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Abstract

We report on our efforts to develop a sequential robot controller-
composition technique in the context of dexterous “batting” maneu-
vers. A robot with a flat paddle is required to strike repeatedly at
a thrown ball until the ball is brought to rest on the paddle at a
specified location. The robot’s reachable workspace is blocked by
an obstacle that disconnects the free space formed when the ball and
paddle remain in contact, forcing the machine to “let go” for a time
to bring the ball to the desired state. The controller compositions
we create guarantee that a ball introduced in the “safe workspace”
remains there and is ultimately brought to the goal. We report on
experimental results from an implementation of these formal compo-
sition methods, and present descriptive statistics characterizing the
experiments.

KEY WORDS—hybrid control, controller composition, dy-
namical dexterity, switching control, reactive scheduling,
backchaining, obstacle avoidance

1. Introduction

We are interested in tasks requiring dynamical dexterity—
the ability to perform work on the environment by effecting
changes in its kinetic as well as potential energy. Specifically,
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we want to explore the control issues that arise from dynamical
interactions between robot and environment, such as active
balancing, hopping, throwing, catching, and juggling. At the
same time, we wish to explore how such dexterous behaviors
can be marshaled toward goals whose achievement requires
at least the rudiments of strategy.

In this paper, we explore empirically a simple but for-
mal approach to the sequential composition of robot behav-
iors. We cast “behaviors” —robotic implementations of user-
specified tasks—in a form amenable to representation as state
regulation via feedback to a specified goal set in the pres-
ence of obstacles. Our approach results ideally in a partition
of state space induced by a palette of pre-existing feedback
controllers. Each cell of this partition is associated with a
unique controller, chosen in such a fashion that entry into any
cell guarantees passage to successively “lower” cells until the
“lowest,” the goal cell, has been achieved. The domain of
attraction to the goal set for the resulting switching controller
is shown to be formed from the union of the domains of the
constituent controllers.1

1.1. Statement of the Problem

We have chosen the task domain of paddle juggling as one that
epitomizes dynamically dexterous behavior. The ball will fall
to the floor unless repeatedly struck from below or balanced
on the paddle surface. Thus the dynamics of the environment

1. Portions of this paper have appeared in an earlier work (Burridge 1996).

534



Burridge, Rizzi, and Koditschek / Dynamically Dexterous Robot Behaviors 535

necessitate continual action from the robot. Moreover, the
intermittent nature of the robot-ball interaction provides a fo-
cused test bed for studying the hybrid (mixed continuous and
discrete) control problems that arise in many areas of robotics.
In this paper, the machine must acquire and contain a thrown
ball, maneuver it through the workspace while avoiding ob-
stacles that necessitate regrasping2 along the way, and finally
bring it to rest on the paddle at a desired location. We refer
to this task asdynamical pick and place(DPP). By explicitly
introducing obstacles,3 and requiring a formal guarantee that
the system will not drive the ball into them, we add a strategic
element to the task.

From the perspective of control theory, our notion of “be-
havior” comprises merely the closed-loop dynamics of a plant
operating under feedback. Yet for our task, as is often the
case when trying to control a dynamical system, no avail-
able feedback control algorithm will successfully stabilize as
large a range of initial conditions as desired. Instead, there
exists a collection of control laws, each capable of stabiliz-
ing a different local region of the system’s state space. If
they were properly coordinated, the region of the workspace
across which their combined influence might be exerted would
be significantly larger than the domain of attraction for any
one of the available local controllers. The process of creating
a switching strategy between control modes is an aspect of
hybrid control theory that is not presently well established.
In this paper, we use conservative approximations of the do-
mains of attraction and goal sets of the local controllers to
create a “prepares” graph. Then, backchaining away from
the controller that stabilizes the task goal, we use the graph
to create a partition of the state space of the robot into re-
gions within each of which a unique controller is active. This
leads to the creation of complex switching controllers with
formal stability properties, and this specific instance of sta-
ble hybrid control represents our present notion of behavioral
composition.

To test our methods, we use a three-degree-of-freedom
robot whose paddle-juggling capabilities are already well es-
tablished (Rizzi 1994). Although our available juggling con-
trol laws induce very good regulation about their respective
goal sets, there will always be ball states that each cannot
contain: the goal sets have limited domains of attraction.
However, many of the states that are “uncontainable” by one
control law can be successfully handled by another with dif-
ferent parameter settings, such as a new goal point, or per-

2. In general, regrasping is required when the free configuration space at-
tendant upon the current grasp is disconnected, and the goal does not lie in
the presently occupied connected component. As will be seen, in the DPP
problem the configuration space of the “palming” grasp disconnects the goal
from the component in which the ball is typically introduced. The robot can
only “connect” the two components by adopting a “juggling” grasp, whose
configuration space has a dramatically different topology.
3. The finite length of the paddle has always induced an implicit obstacle,
but we have not hitherto modeled or accounted for it in our juggling work
(Rizzi, Whitcomb, and Koditschek 1992).

haps different gain settings. In this paper, we resort solely to
such parameter retunings to explore the problem of behavioral
composition. For all aspects of the robot’s task—containing
the initial throw, moving the ball through the workspace, ne-
gotiating the obstacle that divides the workspace, and finally
bringing the ball to rest on the paddle—we require that it use
members of an established palette of juggling control laws
with different goal points or gain tunings.

Our group has explored paddle juggling for some time
(Rizzi, Whitcomb, and Koditschek 1992; Rizzi 1994), and
it should be emphasized here that this is not a paper about
juggling per se. Rather, our juggling apparatus provides a
convenient test bed for the more general switching control
methods presented in Section 3, which necessitate the explo-
ration of the juggling behavior described in Section 2.5.

1.2. Previous Literature

1.2.1. Pick and Place in Cluttered Environments

Our focus on the dynamical pick-and-place problem is in-
spired in part by the Handey system developed by Lozano-
Pérez and colleagues (Lozano-Pérez, et al. 1987), who em-
phasized the importance of developing task-planning capabil-
ities suitable for situations where regrasping is necessitated
by environmental clutter (see footnote 1); however, our setup
presents dynamical rather than quasi-static regrasping prob-
lems. Indeed, our emphasis on robustness and error recovery
as the driving considerations in robot task planning derives
from their original insights on fine-motion planning (Lozano-
Pérez, Mason, and Taylor 1984), and the subsequent literature
in this tradition bears a close relation to our concerns, as is
touched upon below.

Comprehensive work by Tung and Kak (1994) yielded a
contemporary quasi-static assembly environment in the best
traditions of the Handey apparatus. The system built a plan
based on sensed initial conditions, spawned an execution pro-
cess that sensed exceptions to the planned evolution of states,
and produced actions to bring the world’s state back to the
intermediate situation presumed by the plan. We wish to ex-
amine the ways in which this higher level “feedback” (local
replanningis a form of feedback) can be reasoned about and
guaranteed to succeed, albeit in the drastically simplified set-
ting of the dynamical pick-and-place problem outlined above.

1.2.2. Hybrid Control and Discrete-Event Systems

The difficult question of how to reason about the interplay be-
tween sensing and recovery at the event level in robotics has
been considerably stimulated by the advent of the Ramadge-
Wonham DES control paradigm (Ramadge and Wonham
1987). In some of the most careful and convincing of
such DES-inspired robotics papers, Lyons proposed a for-
malism for encoding and reasoning about the construction of
action plans and their sensor-based execution (Lyons 1993;
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Lyons and Hendriks 1994). In contrast to our interest, how-
ever, Lyons explicitly avoided the consideration of problems
wherein geometric and force-sensor reports must be used to
estimate progress, and thereby stimulate the appropriate event
transitions.

1.2.3. Error Detection and Recovery

Despite the many dissimilarities in problem domain, models,
and representation, the work discussed here seems to bear the
closest correspondence to the “fine-motion planning with un-
certainty” literature in robotics (for example, as discussed in
Latombe’s text (Latombe 1991)) originated by Lozano-Pérez,
Mason, and Taylor (1984). Traditionally, this literature fo-
cuses on quasi-static problems (generalized damper dynam-
ics (Whitney 1977) with Coulomb reaction forces (Erdmann
1984) on the contact set). Furthermore, the possible control
actions typically are restricted to piecewise constant-velocity
vectors, whereby each constant piece is corrupted by a con-
stant disturbance vector of bounded magnitude and unknown
direction. In contrast, we are interested in Newtonian dy-
namical models, and our control primitive is not a constant
action, but rather the entire range of actions consequent on the
closed-loop policy,8, to be specified below. Differences in
models notwithstanding, we have derived considerable mo-
tivation from the “LMT” (Lozano-Pérez, Mason, and Taylor
1984) framework as detailed in Section 1.3.3.

1.2.4. Juggling

In an earlier work (Burridge, Rizzi, and Koditschek 1997),
we introduced the notions of dynamical safety and obsta-
cle avoidance, and in 1995 we discussed the controller-
composition algorithm mentioned in Section 3 (Burridge,
Rizzi, and Koditschek 1995). The major contribution of this
paper is in furthering our work by showing how to compose
controllers in such a manner as to avoid an obstacle that dis-
connects the workspace.

