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Abstract 

W e  report on  our  init ial  efforts t o  build robot feed- 
back controllers tha t  develop increased capabilzty f r o m  
s impler  consti tuent controllers. Previous work wi th  
our  three degree of f reedom robot has  resulted in a 
machine  tha t  exhibits various dynamically dexterous 
skills of superlative ability but very  narrow behavioral 
scope. W e  focus  here o n  the  development of both a fo r -  
ma l i sm  and practice f o r  the  composition of consti tuent 
controllers. T h e  composite should yield automatically 
purposive combinations of these skills that reach goals 
n o  one  of the defining controllers could have achieved 
in isolation. T h e  specific task we init ially target,  the  
“dynamical pick and place”, requires the  robot t o  ac- 
quire balls that have been “randomly” thrown in to  i t s  
workspace and set t h e m  safely at rest in a specified 
location. W e  present here a brief overview of the con- 
st i tuent behaviors and a mechan i sm f o r  the ir  combi- 
na t ion  along wi th  documenta t ion  of our  pre l iminary  
empirical successes. 

1 Introduction 
We consider a sensor driven dynamical manipula- 

tion problem that seems analogous to  the more fa- 
miliar quasi-static Pick and Place. Past work in this 
area has resulted in an expanding family of working 
machines [14] that  exhibit superlative dynamical dex- 
terity in a narrow domain, as well as a growing body 
of theory to explain how [2, 131. We hope by study- 
ing the present problem setting to both enlarge the 
domain of robot dexterity and extract from the algo- 
rithms that produce it a primitive but very robust sort 
of computational intelligence. 
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1.1 Problem Statement 
Our three degree of freedom robot is equipped with 

a flat paddle and a (60 Hz) stereo camera system (see 
[14, 131 for a complete description of this robot.). Its 
workspace will be cluttered with fixed obstacles - 
some suspended from the ceiling creating low “doors,” 
and some protruding from the floor creating high 
“windows.” The suspended obstacles will hang low 
enough that the paddle can only just pass through 
the doors when level with the ground. The protrud- 
ing obstacles will be high enough that the robot can 
not carry the ball over them. 

A ball will be thrown without warning into one of 
the free cells defined by the obstacles. The robot’s 
task will be to acquire the ball, balance or bat it as 
required through the obstacles, and finally loft it into a 
destination receptacle. The work cell may be invaded 
by disturbances (we will poke at the ball with a stick 
as we do in the juggling work [13]) that  take the ball 
far off its course and off the track of the sequence of 
maneuvers previously planned. 

In this paper we outline our intended approach to 
this task and present preliminary results suggesting its 
feasibility. We have not yet implemented obstacles. 

1.2 Background 

Let b be the state of an environment and U the 
means by which a robot can change it according to 
the rule b,,, = f ( b o l d r u ) .  Much work in robotics 
is concerned with developing plans, U = I I ( t ; b I ) ,  to 
bring b from a specified initial condition, b l ,  to a 
desired final condition using time ( t )  as an explicit 
parameter. Such plans are often very sensitive to 
b I ,  and rely strongly upon a predictive model for 
the world. Instead of introducing “exception han- 
dling” to overcome these difficulties, we are concerned 
with constructing time-independent feedback-driven 
autonomous systems where U = @(b) .  

Our focus on this problem is inspired in part by the 
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HANDEY system developed by Lozano-Perez and col- 
leagues [5], who emphasized the importance of devel- 
oping task planning capabilities for situations where 
regrasping is necessary (although our problem is dy- 
namical rather than quasi-static). Kak and colleagues 
[16] have created a quasi-static assembly environment 
in the tradition of HANDEY that builds a plan based 
upon sensed initial conditions. An execution process 
senses exceptions to the planned evolution of states 
and produces actions to bring the world’s state back 
to the intermediate situation presumed by the plan. 

Research into reasoning about the interplay be- 
tween sensing and recovery at  the event level has been 
considerably stimulated by advent of the Ramadge- 
Wonham DES control paradigm Ill]. Lyons [lo, 91 
proposes a formalism for encoding and reasoning 
about the construction of action plans and their 
sensor-based execution, but explicitly avoids problems 
wherein geometric sensor reports must be used to esti- 
mate progress and thereby stimulate the appropriate 
event transit ions. 

Despite the many dissimilarities in problem do- 
main, models and representation, our work seems to 
relate most closely to  the “fine-motion planning with 
uncertainty” literature in robotics (for example, as ex- 
pounded in Latombe [7]) originated by Lozano-Perez 
and colleagues [8]. Indeed, our emphasis on robust- 
ness and error recovery as the driving consideration in 
robot task planning derives from the “LMT” frame- 
work and their original insights on fine motion plan- 
ning. In their work, high level progress is made 
through a sequence of controller actions whose success- 
ful termination is ensured via careful choice of com- 
pliant motions in the presence of rigid objects. The 
sequence itself has been designed via a back chaining 
of motion pre-images. In our work, the funneling [4] 
action of sensorless compliance to rigid objects is re- 
placed by the stability of general dynamical systems, 
but we borrow heavily from the notion of pre-image 
back-chaining, as will be seen in Section 4. 

