the tracked 
feature making a gesture. This moving icon is su- 
perimposed on the control view of the remote en- 
vironment, and the newly combined video stream 
is sent back to the remote site. The icon is ex- 
tracted from the video stream at the remote site 
and, when a predictor module is installed, used 
to  create a control command. 

I localsite I I remotesite ,* M n I 

object in 

visual i , , 

Figure 8: Basic Architecture for Remote Control 
in a Two-way Video Feedback Environment. 
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