In previous work in our lab (Buehler, Koditschek, and
Kindlmann 1990b; Rizzi and Koditschek 1994), a great deal
of attention has been paid to the lower level palette of con-
trollers. Our architecture implements event-driven robot poli-
cies whose resulting closed-loop dynamics drive the coupled
robot-environment state toward a goal set. We strive to de-
velop control algorithms that are sufficiently tractable as to
allow correctness guarantees with estimates of the domain of
attraction as well. Thus, we have focused theoretical attention
on “practicable stability mechanisms”—dynamical systems
for which effectively computable local tests provide global
(or, at least, over a “large” volume) conclusions. At the same
time, we have focused experimental attention on building a
distributed computational environment that supports flexibly
reconfigurable combinations of sensor and actuator hardware
controllers, motion estimation and control algorithms, and

event-driven reference-trajectory generators. The result has
been a series of laboratory robots that exhibit indefatigable
goal-seeking behavior, albeit in a very narrow range of tasks.
In this paper, we explore the “higher level” problem of gen-
eralizing the range of tasks by composing the existing con-
trollers, achieving new tasks that no single existing controller
is capable of in isolation.

1.3. Overview of the Approach

1.3.1. Feedback Confers Robustness

Physical disturbances to a system can be classified, broadly
speaking, into two categories. The first includes the small,
persistent disturbances arising from model inaccuracies and
sensor and actuator noise. Ball spin, air drag on a ball mod-
eled as a point mass, and spurious changes in camera measure-
ments introduced by lighting variations in a scene represent
typical examples of this first type of disturbance. The second
category includes large, significant changes to the world as
expected. For example, if a parts tray is severely jostled or ar-
rives unexpectedly empty, an assembly robot’s world model
is likely to have been grossly violated. Such large distur-
bances occur very rarely (otherwise, they would have been
accounted for systematically by the robot’s designers!), but
are potentially catastrophic.

A common tradition in robotics and control has been to
model these disturbances in the hope of treating them ratio-
nally. One typically appeals to stochastic representations of
small perturbations, and introduces an optimal design (for ex-
ample, a Kalman filter) to handle them. Analogously, recov-
ery from catastrophe is similarly model-based, typically being
addressed by special “exception-handling” routines specifi-
cally written for each particular failure anticipated. But dis-
turbances are generally left out of nominal models precisely
because they are so difficult to model. The systematic origin
of the typical small disturbance often defies a stochastic rep-
resentation, and the resulting optimal designs may be overly
aggressive. If the human system designers haven’t imagined
a severe failure mode, then the system will be unable to react
to it when it occurs, with possibly disastrous results.

Feedback-controlled systems can be designed to confer a
level of robustness against both types of disturbance with-
out recourse to explicit disturbance models. On one hand,
asymptotically stable systems are generically locally struc-
turally stable. This means that the first class of disturbances
can degrade performance (e.g., biasing the goal set, or coars-
ening the neighborhood of the goal set to which all initial
conditions in its domain of attraction are eventually brought),
but if small enough, they cannot destroy the stability of the
(possibly biased) goal. On the other hand, if the closed-loop
system induced by a feedback controller exhibits a global (or
at least “large”) domain of attraction, then large disturbances
can never “take it by surprise,” as long as the original state
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space and dynamical model used to represent the world (not
the disturbance) remain valid following the perturbation. The
system will merely continue to pursue the same shepherding
function, now applied at the new state, with the same tire-
less progression toward the goal as before. Of course, such
disturbances need to be rare relative to the time required to
recover from them, or we should not expect the system to ever
approach the goal.

1.3.2. Feedback Strategies as Funnels

A decade ago, Mason introduced the notion of a funnel as
a metaphor for the robust, self-organizing emergent behav-
ior displayed by otherwise unactuated masses in the presence
of passive mechanical guideways (Mason 1985).4 He under-
stood that the shape of the guideways constituted an embodied
computational mechanism of control that ought to be rendered
programmable. In this paper, we embrace Mason’s metaphor
and seek to extend it to active electromechanical systems (i.e.,
possessing sensors and actuators) which are more obviously
programmable.

Figure 1 depicts the idealized graph of a positive-definite
scalar-valued function centered at a goal point—its only zero
and unique minimum. If a feedback control strategy results
in closed-loop dynamics on the domain (depicted as thex−y
plane in these figures) such that all motions, when projected
up onto the funnel, lead strictly downward (ż < 0), then
this funnel is said to be a Lyapunov function. In such a case,
Mason’s metaphor of sand falling down a funnel is particularly
relevant, since all initial conditions on the plane lying beneath
the over-spreading shoulders of the funnel (now interpreted
as the graph of the Lyapunov function) will be drawn down
the funnel toward its center—the goal.

Although the funnels strictly represent Lyapunov func-
tions, which may be difficult to find, we note that such func-
tions must exist within the domain of attraction for all asymp-
totically stable dynamical systems. Thus we loosen our no-
tion of “funnels,” and let them represent attracting dynamical
systems, with the extent of the funnel representing a known
invariant region (for a Lyapunov function, this would be any
of the level curves).

In Figure 2, we depict a complicated boundary such as
might arise when the user specifies an “obstacle”—here, all
states outside the bounded area of “good” states.5 Ideally,
we would like a control strategy that funnels all “good” states
to the goal, without allowing any to enter the obstacle. We
suggest this in the figure by sketching a complex funnel whose
shape is exactly adapted to the domain.6 Unfortunately, it is

4. Other researchers in robotics and fine-motion planning have introduced
comparable metaphors (Ish-Shalom 1984; Lozano-Pérez, Mason, and Taylor
1984).
5. Of course, this picture dramatically understates the potential complexity of
such problems, since the free space need not be simply connected as depicted.
6. Rimon and Koditschek (1992) addressed the design of such global fun-
nels for purely geometric problems, wherein the complicated portion of the

Fig. 1. The Lyapunov function as a funnel: an idealized
graph of a positive-definite function over its state space.

usually very difficult or impossible to find globally attractive
control laws, so Figure 2 often cannot be realized, for practical
reasons. Moreover, there is a large and important class of
mechanical systems for which no single funnel (continuous-
stabilizing feedback law) exists (Brockett 1983; Koditschek
1992). Nevertheless, one need not yet abandon the recourse
to feedback.

1.3.3. Sequential Composition as Preimage Backchaining

We turn next to a tradition from the fine-motion planning
literature, introduced by Lozano-Pérez, Mason, and Taylor
(1984)—the notion of preimage backchaining. Suppose we
have a palette of controllers whose induced funnels have goal
sets that can be placed at will throughout the obstacle-free
state space. Then we may deploy a collection of controllers
whose combined (local) domains of attraction cover a large
part of the relevant region of the state space (e.g., states within
some bound of the origin). If such a set is rich enough that the
domains overlap and each controller’s goal set lies within the
domains of other controllers, then it is possible tobackchain
away from the overall task goal, partitioning the state space
into cells in which the different controllers will be active, and
arrive at a scheme for switching between the controllers that
will provably drive any state in the union of all the various
domains to the single task-goal state.

This method of combining controllers in sequence is de-
picted in Figure 3. Note that the controller represented by
each funnel is only active when the system state is in the

domain was limited to the configuration space. In contrast, in this paper we
are concerned with complex boundaries that run through the velocities as
well—e.g., see Fig. 11.
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Fig. 2. An ideal funnel capturing the entire obstacle-free state
space of the system.

appropriate region of the state space (beyond the reach of
lower funnels), as sketched at the bottom of the figure, and
indicated by the dashed portion of the funnel. As each con-
troller drives the system toward its local goal, the state crosses
a boundary into another region of state space where another
controller is active. This process is repeated until the state
reaches the final cell, which is the only one to contain the
goal set of its own controller.

We are now in a position to approximate Figure 2 with
Figure 4, and this simple idea captures the essence of the
contribution of this paper.

This scheme affords the same robustness against distur-
bances discussed above. Local stability against small distur-
bances is obtained, because each funnel implies asymptotic
stability for that particular controller and goal point. It also
provides robustness against large, unanticipated disturbances,
because the control system has no higher-level state, or pre-
conceived plan. If the state of the system shifts to a distant
location, then the controller appropriate forthat particular
region of state spaceautomatically activates, and the process
begins again. Similarly, if the state takes a favorable leap
toward the goal state, or starts in the goal partition, then in-
termediate controllers will never be activated. Thus, as long
as the disturbance doesn’t send the state outside the union of
all the domains in the partition, it will be effectively handled.

As we try to suggest in Figure 4, this version of preimage
backchaining is particularly convenient when the obstacle-
free state space has a complicated geometry. Because the
domains used for the partition of state space must be invari-
ant, there is a natural notion of safety that arises from this
approach. If there are obstacles in the state space, but they

Fig. 3. The sequential composition of funnels. The goal point
of each controller lies within the domain of attraction induced
by the next-lower controller. Each controller is only active
outside the domains of lower controllers. The lowest con-
troller stabilizes the system at the final destination.