Traditionally this literature focuses on quasi-static 
problems, with control actions restricted to piecewise 
constant velocity vectors. In contrast, we are inter- 
ested in Newtonian dynamical models, and our control 
primitive is not a constant action but the entire range 
of actions consequent upon a closed loop policy, Cp. 
Moreover, we never develop an explicit disturbance 
model. Our experience building working controllers 
[6] teaches us that disturbances arising from model- 
ing, sensor and calibration errors are countered by the 
local structural stability properties of stable dynam- 

ical systems. We also desire the system to recover 
from large, arbitrary and unanticipated perturbations 
(as long as they are relatively rare). 

Although the problems explored here address 
higher-level issues of task execution, there is a strong 
relation to previous work in dexterous manipulation 
(in particular “robot juggling”) performed in our labo- 
ratory. We believe that these ideas can be extended to 
build a variety of useful dexterous machines similarly 
single-minded in their pursuit of the task behavior and 
ability to surmount unanticipated obstacles along the 
way [14, 1, 131. 

2 Setup 

In the problem with which we are concerned, there 
is a robot, which we can control directly, and an envi- 
ronment (the ball in our experiments), which can only 
be manipulated through contact with the robot. The 
task is to  devise a strategy for the robot that  drives 
the environment to a goal state, or set of states. 

2.1 Definitions and Notation 

Let b E B M R6 be the full state of the ball in 
Cartesian coordinates. Let T E R M Et3 x R3 be the 
state of the robot in joint space. 

2.1.1 Ball Flight 

The ball in flight will be modeled by the Newtonian 
dynamics with gravity pointing along the z-axis with 
magnitude -9. Due to the simplicity of the ball flight 
dynamics, we can derive a closed form expression for 
the ball position a t  time t in the future as a function 
of present state: b ( t )  = Ft(b) .  When the ball and 
paddle collide we use the standard restitution model of 
collisions (See Synge and Griffith [15] for a discussion 
of restitution models). In short, we assume that only 
the ball’s velocity component normal to the paddle is 
affected, while neither the tangential component nor 
the robot is altered by impact. 

Unless the ball and robot are in continuous con- 
tact ,  it is natural to divide the trajectory of the ball 
into epochs of time punctuated by collisions. The k th  
epoch starts with the ball in state b k ,  and ends im- 
mediately after the next impact, in state b k + l .  The 
motion of the robot during the leth epoch will be de- 
noted ? ‘ k ( t ) .  The duration of the k th  epoch will be 
r k .  
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2.1.2 Controllers and Their Induced Return 
Maps 

Since the robot has no effect on the ball except a t  
contact, we will ignore from now on the trajectory of 
the actuator system, and only consider the state of 
the robot a t  the next impact. We are interested in 
robot strategies which are entirely dependent on the 
state of the ball, so we will denote the state of the 
robot immediately prior to  the next impact by the 
shorthand uk = @ ( b k ) ,  and use the collision law to 
determine the induced effect on the ball. 

Given the time to  impact, rk, the flight model, 
F t ( b k ) ,  and the collision model, C ( b , r ) ,  we can now 
express the "return map"for the post-impact state of 
the ball: 

Suppose there is an attracting set', G', arising from 
iteration of f a .  In our methodology, the specific goal 
of a controller, CP, is encoded by G ,  and it follows that 
the domain of attraction of CP to  G is given by 

2.2 The Experimental Apparatus 

All of the experimental work described in this pa- 
per has been implemented on the Biihgler robot de- 
scribed in [13, 141. This machine senses ball positions 
using 2 CCD cameras located above and outside the 
workspace, and senses impacts using a microphone at- 
tached to  the paddle. Although space limitations pre- 
vent an exhaustive list of modifications to  the setup of 
[13, 141, we will note that both a window manager and 
dynamical observers were modified to  allow the ball 
to be thrown into the workspace rather than carefully 
presented. 

The state estimates from the sensor system are fed 
through a nonlinear transformation, M ( b ) ,  to  arrive at 
a desired reference trajectory for the robot, r k .  This is 
in turn passed through a smoothing "follow-through" 
generator, and then to  a robot controller. The con- 
trollers we use are chosen from the class of inverse 
dynamics controllers constructed by Whitcomb [17] ~ 

Throughout our work, we assume that the observer 
has correctly converged on the true ball state, and that 
the robot is accurately tracking the reference trajec- 

A closed, invariant set G is attracting if it has the property 
8,  such that that there exists an open neighborhood, N ( 8 )  

f e M ( N )  E 8. 

tory by the time of impact. Our lab experience con- 
sistently supports this assumption. 