Fig. 4. A suitable composition of local funnels partitions the
obstacle-free state space (or a close approximation to it) into
cells. Within each cell, a unique controller will be active.
See Figure 16 for a composition of controllers that avoids the
obstacles in the real robot’s state space.

do not intersect any of the cells of the partition, then it fol-
lows that the state will never reach an obstacle while under
the influence of the composite controller.

1.4. Contributions of the Paper

When written a little more carefully, as is done below, it is
fairly easy to verify the theoretical validity of the backchaining
approach outlined above. In the absence of noise, each local
controller is guaranteed by definition to drive its entire domain
to its goal. In doing so, the controller forces the system into
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the domain of a higher-priority controller. This process must
repeat until the domain of the goal controller is reached.

For the nonlinear problems that inevitably arise in robotics,
however, invariant domains of attraction are difficult to de-
rive in closed form, so the utility of the approach is called
into question. Moreover, physical systems are inevitably
“messier” than the abstracted models their designers intro-
duce for convenience, and the question arises whether these
ideas incur an overly optimistic reliance on closed-loop mod-
els. Modeling errors may, for instance, destroy the correctness
of our method, allowing cycling among the controllers. Thus
we must turn to empirical tests to verify that our formally
correct method can produce useful controllers in practice.

The experimental environment for our juggling robot is
highly nonlinear and “messy,” and challenges the idealized
view of the formal method in several ways. We have no
closed-form Lyapunov functions from which to choose our
domains of attraction. Instead, we are forced to use conser-
vative invariant regions found using experimental data and
numerical simulation. Also, there is significant local noise
in the steady-state behavior of the system, so that even our
“invariant” regions are occasionally violated. Nevertheless,
as will be shown, our composition method proves to be very
robust in the face of these problems. We are able to create a
palette of controllers that successfully handles a wide range of
initial conditions, persevering to the task goal while avoiding
the obstacles, despite the significant noise along the way.

1.5. Organization of the Paper

This paper follows a logical development roughly suggested
by Figures 1–4. In Section 2, we provide a high-level overview
of the hardware and software, describe how entries in the
controller palette (suggested by Fig. 1) arise, and introduce
theJuggle, 8J , a controller used as a basis for all entries in
our palette. We also introduce variants of8J : catching,8C ;
and palming,8P . In Section 3, we introduce the notion of
a safe controller suggested by Figure 2, as well as formally
define the sequential composition depicted in Figure 3. In
Section 4, we implement the partition suggested by Figure 4,
and report on our empirical results.

2. The Physical Setting

2.1. The Hardware System

For the experiments described in this paper, we use the
“Bühgler,” a three-degree-of-freedom, direct-drive machine
sketched in Figure 5a, which has been discussed in a variety of
other settings (Whitcomb, Rizzi, and Koditschek 1993; Rizzi
1994; Rizzi and Koditschek 1996). Two cameras provide im-
ages of the ping-pong ball(s) at 60 Hz, and all computation,
from the image processing to the generation of the analog sig-
nals to the motor amplifiers, is carried out on a network of 20
transputers.

Figure 5b shows the workspace from above, and depicts
the various obstacles with which the robot must contend. The
inner and outer edges of the annular workspace are caused by
the “shoulder” offset and finite paddle length, respectively.
The visual boundaries are considered as obstacles, because if
the ball strays beyond these lines, the robot will lose track of
it and fail to juggle it. Finally, a flat obstacle (which we refer
to as thebeam) is introduced that disconnects the horizontal
workspace. The beam is very thin in the vertical dimension,
protruding into the workspace just above the plane of zero
height, and is situated as shown in Figure 5b. The robot may
pass under it, and the ball may pass over it, but no contact is
allowed between the robot and the ball in the region it occu-
pies, and neither is allowed to touch it. Thus, in addressing
the problem of how to bring a ball from one side of the beam
to the other, we encounter a simple situation wherein a re-
grasp maneuver (see footnote 1) is necessary for the task to
succeed.

Using the tangent-space notation of Abraham and Marsden
(1978), we denote the position of the ball byb ∈ B := R

3, and
the full state of the ball byT b = (b, ḃ) ∈ TB. Similarly, the
position of the robot is denoted byq = (φ, θ, ψ) ∈ Q := S3,
and the full state byT q = (q, q̇) ∈ TQ. While the ball is in
flight, we use the standard Newtonian flight model, ignoring
all effects other than gravity (which is assumed to be a con-
stant acceleration acting vertically downward). Robot–ball
collisions are assumed to be instantaneous, and are modeled
using Newton’s restitution model. The reader is referred to
the work of Rizzi (1994) for more detailed discussion of these
models.

2.2. The Software System

The full software system is depicted in Figure 6, with the var-
ious blocks representing high-level subsystems. Rectangles
represent the subsystems with considerable internal state: vi-
sion, observer, control, and actuator; while the circle in the
middle represents a transformation that has no significant in-
ternal state.

Ball states,T b, are interpreted at 60 Hz by the vision
system,V (cameras and image processing), which produces
image-plane locations at the same rate. These image-plane
locations are passed to the observer,O, which triangulates
estimates of ball position̂b ∈ B̂, and uses standard observer

methods to estimate the full state of the ball,T b̂ = (b̂, ˆ̇b)
∈ T B̂. The estimated ball state,T b̂, is fed back toV , to
direct its focus of attention, and also interpolated to produce
estimates at 330 Hz for the rest of the system. This nonlin-
earV –O sensing loop is discussed in detail and shown to be
asymptotically stable in another work (Rizzi and Koditschek
1996). In the present work, we have simply assumed that
convergence,T b̂ → T b, occurs at a time scale much faster
than that relevant to the larger loop, an assumption which
occasionally proves invalid, as discussed in Section 4.4.3.
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Fig. 5. The Bühgler Arm. The three joint values,q1, q2, andq3 are referred to asφ, θ , andψ , respectively, in this paper (a).
The horizontal workspace with obstacles: the beam, inner and outer paddle limits, and the boundary of the visible workspace (b).

Estimated ball states,T b̂, are passed through a memoryless
transformation,m : T B̂ → Q, to produce reference robot
positions,r = m(T b̂). Sincem is analytic, this block also
produceṡr and r̈ for use by the control system. Following
the work of Buehler, Koditschek, and Kindlmann (1990a),
them used for juggling leads to robot motion that appears to
be a distorted reflection of the ball’s motion, and we call it a
mirror law. The juggling mirror law used in this paper was
developed by Rizzi, and a detailed description is available
(Rizzi 1994). The mirror law uses nine key parameters that
prescribe the spatial location and feedback gains for the juggle
behavior. In this work, we are mostly interested in modifying
the location of theset point, G (denoting the three parameters
used to prescribe horizontal position and the apex height of the
ball’s desired periodic vertical trajectory), thereby defining
juggling control strategies that are active in different regions
of the workspace. We also modify the vertical energy gains
to create the palming behavior. The juggling mirror law is
discussed in more detail in Section 2.5, and we introduce
control laws for other behaviors in Section 2.6.

The reference robot states created by the mirror law are
fed to an inverse-dynamics joint-space controller (Whitcomb
1992; Whitcomb, Rizzi, and Koditschek 1993),C, which
produces torque values,τ . The torques are used by the ac-
tuator block,A (amplifiers, motors, etc.), which generates
true robot-joint states,T q ∈ TQ. The robot states are
sensed and returned toC for feedback control. TheC–A
control/actuation loop has been shown to be globally asymp-
totically stable, so thatT q → T r whenever̈r is continuous.
As for the sensor block,V –O, we have assumed that the
transients of theC–A loop have died out by the time of any
robot–ball interaction, and, hence, thatT q = T r. Again,
in practice, the transients are generally rapid enough to sup-

Fig. 6. Flow chart showing the various functional blocks of
the system: vision,V ; observer,O; mirror law,m; control,
C; and actuation,A. The parameters of interest to this paper
all reside inm.

port this simplified reasoning; however, in some situations we
inevitably pay a price in performance. This topic is further
explored in Section 4.4.3.

Together, all the blocks depicted in Figure 6 form a dy-
namical plant, or filter, relating inputsT b to outputsT q. We
denote this filter by8, and loosely refer to it as a “controller.”

2.3. The Closed-Loop System

Figure 7 depicts the interconnected robot-environment (ball)
system that arises when a falling ball excites the visual field of
the hardware and software system just described. We denote
the resulting closed-loop dynamicsF8, where the subscript
reflects the dependence of the robot’s reactions, and hence
the evolution of the coupled robot-environment states, on the
blocks of8 depicted in Figure 6. It turns out that the repet-
itive continuous trajectories of this closed-loop system can
be much more readily understood by passage to an induced
discrete-event sampled mapping—the “return map,” of the pe-
riodic orbits, that we denote byf8. This map (more exactly,
its iteration considered as a dynamical system) represents the
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Fig. 7. The closed-loop dynamics,F8, induced by8 and the
environment,E.

focus of analysis and experiment throughout the remainder
of the paper. We now describe in some detail the manner in
which the robot controller,8, gives rise to the closed-loop
dynamics,F8, and the relationship of these continuous dy-
namics to the central object of study,f8.