3 The Constituent Controllers 
The nonlinear transformation, M ~ above, follows 

the traditions of Buehler [2], and we will refer to  it as 
a "mirror law" accordingly. 

3.1 Mirror Laws as Fundamental Modes 

For the purposes of this work, we have added sev- 
eral new mirror-style reference laws, M ,  t o  the origi- 
nal, M J ,  which results in jugglzng - CP J .  These result 
in catchzng - CPc, palming - CPp, tossing ~ @ T ,  and 
placzng - @ K .  In this paper, we only discuss juggling, 
catching and palming as the other behaviors are still 
in their infancy. 

Juggling, Q J ;  The underlying mirror law, M J ,  used 
to  construct our juggling behavior is exactly that used 
in [13]. 

Catching, CPc; We have constructed a preliminary 
catching behavior based directly on M J  by choosing 
a set-point which represents an extremely low juggle 
(on the order of 10cm). This results in the ball's ver- 
tical energy being quickly dissipated while its lateral 
position is still well regulated. 

Palming, @p; The machine has been endowed with 
this capability since its inception [13]. Implementation 
is accomplished by again re-working the template for 
M J .  In this case gains are adjusted such that this 
hitting portion of the pitch law has been removed. 

3.2 Implementation 

There is little yet that can be said analytically 
about these different controllers and their domains of 
attraction or ranges of acceptable "set points." The 
one degree of freedom juggling case has been analyzed 
successfully by Buehler and Koditschek [l], and Rizzi 
and Koditschek [la] have made progress toward the 
two and three dimensional cases. Lacking formal re- 
sults for either the domains of attraction or viable 
ranges of set-points, we are nonetheless encouraged 
by the empirical results of [3] and believe that useful 
conservative estimates of these characteristics can be 
derived either computationally or experimentally. 

In [3] we display statistical data demonstrating that 
the juggling and palming behaviors will robustly drive 
the ball to  goal points located throughout large regions 
of the workspace. Once there, the regulation about the 
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fixed points is good, and the repeatability of average 
location (e.g., of apex) is very good. 

4 A Manipulation Sequence 
This section presents initial work on autonomous 

“sequencing” or “chaining” of the behaviors of Sec- 
tion 3 in order to accomplish a higher-level goal. In 
section 4.2, we demonstrate our initial attempt at  im- 
plementing the ideas described below. 

Presuming that we have a “task goal” and a finite 
set of behaviors, we wish to develop a directed graph 
based on the idea of preparation introduced in 4.1. 
Next we find a behavior whose goal set coincides with 
the task goal (for now, we assume that this is possi- 
ble). Using a recursive algorithm similar to preimage 
backchaining [SI, we then set up a partition of the 
ball’s state space by moving away from the goal node 
of the graph in a breadth-first manner and choosing 
the appropriate subset of the domain of attraction of 
each behavior encountered. 

4.1 Preparation Graphs and Composite 

Say that behavior @I prepares behavior @2 if the 
goal set of @I lies within the domain of attraction 
of @ p z .  This relation may be symmetric or transi- 
tive, but need not be. For any set of behaviors, 
S = {@I, @ 2 , .  . . , @ N } ,  there is a directed (possibly 
cyclic) graph, Gs induced by the prepares relation. 
The nodes of Gs represent the elements of S ,  while 
the links represent the prepares relation. 

If the overall task goal set (5;)  coincides with the 
goal set of @i, for some i < N ,  then by starting with 
@i and recursively tracing the prepares relation back- 
wards through the graph, we can find SG s s, the 
set of all behaviors from whose domains the goal is 
achievable were the appropriate controllers applied a t  
the correct times. 

After finding a;, next choose a partial ordering on 
Gs which transforms it into an acyclic graph with all 
paths leading to @i. For example, consider a breadth- 
first search back from ai, as outlined in the following 
steps: 

Controller Design 

- 
1. Let the OPEN-LIST contain ai. Let Dip, = 

D@, , and DSG (1) = D@, . 

2. Append to the back of the OPEN-LIST the list 
of all behaviors which prepare the first element, 
and have not previously been placed on the list. 

3.  Remove the first element of the OPEN-LIST.  

4. For @ j ,  the new first element of OPEN-LIST,  
let @a, = Da3 - DsG,  and let D s G ( N  + 1) = 
Ds,(N) 

5. Repeat 2,3 and 4 until OPEN-LIST is empty. 

At the end of this process, the regions BQ, will be 
cells in a partition of DsG(m), where m is the number 
of cells in the partition. The automaton will choose 
behavior @j exactly when the ball state lies within 

The domain of attraction for the goal set can 
now be considered to be not just Da, ,  but Ds, = 

DQ. In this sense, the composite closed loop 
behavior can be thought of as arising from a new con- 
troller, @sG. 