2.3.1. Collapse of Dimension to Ball Apex States

The robot controller,8, has been expressly designed to cause
all of the robot’s internal state to “collapse” onto a lower-
dimensional local embedding of the environment’s state in a
manner determined by the mirror law,m. In consequence,
after initial transients, the closed-loop dynamics,F8, can be
written in the coordinates of the ball apex states, as we now
explain. A much more thorough presentation of these ideas
may be found in an earlier work (Buehler, Koditschek, and
Kindlmann 1990b).

Consider the “total system” configuration space,X :=
B×Q×B̂, and its tangent space,TX = TB×TQ×TB̂, that
represents the state space for the coupled robot-environment
pair. Given the physical models introduced above, the dynam-
ics of this coupling, denotedX8, are induced by8, Newto-
nian ball flight, and impacts between robot and ball. In par-
ticular, the coupling between robot and environment occurs
via collisions that take place on thecontact set,C ⊂ X, com-
prising those configurations where the ball and the robot’s
paddle are touching. Our simple impact model introduced in
Section 2.1 amounts to a morphism (Hirsch 1976) ofTCX
into itself 7—a rule by which a new ball velocity at contact is
determined by a linear combination of its old velocity and that
of the robot’s paddle normal, with positions instantaneously
unchanged.

7. The ball’s velocity changes discontinuously while its position remains
fixed. In contrast, since the mirror law specifies robot positions that depend
on the ball velocities, the robot’s position is commanded to change discon-
tinuously after each impact (Rizzi and Koditschek 1993). Of course, this
discontinuity can never be tracked “instantaneously” by the robot controller,
and the impact event represents one of the chief events that belie our naive
assumption in the next paragraph concerning the invariance ofM.

Define the mirror surface M ⊂ TX to consist of
those states satisfying simultaneously the constraint equations
T b̂ = T b andT q = Tm(T b).8 The first of these corresponds
to an error-free estimator (the internal states ofV –O in Fig. 6
having converged), and the second corresponds to an error-
free controller (the internal states ofC–A in Fig. 6 having
converged). SinceM is attracting and invariant underX8,
we concentrate on the restriction dynamics,X8 | M, as men-
tioned in Section 2.2. We find it most convenient to do so in
“ball coordinates,” as follows. Notice that the mirror surface,
M, being the graph of a function

M : TB → TX; T b 7→ (T b, T m(T b), T b), (1)

is parameterized byTB usingM as a global change of coor-
dinates. TakeF8 to be the representation of the restriction
dynamics,X8 | M, expressed inTB coordinates viaM. In
symbols, denoting the respective flows (i.e., the time trajecto-
ries generated by the respective vector field) by the superscript
t , we haveF t8 := M−1 ◦ (X8 | M)t ◦M.

The mirror law,m, is so designed that if the robot’s pad-
dle had infinite extent, and if the robot’s visual apparatus
had an unbounded view, then the ball’s flight under grav-
ity would ensure a return to the contact set after each col-
lision. In ball coordinates, this amounts to asserting that
P := M−1(TCX ∩ M) ⊂ TB is a global Poincaré section
(Guckenheimer and Holmes 1983; Koditschek and Buehler
1991) for the relaxation oscillatorF8.9 From the computa-
tional and conceptual points of view, it turns out that the col-
lisions,P, are less convenient to examine than the set of apex
points, at which the ball’s vertical velocity vanishes. Namely,
decompose the ball’s (Euclidean) configuration space into
its one-dimensional vertical and two-dimensional horizontal
components,B = V × H, with the induced state-space de-
composition,TB = TV × TH. Denote byF−ta

8 the map that
takes a ball just before collision with the robot back to its
previous apex. Then using this last change of coordinates,

F
−ta
8 : P → TH × V,

we may study the iterates of the ball’s return to apex on the
transformed Poincaré section,TH × V ⊂ TB.

2.3.2. The Horizontal Return Map at Ball Apex,f8

Denote by(f8, g8) the manner in which the ball’s state at a
previous apex gives rise to its state at the next apex—this is a

8. This is a convenient abuse of notation, since in reality,T q = Tm(T T b).

However, for our simplified modelsT T b = N(T b), whereN denotes the
six-dimensional vector field of Newtonian flight in gravity. Hence, to be
truly precise we would have to writeT q = Tm ◦ N(T b), a usage whose
complexity seems not to be justified by any gain in understanding and whose
abandonment should not cause any confusion.
9. Since the paddle is finite and the cameras admit a relatively narrow viewing
area,P is in fact only a local Poincaré section, and part of the obstacle-
avoidance behavior to be discussed at length in the sequel involves modifying
8 so thatP is indeed always visited forever into the future.
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mapping fromTH × V onto itself. Buehler, Koditschek, and
Kindlmann (1990a, 1990b) showed that when the juggling
mirror law is restricted toV, g8 has global attraction toGV
(the vertical component of the set point). In contrast, only
local attraction of(f8, g8) toGH×GV has been demonstrated
to date.

Furthermore, Rizzi and Koditschek (1994) showed thatf8
andg8 are nearly decoupled. Indeed, empirical results con-
firm that the horizontal behavior off8 changes very little
within a large range of apex heights, and that the vertical sys-
tem is regulated much faster than the horizontal.

Thus, except where otherwise specified, we ignoreV
throughout this paper, and concentrate our attention on the
evolution of f8 in TH. Accordingly, for ease of exposi-
tion, we denote the horizontal goal setG (dropping theH
subscript), a singleton subset ofTH comprising a desired
horizontal position at zero velocity.

2.4. Obstacles

In this section, we briefly describe the origin of the obstacles
in TH × V with which we are concerned. We must start by
reverting back to the full six-dimensional space,TB, and the
restriction flowF t8. Although we attempt to be fairly thorough
in this section, some details are omitted in the interest of
readability. The reader is referred to two other works (Rizzi
1994; Burridge 1996) for the missing details.

There are three types of physical obstacle with which we
are concerned. The first consists of regions of the robot space
that are “off limits” to the robot,OQ ⊂ Q, whether or not
it is in contact with the ball. Robot obstacles include the
floor, joint limits, etc., as well as any physical obstacle in
the workspace, and have been studied in the kinematics lit-
erature. Recall that for a particular mirror law,m, each ball
state induces a corresponding robot state. Stretching our ter-
minology, we loosely definem−1(OQ) = {T b ∈ TB|m(T b)
∈ OQ}.

The second type of physical obstacle consists of subsets of
ball state space which are off limits to the ball,OTB ⊂ TB,
whether or not it is touching the robot. This set may include
walls, the floor, visual boundaries, and any other objects in
the workspace that the ball should avoid (such as the beam).
Note that this region resides in the full state space of the ball,
so for example, if the vision system fails for ball velocities
above a certain value at certain locations, such states can be
included inOTB.

The final type of physical obstacle is defined as the set of
ball states that are “lost.” Intuitively, this set, which we call
the workspace obstacle, OWS, consists of all ball states on
the boundary of the workspace that are never coming back.

We combine these three types into one general physical
obstacle,

O = m−1(OQ)
⋃

OTB
⋃

OWS,

occupying the ball’s configuration space.

These physical obstacles must be “dilated” in the (discrete-
time) domain off8 to account for physical collisions that
may occur during the continuous-time interval between apex
events. We proceed as follows.

For any ball state,T b , denote byτO
+(T b) the time to

reach the physical obstacle,

τO
+(T b) = min t > 0 : F t(T b) ∈ TO,

and by τO
−(T b) the time elapsed from the last physical

obstacle,

τO
−(T b) = max t < 0 : F t(T b) ∈ TO.

Similarly, denote the times to contact with the robot by

τ8
+(T b) = min t > 0 : M ◦ F t(T b) ∈ TC,

and

τ8
−(T b) = min t < 0 : ∃T x ∈ TC : F t ◦ Imp(T x) = T b,

whereImp is the impact map.
A discrete obstacle is any apex state whose future

continuous-time trajectory must intersect the obstacle, or
whose past continuous-time trajectory may have intersected
the obstacle,

Ō := {T b ∈ TH × V : τ+
O(T b)

< τ+
9 (T b)

∨
τ−
O(T b) > τ−

φ (T b)}.
We will return to obstacles in the discussion on Safety, in
Section 3.2.

2.5. Example: The Juggle8J

The generic juggling behavior developed by Rizzi for the Büh-
gler is induced by a family of control laws in which a single
ball is struck repeatedly by the robot paddle in such a way
as to direct it toward a limit cycle characterized by a single
zero-velocity apex point, orset point, G ⊂ H (we ignore
the vertical component here). We refer to members of this
generic class of controllers as8J . Under the assumptions
made in Section 2.3,8J reduces to its associated mirror law,
mJ , which is detailed elsewhere (Rizzi and Koditschek 1993;
Rizzi 1994) and described below.

2.5.1. The Mirror Law,mJ

For a given ball state,T b, we begin by inverting the kinematics
of the arm to calculate a robot position that would just touch
the ball:q(b) = (φb, θb,0) (recall eq. (5)). We chooseψ = 0
to eliminate redundancy. This effectively gives us the ball in
joint-space coordinates.

Next, we express informally a robot strategy that causes
the paddle to respond to the motions of the ball in four ways.
Here,φr , θr , andψr refer to the commanded joint values,
whereasφb andθb refer to the values necessary for the paddle
to touch the ball:
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1. φr = φb causes the paddle to track under the ball at all
times.

2. θr mirrors the vertical motion of the ball (as it evolves in
θb): as the ball goes up, the paddle goes down, and vice-
versa, meeting at zero height. Differences between the
desired and actual total ball energy lead to changes in
paddle velocity at impact.

3. Radial motion or offset of the ball causes changes inθr ,
resulting in a slight adjustment of the normal at impact,
tending to push the ball back toward the set point.

4. Angular motion or offset of the ball causes changes in
ψr , again adjusting the normal so as to correct for lateral
position errors.

For the exact formulation ofmJ , the reader is referred to
Rizzi’s earlier work (Rizzi 1994).

The mirror law has three parameters for each of the three
cylindrical coordinates (angular, radial, and vertical): a set
point, and two PD gains. In Section 2.6, we will set the
vertical gains to zero to create qualitatively different behavior
(palming), while in Section 4 we will generate a family of
different juggling controllers by changing only the angular
set point.

2.5.2. Analysis, Simulation, and Empirical Exploration of the
Domain of Attraction,D(8J )

The mirror law used in the experiments discussed in this paper
does not permit a closed-form expression for the apex-apex
return map. Recently we have made strides toward develop-
ing a mirror law that has a solvable return map (Rizzi and
Koditschek 1994), yet still generates similar behavior. As is
seen in the sequel, this would be very helpful to our methods,
but the absence of closed-form expressions does not impede
the ideas introduced in Section 1.3.

We define thedomain of attractionof 8 to G by D(8) =
{T b ∈ TB : lim

n→∞f
n
8(T b) = G} in the absence of obstacles.

For the choice of mirror-law parameters used in this paper,
D(8) contains nearly all ofTB such that the ball is above
the paddle. In Section 3.2, we will constrain this definition
by incorporating all the obstacles from Section 2.4.

Because of the complexity of the system, it is difficult to
ascertain the shape of the boundaries ofD(8J ) through sys-
tematic juggling experiments, especially with the presence of
obstacles. Nevertheless, in Figure 8, we display experimental
data used to formulate an approximation of what we call in
Section 3.2 thesafe domainfor a juggling controller operating
within the bounded workspace formed from the robot’s pad-
dle and visible region—the region of Figure 5b without the
beam obstacle (Burridge, Rizzi, and Koditschek 1997). The
particular choice of mirror-law parameters for this controller
comes from previous empirical work. In these plots, the axes
Rho andPhi refer to the horizontal polar coordinates of the
ball relative to the robot’s base.

To overcome this difficulty, and to speed up deployment,
we created a numerical simulation of the juggler. In Figure 9,
we display the same data as in Figure 8, but run through the
numerical simulation of the robot operating under8J rather
than the real robot. Since all but one of the starting conditions
that failed on the real robot failed in simulation, it is clear
that the simulation provides a conservative approximation to
the robot’s true actions. This simulation is used extensively
in Section 4 for finding conservative, invariant ellipsoids to
approximateD(8J ).

2.6. The Complete Palette

In Section 4, we deploy a selection of different controllers
from the palette represented by changes in the mirror-law
parameters. We start with a set of parameters that gives rise
to a robust juggling controller,8J0. Next, we take advantage
of the rotational symmetry ofmJ , changing only the value for
the angular component of the set point,φ̄b, while rotating a
numerically derived domain of attraction to match.

In addition to varying the set point for8J , we use two
other controllers based on the mirror law, but with choices of
parameters that lead to qualitatively different behaviors.

2.6.1. Palming:8P

If we set to zero the gains regulating the vertical energy of
the ball, then we find that the ball will lose energy with each
impact, finally coming to rest on the paddle. The lateral terms,
however, will continue to stabilize the ball at the horizontal set
point,G ∈ H. The closed-loop dynamics of this new behavior
are significantly different from juggling, as the paddle is in
continuous contact with the ball, exerting continuous control
over it. We refer to this behavior generically aspalming: 8P .
The continuous interaction between ball and paddle allows us
to tune the lateral PD gains higher for8P than for8J .

As our numerical simulator relies on the intermittent nature
of contact in juggling, we cannot use it to simulate palming.
Currently, we have neither an analytically nor a numerically
derived domain of attraction forf8P , but empirical results
have shown that the projection of the domain intoH is com-
parable in size to that off8J , if not larger. We use the same
horizontal domain for palming as for juggling, but we only
allow 8P to be active when the ball has very low vertical
energy, as suggested by empirical tests.

2.6.2. Catching:8C

The assumption that we may ignore the vertical subsystem
becomes invalid for very low set points, and we find that8J
behaves poorly when the ball is nearly in continuous contact
with the paddle. In these situations, theV –O subsystem may
not notice small bounces quickly enough, and is very suscep-
tible to noise. On the other hand,8P has PD gains tuned
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Fig. 8. Empirical data used to estimate the juggling domain,D(8J ). Each dot (+ sign) represents in apex coordinates a ball
trajectory that was successfully (unsuccessfully) handled under the action of8J . Because of the properties of the vertical
subsystem, most of these points are at nearly the same height, so only the horizontal coordinates are plotted.

Fig. 9. Starting with the same set of data points as in Figure 8, we used the numerical simulator of8J to predict whether the
states would be successfully (dots) or unsuccessfully (+ signs) handled.
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too aggressively for such bounces of the ball, and should be
switched on only when the ball is essentially resting on the
paddle. To guarantee a smooth transition from juggling to
palming, we introduce acatchingcontroller,8C , designed to
drain the vertical energy from the ball and bring it down close
to rest on the paddle. Currently, a variant of8J is used in
which the vertical set point is very low, and the robot meets
the ball higher than normal for8J . For an intuitive view of
how the domains for8J ,8C , and8P overlap, see Figure 15.

Owing to the mixed nature of this controller, we have nei-
ther analytical nor numerical approximations to its domain of
attraction. Instead, we use a very conservative estimate based
on the numerically derivedD(8J0) of Section 4.1. Although
this controller is not ideal, it removes enough of the vertical
energy from the ball that we can safely turn on palming. Cur-
rently, catching is the dominant source of task failures, as we
report in Section 4.4.

3. The Formal Idea: Safe Sequential
Composition

The technique proposed here is a variant of the preimage
backchaining idea introduced by Lozano-Pérez, Mason, and
Taylor (1984), although their algorithm was used for compli-
ant motion in quasi-static environments. We substitute sen-
sory events for the physical transitions that characterized their
control sequences.

3.1. Sequential Composition

Say that controller81 preparescontroller82 (denoted81 �
82) if the goal of the first lies within the domain of the
second: G(81) ⊂ D(82). For any set of controllers,
U = {81, ..., 8N }, this relation induces a directed (gener-
ally cyclic) graph, denoted0.

Assume that the overall task goal,G, coincides with the
goal of at least one controller, which we call81: G(81) =
G.10 Starting at the node of0 corresponding to81, we tra-
verse the graph breadth-first, keeping only those arcs that
point back in the direction of81, thus ending up with an
acyclic subgraph,0′ ⊂ 0. The construction of0′ induces a
partial ordering ofU, but the algorithm below actually induces
a total ordering, with one controller being handled during each
iteration of the loop.

In the following algorithm, we recursively process con-
trollers inU in a breadth-first manner leading away from81.
We buildU′(N) ⊂ U, the set of all controllers that have been
processed so far, and its domain,DN(U

′), which is the union
of the domains of its elements. As we process each controller,
8i , we define a subset of its domain,C(8i) ⊂ D(8i), that is

10. If the goal set of more than one controller coincides withG, then we
choose one arbitrarily (e.g., the one with the largest domain), and note that
all of the others will be added to the queue in the first iteration of the algorithm.

the cell of the partition of state space within which8i should
be active.

1. Let the queue contain81. Let C(81) = D(81), N =
1, U′(1) = {81}, andD1(U

′) = D(81).

2. Remove the first element of the queue, and append the
list of all controllers whichprepareit to the back of the
list.

3. While the first element of the queue has a previously
defined cell,C, remove the first element without further
processing.

4. For8j , the first unprocessed element on the queue,
let C(8j ) = D(8j ) − DN(U

′). Let U′(N + 1) =
U′ ∪ {8j }, andDN+1(U

′) = DN(U
′) ∪ D(8j ). In-

crement N.

5. Repeat steps 2, 3, and 4 until the queue is empty.

At the end of this process, we have a region of state space,
DM(U

′), partitioned intoM cells,C(8j ). When the state is
within C(8j ), controller8j is active. The setU′(M) ⊂ U
contains all the controllers that can be useful in driving the
state to the task goal. Note that the process outlined above is
only used to impose a total order on the members ofU′(M)—
the actual cellsC(8j ) need never be computed in practice.
This is because the automaton can simply test the domains of
the controllers in order of priority. As soon as a domain is
found that contains the current ball state, the associated con-
troller is activated, being the highest-priority valid controller.

The combination of the switching automaton and the local
controllers leads to the creation of a new controller,8, whose
domain is the union of all the domains of the elements of
U′ (i.e., D(8) = ⋃

8i∈U′ D(8i)), and whose goal is the
task goal. The process of constructing a composite controller
from a set of simpler controllers is denoted by8 = ∨

U′,
and is depicted in Figure 10. In that figure, the solid part of
each funnel represents the partition cell,C, associated with
that controller, while the dashed parts indicate regions already
handled by higher-priority funnels.

3.2. Safety

It is not enough for the robot simply to reach the ball and
hit it—the impact must produce a “good” ball trajectory that
doesn’t enter the obstacle, and is in some sense closer to the
goal. Intuitively, we need to extend the obstacle to include
all those ball states which induce a sequence of impacts that
eventually leads to the obstacle, regardless of how many in-
tervening impacts there may be. We do this by restricting the
definition of the domain of attraction.

We defineDO(8), thesafe domain of attraction, for con-
troller8, given obstaclēO, to be the largest (with respect to
inclusion) positive-invariant subset ofD(8) − Ō under the
mapf8(·).
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Fig. 10. The sequential composition of controllers. Each
controller is only active in the part of its domain that is not
already covered by those nearer the goal. Here,83 � 82 �
81, and81 is the goal controller.

3.2.1. Safe Deployments

If all of the domains of the controllers8j in a deployment
are safe with respect to an obstacle, then it follows that the
resulting composite controller,8 = ∨

8j , mustalso be safe
with respect to the obstacle. This is because any state within
D(8) is by definition withinDO(8j ) for whichever8j is
active, and the state will not be driven into the obstacle from
within DO(8j ) under the influence off8j .

4. Implementation: Deploying the Palette

4.1. Parameterization of Domains

While f8 is not available in closed form, its local behavior
at goalG is governed by its Jacobian,Df8, which might be
computed using calculus and the implicit function theorem
for simpleG. However, in practice (Buehler, Koditschek, and
Kindlmann 1990b, 1994) we have found that the Lyapunov
functions that arise fromDf8 yield a disappointingly small
domain aroundG relative to the empirical reality, and we
wish to find a much larger, physically representative domain.
Thus, we resort to experimental and numerical methods to
find a large and usable invariant domain.

We created a typical juggling controller,8J0, by using an
empirically successful set of parameters, with goal pointG0 =
(ρ̄0, φ̄0, η̄0) = (0.6,0.0,4.5). Using the numerical simulator
introduced in Section 2.5, we then tested a large number of
initial conditions,(hi, ḣi) = (xi, yi, ẋi , ẏi ), covering relevant
ranges ofTH (the starting height,vi , is the same for all runs,
as we are not concerned here with the vertical subsystem,

due to the decoupling ofH andV discussed in Section 2.5).
In Figure 11, we show samples of the “velocity spines” of
these tests. In each plot, one initial velocity,ḣi , is chosen,
and a range of positions is mapped forward under iterates of
f8. The shaded areas show the location of the first impact
of all states that are successfully brought toG0 (denoted “∗”)
without leaving the workspace serviced by the paddle. In the
left-hand column,̇yi = 0, while ẋi varies from large negative
to large positive. On the right side, the roles ofx and y
are reversed. These plots demonstrate the rather complicated
shape of the domain of attraction, as we have tried to suggest
intuitively in Figure 2.

4.1.1.D(8J0): The Domain of8J0

Currently, we have no convenient means of parameterizing
the true domain of8J0, pictured in Figure 11. Yet to build
the sequential compositions suggested in this paper, we re-
quire just such a parameterization of domains. Thus, we are
led to find a smaller domain,D0, whose shape is more readily
represented, as introduced in Figure 1, and which is invari-
ant with respect tof8J (i.e., f8J (D0) ⊂ D0). Ellipsoids
make an obvious candidate shape, and have added appeal
from the analytical viewpoint. However, the ellipsoids we
find are considerably larger than those we have gotten in the
past from Lyapunov functions derived fromDf8J . Inclusion
within an ellipsoid is also an easy test computationally—an
important consideration when many such tests must be done
every update (currently 330 Hz).

To find an invariant ellipsoid, start with a candidate ellip-
soid,Ntest ⊂ TH, centered atG0, and simulate one iteration
of the return map,f8, to get the forward image of the ellipsoid,
f8J (Ntest ). If f8J (Ntest ) ⊂ Ntest thenNtest is invariant un-
derf8J . Otherwise, adjust the parameters of theNtest to ar-
rive atN ′

test , and repeat the process. In Figure 12, we display
four slices through the surface of such an invariant ellipsoid
found after many trials (smooth ellipses), along with the same
slices of its single-iteration forward image (dots). Although
these pictures do not in themselves suffice to guarantee invari-
ance, they provide a useful visualization of the domain and
its forward image, and comprise the primary tool used in the
search.11 The invariant ellipsoid depicted in Figure 12 will
be denotedD0 throughout the sequel.

Relying on the rotational symmetry of the mirror law, we
now use8J0 to create a family of controllers by varying only
the angular component of the goal point,φ̄, keeping all other

11. SinceG0 is an attractor, the existence of open forward-invariant neigh-
borhoods is guaranteed. However, “tuning the shape” ofNtest by hand can
be an arduous process. This process will be sped up enormously by access
to an analytically tractable return map. Even without analytical results, the
search for invariance could be automated by recourse to positive-definite
programming (a convex nonlinear programming problem) on the parameters
(in this case, the entries of a positive-definite matrix) defining the shape of
the invariant set. We are presently exploring this approach to generation of
Ntest .
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Fig. 11. Shaded regions denote initial conditions that were successfully contained in the workspace while being brought to
the goal via iteration off8J : varying initial ẋi from negative (top) to positive (bottom) witḣyi = 0 (left column); varying
initial ẏi from negative to positive witḣxi = 0 (right column). The scale for all plots is meters.
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Fig. 12. Our 2-D slices of the invariant ellipsoid,D0 ⊂ H (smooth curves), and its one-bounce forward image,f8(D0) (dots).

parameters fixed, and rotatingD0 to match. We denote a
member of this family by8J0(φ̄), with goalG0(φ̄)and domain
D0(φ̄).

4.1.2.Dpaddle(8J0): Safety with Respect to the Workspace
Boundaries

The largest safe domain with respect to the paddle’s
workspace is indicated by Figure 11. However, since there
is no obvious way of parameterizing this set (recall that ge-
ometrically close approximations to this volume inTH will
typically fail to be invariant with respect tof8J ), we resort
to the more conservative approximation,D0, shown in Fig-
ure 12.

4.1.3.Dbeam(8J0): Safety with Respect to the Beam

In Figure 13a, we depict the simulated iterates off8J again,
but add the beam to the workspace. The zero-velocity slice of
the safe domain,D0, has also been added for comparison (the

ellipse with the dotted boundary). The gray area represents
those initial states with zero initial horizontal velocity that are
successfully brought toG0 without leaving the workspace or
hitting the beam (compare to the middle pictures of Fig. 11).
The dark region represents all states that hit the beam, either
initially, or after a few bounces. Note that all states in this fig-
ure that don’t hit the beam initially are successfully brought
to the goal. This happens becauseG0 is so strongly attracting
that states on the wrong side of the beam are simply knocked
over it, whereas those already near the goal never stray far
enough from it to reach the beam. In Figure 13b, we add
horizontal velocity to our initial conditions, and note that sec-
ondary images of the beam appear, demonstrating the added
complexity in the shape of the largest safe domain arising
from the introduction of the beam.

Any8J0(φ̄) whose domain does not intersect the beam or
its preimages, as shown in Figure 13, will be safe with respect
to the beam, as well as the paddle’s workspace.

Because the beam divides the horizontal workspace into
disjoint regions, we need to take advantage of the discrete
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Fig. 13. The safe domain for8J0 with the beam inserted. Light-gray areas represent successful initial states, while darker
areas show states that eventually hit the beam. Zero initial velocity is shown (a), and the appropriate slice ofD0 is added for
comparison. Foṙxi = 1.5m

s
(b), preimages of the beam are evident.

dynamics off8J to cross it (recall from Section 2.3 that this
is a return map). We do this by finding a disjoint, yet still
invariant, safe domain for8J0. We generate a series of small
ellipsoids starting on the far side of the beam, such that each
maps forward into the next, and the last maps forward entirely
into D0. We call this new disconnected, forward-invariant
domainD1 throughout the sequel.

In principle, findingD1 is not much more difficult than
finding D0. First we choose another controller close to the
beam on the far side,8J0(φ̄pre), and take a small neighbor-
hood,N1, surrounding its goal,G0(φ̄pre). This is thelaunch
window. Next, we take the forward image ofN1 under one
iteration of the discrete return map, and find an ellipsoid,N2,
that completely contains it. We then mapN2 forward, and
continue this process until we find an ellipsoid,Nn, whose
forward image is completely contained inD0. By construc-
tion, the union of ellipsoids,D1 := D0

⋃
N1

⋃ · · · ⋃ Nn, is
invariant underf8J , and safe with respect to the beam and
the workspace boundaries.

In practice, differences between the true robot behavior and
the simulator have proven too substantial for the small neigh-
borhoods,Ni , to effectively contain the trajectory of the ball
during the activation of the trans-beam controller. Instead,
we have been forced to build ourD1 domain via direct exper-
imentation. We inspect the actual experimental distribution
of apex points (that should have been inN2, according to the
simulation), and create an empirically derivedN ′

2. We then
repeat this process forN3, arriving at an empirically derived
N ′

3, and then again to createN ′
4. For the present case, this

turns out to be completely contained inD0. The empirically

derived trans-beam domain,D1, used in the experiments be-
low has four parts:N1, N ′

2, N ′
3, andD0, and is shown in

Figure 14, projected onto four orthogonal planes inTH.

4.2. Composition of Domains

The robot’s task is to capture and contain a ball thrown into
the workspace on one side of the beam, negotiate it over the
beam without hitting it, and bring it to rest on the paddle at
location GT = (0, ρ̄0, φ̄T ). We now describe the deploy-
ment created by hand, using the controllers constructed in the
previous sections to achieve this task.

4.2.1. Deployment

The only controllers in our palette capable of stabilizing the
dynamics aboutGT are the stable palming controllers with
goal pointGT , so we choose one with empirically successful
parameters:8P (GT ). The palming domain is a large ellipsoid
in TH, but its projection ontoV is much smaller, thus we only
allow palming for states with very low vertical energy. We
also use a catching controller,8C , that has a small domain
atGT , and that successfully reduces the ball’s vertical energy
from typical juggling values to values near zero (i.e., palming
values). This introduces the need for8J0(φ̄T )—a juggler
that attracts juggled balls toGT , but with nonzero vertical
energy. Note that by our construction,8J0(φ̄T ) � 8C(GT ) �
8P (GT ), but8J0(φ̄T ) |� 8P (GT ), so the system must go
through catching from juggling to reach palming. This idea
is depicted intuitively in Figure 15: in the left-hand figure,
8J draws a flat circular region of high-energy states toward
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Fig. 14. Four projections of the union of the disjoint ellipsoids,D1 := D0
⋃

N1
⋃

N2
⋃

N3, created by analysis of empirical
data. Notice the velocity components ofN2, which consists of apex points over the beam.

its goal,GJ , which lies withinDC . In the right-hand figure,
8C draws its (ellipsoidal) domain down in vertical energy to
its goal, which lies withinDP , a flat circular region of low
energy.

Starting with8J0(φ̄T ), we add new jugglers with new val-
ues of φ̄, such that each new goal lies just within the last
domain (which was a rotated copy ofD0), repeating this pro-
cess until we reach̄φ0, and the beam blocks further progress.
At this point, we useD1, the trans-beam domain, for8J0(φ̄0),
as described in Section 4.1.3.

Finally, we create another sequence of rotationally sym-
metric controllers on the far side of the beam, starting with
one whose goal lies atG0(φ̄pre), and continuing until the edge
of the visible workspace blocks further progress. The entire
palette of controllers is shown in Figure 16. Note that all
domains are simply rotated copies ofD0 except for the four
ellipsoids surrounding the beam, which make up the invariant
domain,D1, for the trans-beam controller of Figure 14. Some
of the interesting parameters of this deployment are listed in
Table 1.

Table 1. The Full Deployment, with Controller Types, Goal
Points, and Domain Typesa

Goal: Domain
Ellipses Type φ̄ Type

1 8P 0.3 DP

2 8C 0.3 DC

3 8J 0.3 D0
4 8J 0.15 D0

5–8 8J 0.0 D1
9 8J −0.64 D0
10 8J −0.81 D0
11 8J −0.97 D0
12 8J −1.12 D0
13 8J −1.26 D0
14 8J −1.4 D0

a. All goal points have the same radial component,ρ̄0 = 0.6, so we list
here only the angular component,φ̄. Ellipse numbers correspond to those in
Figure 16.
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Fig. 15. Juggle to catch to palm: the juggle drives all of its domain toGJ , which lies within the domain for the catch, but with
nonzero vertical energy (a); the catch reduces the vertical energy of the ball, bringing it down into the domain for palming (b).

Fig. 16. A theoretically sound deployment using the jump
controller of Figure 14.

Every member of this deployment was chosen by hand to
ensure that a path exists from all the domains to the task goal
state. The algorithm of Section 3.1 leads in a straightforward
manner to a linear tree with no branches, thus the ideal tra-
jectory of the system should be a stepwise descent from the
first cell of the partition entered through all the intermediate
cells, and finally to the catching and then to the palming cell,
where it should remain.

4.2.2. A Hierarchy of Controllers

The deployment and controller-switching scheme we have
just described relies for its formal properties on the abstracted
domain and goal properties of the constituent return maps. In

turn, the invariance and attracting properties off8 arise from
abstractions whose validity depends on the underlying track-
ing and convergence properties of the continuous controller
and observer. Thus, we have a hierarchy of controllers (and,
hence, of abstraction), where each level functions on the basis
of certain assumptions about the quality of performance of the
lower levels. As we see in Section 4.4.3, however, there will
be situations where the transients in the robot’s tracking of
the reference are too large for it to get to the ball despite the
mirror law, thus violating the underlying assumptions at the
lower level. Moreover, we see in Section 4.3 that the noise in
the system sometimes causes the ball to stray from all the do-
mains of the deployment, despite their theoretical invariance,
violating the properties assumed by the higher level.

The entire deployment of Section 4.2.1 may be thought of
as generating a single (complex) controller,8, with its own
goal and domain, which could be used as an element of a still
more complex deployment. When this is done, there will be
assumptions about the ability of8 to safely move the ball
across the beam and to its goal, and so the process continues.

In summary, a hierarchical system will function only as
well as its constituent abstractions can be realized empirically.
Since no model is ever perfect, all theoretical guarantees are
subject to operating assumptions. It is important to keep in
mind the lower-level assumptions being made, so that empir-
ical settings wherein such assumptions fail can be identified.

4.3. Characteristics of the Test Runs

In Figure 16, we depict the entire deployment of the previous
section by superimposing the zero-velocity slices of all the
various domains onto the horizontal workspace, along with
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projections of the nonzero velocity parts ofD1. There are a
total of 14 ellipsoids for 11 different controllers; the union
of 4 of them is associated with the trans-beam controller’s
domain,D1, with the same ellipsoid being used for the final
juggling and palming controllers (numbers 1 and 3 in the
figure). This is our hand-crafted realization of the concept
depicted in Figure 4.

4.3.1. A Typical Run

Figure 17a shows the trace of a typical run, with the active
controller plotted against time, while Figure 17b shows the
same run projected onto the horizontal workspace, along with
the deployment of Figure 16. Typically, the ball was intro-
duced into a cell of the partition that had very low priority,
such as ellipses 13 or 14 in Figure 16. The robot brought it
fairly quickly, within a few bounces, to the controller closest
to the beam on the far side (ellipses 9), where it stayed for
some time, waiting for the ball to enter the launch window,
N1 (ellipses 8), of the trans-beam controller’s domain,D1.

At this point the “messiness” of the system mentioned in
Section 1.4 is most evident, as the observer (recall Fig. 6)
sometimes “hallucinates” that the ball state is withinN1 (el-
lipses 8), thereby activating the trans-beam controller, and
then changes its estimate, which takes the ball state back out
of N1, turning on the prebeam controller (ellipses 9) again
(these spurious transitions are labeled “launch attempts” in
Fig. 17a). Although the eventual action of the robot at impact
(the dots in Fig. 17) is almost always correct, the third de-
gree of freedom,ψr , visibly shifts back and forth during the
flight of the ball, due to the large difference in goal location
between the pre- and trans-beam controllers (ellipses 9 and
8). Eventually, the true ball state entersN1, the trans-beam
controller (ellipses 8) becomes active, and the task proceeds.

In the particular run shown in Figure 17, the ball over-
shoots controllers 5 and 4, and goes straight from ellipses 6
to ellipses 3. The first catch attempt is unsuccessful, with the
ball exitingDC (ellipses 2) before enteringDP (ellipses 1),
so the juggle (ellipses 3) turns back on; after a couple of hits,
8C turns on again, and the ball is brought down to the paddle
successfully.

4.3.2. Descriptive Statistics

In Table 2, we list the percentage of successful trials within
each of three sets of experiments, which are described below.
We also show for all successful trials the mean and standard
deviation of the length of time from introduction to prelaunch
mode, time spent there before launch, time from launch to
palming, and total time from start to finish. Additionally, we
show the total number of regressive steps considered. The
“hallucinated” mode switches result from controller transi-
tions based on false observer transients, which change back
after the observer settles. All regressive steps actually taken
were associated with failed catch attempts, where the ball

moved out ofDC before it was inDP , and sometimes moved
to juggles further away than ellipses 3. The regressive steps,
both those “hallucinated” and those taken, remind us of the
gulf between the ideal assumption,T b̂ ≈ T b, and reality, as
discussed in Sections 2.1 and 4.4.3.

4.4. Deployment of Invariant Sets
We ran three sets of experiments, each with 60 trials. We
started off by carefully introducing the ball to a theoretically
correct deployment. Next, we added a set of “catchalls”—
controllers with domains not demonstrably safe, yet practi-
cally effective—and once again carefully introduced the ball.
We also modifiedDC to be more conservative, to reduce the
number of failures due to catching, letting a catchall surround-
ing it save the ball if it strayed out before reachingDP . Fi-
nally, we ran the second deployment again, but this time with
wild, almost antagonistic, introductory tosses of the ball. The
results of these experiments we now discuss in detail, and
summarize in Table 2.

4.4.1. Theoretically Correct Deployment

In our first set of experiments, the deployment was precisely
that of Figure 16—an exact implementation of the formal
algorithm presented in Section 3.1. The ball was carefully
introduced into the workspace 60 times, 49 of which (82%)
were successfully negotiated along the workspace, over the
beam, and safely brought to rest on the paddle. The ball was
knocked out of all safe domains five times while going over
the beam, and six times during the transition from catching to
palming, which is still being refined.

Some statistics concerning the various segments of a typ-
ical run are given in the first column of Table 2. Note that
more than half of the total time is spent waiting for the ball to
enter the launch window and get knocked over the beam, and
differences in the length of this delay account for most of the
variance in total task time. This results from the launch win-
dow being small relative to the noise in the robot-ball system.

The imperfect success rate for this formally correct control
scheme belies the exact accuracy of our models and assump-
tions. Nevertheless, despite the “messiness” of our physical
system, the relatively high success rate validates the utility of
our approach in a practical setting.

4.4.2. Adding Safety Nets

Given the inevitable infidelities of the robot and ball with re-
spect to the ideal models of ball flight, impacts, and robot
kinematics, a physical implementation will remain roughly
faithful to the simulation results, but inevitably depart fre-
quently enough and with significant enough magnitude that
some further “safety net” is required to bring balls that start
(or unexpectedly stray) outside the domain of the composite
back into it.

Using Figure 11 as a guide, we added very-low-priority
controllers with larger domains of attraction. These
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Fig. 17. The cell number or mode—also the ellipse number from Figure 16—plotted against time for a typical run, with a trace
of the ball’s vertical position added for reference (a). The dots represent the mode at the moment of impact. The horizontal
projection of the same trace, superimposed on the deployment of Figure 16 (b). The dots show the apex positions.

Table 2. Statistics Characterizing Three Sets of 60 Trials Eacha

Statistic Experiment 1 Experiment 2 Experiment 3

Number of Successful Runs 49 (82%) 57 (95%) 23 (38%)

Time (sec) to Reach
Prelaunch Mode: Mean 3.954 2.775 1.276
Standard Deviation 2.086 1.283 0.428

Time (sec) Spent in
Prelaunch Mode: Mean 9.811 8.368 13.671
Standard Deviation 10.020 5.879 8.498

Time (sec) from Launch to
Palming: Mean 3.871 5.837 4.351
Standard Deviation 1.821 4.456 2.204

Time (sec) from Throw to
Palming: Mean 17.636 16.980 19.299
Standard Deviation 10.190 7.809 8.300

Regressive Mode Switches:
“Hallucinated” 98 71 34
Actually Taken 4 0 0

Failed Catch Attempts:
Recovered 6 52 7
Lost 6 3 1

a. The first three rows give a breakdown for the successful runs of the total time into three segments: throw to prelaunch, time spent in prelaunch, and launch
to palming. The fourth row has the same statistics for total time from throw to palm. Regressive mode switches are “hallucinated” if the mode switches back
before impact.
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controllers have domains that in some cases extend beyond
the end of the paddle (but not into the beam), and are not the-
oretically invariant. Nonetheless, the idea behind our second
set of experiments was to use such controllers as backups for
the regular deployment, capturing the ball if it strayed away
from the controllers of Experiment 1, and channeling it back
into the theoretically sound portion of the deployment. In
addition, the presence of the catchall controllers allowed us
to reduce the size ofDC , thus avoiding some of the failures
resulting from bad catches.

The ball was again carefully introduced 60 times. Three
failures resulted from bad transitions from catching to palm-
ing, but the remaining 57 runs (95%) were successful. The
success of these catchall controllers confirms the simulation
results of Figure 11, suggesting that there exist larger invariant
domains than the conservativeD0, or evenD1.

In the second column of Table 2, we give statistics concern-
ing these test runs. Note that the more aggressive domains
bring the ball to the prelaunch mode faster, and actually launch
the ball slightly faster. However, the more conservative do-
main for catching results in longer delays before palming,
with many more failed catch attempts, although the catchalls
nearly always provided a safe recovery.

4.4.3. Testing the Limits

The final set of tests involved significantly wilder introduc-
tions of the ball. Several new controllers were added to han-
dle high lateral velocities of balls thrown into the workspace.
Although the base motor is quite powerful, we found that the
robot could react quickly enough to contain only those throws
landing relatively near its paddle. For those landing further
away, the mirror law generated a good reference trajectory,
but the robot was not physically able to track it in time (the
ball lands—reachesz = 0—in roughly 10 camera frames, or
0.17 sec). Of the balls that were thrown well and landed near
the paddle, including some with large horizontal velocity, 23
of 25 (92%) were successfully contained and negotiated to
the final state. In fact, the robot succeeded 23 of 24 times
when its favorable initial configuration enabled it to hit the
ball more than twice.

This experiment demonstrates, again, the problems that
may arise when the underlying assumptions (in this case, that
the robot is successfully tracking the mirror-law reference)
are no longer valid, as discussed in Section 4.2.2. Since the
mirror law generates reasonable trajectories during the normal
course of juggling, it would suffice to ensure that the robot
start in a state from which it can handle any ball state within
any domain of the deployment. This was not possible within
our taxing framework; thus the ball had to be introduced near
the paddle for the robot to contain it.

The other breakdown of our assumptions comes whenT b̂

is not trackingT b correctly at the moment of impact. This
leads to the incorrect choice of partition, and thus control law,

leading to undesirable behavior. Since our observer is quite
good, this only occurs when the ball meets the paddle soon
after leaving it, which only happens during catches. Thus, we
see that when the ball is thrown in such a manner as to allow
the robot to track the mirror law, it is the failure of the observer
to track the ball that is the dominant source of failure.

5. Conclusions

We have described an approach to creating switching control
algorithms that provides a theoretical guarantee of the safety
of the resultant controller, based on the properties of the con-
stituent controllers. Although the methods proposed in this
paper require theoretical constructs that may be difficult or
impossible to obtain exactly, we have shown that conserva-
tive approximations can be used in their place with very good
success. We believe that the developing systems discipline
described herein may be extended to build a variety of useful
dexterous machines that are similarly single-minded in their
pursuit of the user’s goal behavior and ability to surmount
unanticipated perturbations along the way.

Although the robot is running with a deployment of many
controllers, it is difficult for a casual observer to tell that there
is more than one controller. The machine’s motion seems
coordinated, the progress of the ball toward its goal seems
reasonably timely (see Table 2), and the response to obsta-
cles, and especially unanticipated disturbances (such as an
experimenter deflecting the ball in flight), looks dexterous.

There are several interesting directions of further study that
are highlighted by these experiments. Clearly, we need to de-
velop automated methods for finding larger invariant domains
than the extremely conservativeD0 found in Section 4.1. This
would allow fewer members in the deployment. It would also
be useful to extend the model introduced in Section 2 to ex-
plicitly include robot states in the design of a deployment of
Section 3, avoiding some of the problems mentioned in Sec-
tion 4.4.3.

The deployment created and used in Section 4 was care-
fully hand-crafted to ensure that there was a path from the
starting region to the goal. We would like to develop auto-
matic methods for creating deployments from a given palette
of controllers, such as the rotationally symmetric family of
controllers stemming fromD0. If the system were able to
automatically go fromG to8 to D, then it could choose its
own deployment by backchaining away from the task goal in
a manner analogous to the method used in Section 4.2.1.

We are also exploring ways to move the controller
smoothly from starting point to task goal. At any point in
time, the local controller’s goal would be moving toward the
task goal by descending a potential field such as those dis-
cussed by Rimon and Koditschek (1992). At any moment in
time, there would be trade-offs between the size of the domain
and the velocity of the local goal toward the task goal.
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