The technique proposed here is a variant of the pre- 
image backchaining idea introduced by Lozano-Perez, 
Mason, and Taylor [8], but we choose to substitute 
sensory events for the physical transitions that char- 
acterized their control sequences. 

~ 

4.2 An Instance: A Simple Pick and 
Place Task 

Now consider the specific task of bringing the ball 
to rest on the paddle at  a specified location from 
“randomly” thrown initial ball states. The behavioral 
repertoire is limited to the three controllers, Q J ,  Qc, 
and @p.p discussed above. In the parameter space that 
represents their defining mirror laws, M J ,  M c ,  and 
M p  respectively, we have “hand tuned” three partic- 
ular settings. Call such a choice of settings a “deploy- 
ment.” 

For any deployment, @, we require the further in- 
formation, D+ and &,, in order to apply the procedure 
of section 4.1. In this initial work, we obtain this in- 
formation from empirical observation as follows. 

Palm D p  and Gp:  The goal point, G p ,  is precisely 
the task goal point. The domain, D p ,  is the set of all 
ball states with low vertical energy ( ~ ( b )  < K 1 ) .  

Catch DC and Gc: The goal point, Gc, is also the 
task goal point. The domain, D c ,  is the set of all ball 
states with low horizontal position errors ( ~ $ ( b )  < K a ) ,  
and low velocity errors ( ~ ( b )  < ICs), as well a bounded 
vertical energy ( ~ ( b )  < K 4 ) .  

Juggle VJ and 43: The goal point, G J ,  is located 
0.8m above the task goal point. The domain, V J ,  is 
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Figure 1: Behavior switching. (a) A quick example. (b) Several mode switches. (c) four attempts before success. 

assumed to be the entire stategpace, as we used no 
other behaviors. 

We now report on our initial empirical experi- 
ence with the composite feedback controller just con- 
structed. 

In figure 1, we show three traces of the vertical posi- 
tion of the ball as a function of time, coupled with the 
behavioral mode of the system. In the mode traces, 0 
represents jugglin’g, 1 catching, and 2 is the palming 
mode. 

In figure la, the ball is dropped into the workspace 
from above the goal point. As a result, the only cri- 
terion keeping the system in juggling mode is the en- 
ergy maximum for the catch. Immediately after the 
first collision, the energy is low enough for the system 
to try to catch the ball. At the second collision, how- 
ever, the observer predicts the post-impact conditions 
incorrectly, which sends the system back t o  juggling 
(due to  lateral error, not shown). The observer quickly 
corrects to  the actual ball trajectory, which has low 
enough energy to  send the system straight to  palm- 
ing, where the ball quickly loses its remaining energy. 

In figure l b ,  the ball is not introduced so nicely, 
and the robot juggles it a few times before the lateral 
errors are small enough for an  attempted catch. This 
time, the observer takes too long to  notice the second 
bounce, predicting that the ball has fallen further than 
it did in reality. Thus, ~ ( b )  falls low enough for palm- 
ing to  be switched on, but new ball data  quickly send 
the system back to  juggling. The lateral errors briefly 
dip low enough for the system to switch to  catching, 
then back to juggling, but finally catching turns on, 

and t,hen palming. 

In figure IC, the system tries to  catch three times 
and fails before finally bringing the ball down to the 
paddle on the fourth attempt. Once the system is in 
palming mode and the ball has settled on the paddle, 
i t  will remain there. 

The third example shown here demonstrates the ro- 
bustness of this approach to  planning. The system has 
no memory, and no “plan” in the traditional sense. 
It will jump from any node to  any other based on 
the sensed ball state, regardless of how or whether 
those nodes are connected in Gs. A traditional plan- 
ner might need pre-programmed exception handling to  
go from palming mode back to  catching or juggling, as 
such jumps violate the world model. The dynamical 
stability of each of our behaviors guarantees that the 
system will continue to  be inexorably drawn toward 
the goal state regardless of any unexpected changes in 
state. 

For a more complex workspace, the selection of the 
set points, gains, etc. for the various behaviors will 
be more difficult. We have begun to  look at the prob- 
lem of automatic “deployment,” where the system au- 
tonomously chooses where to place the set points so 
as to produce a favorable G s .  

5 Conclusion: Looking Ahead to  Dy- 
namical Obstacle Avoidance 

We are developing versions of each of our behav- 
iors that  will insure that  the ball does not penetrate 
an obstacle. Since these “safe” controllers are not yet 
complete a t  the time of this writing, we have no em- 
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pirical results to report. In [3] we outline our notion 
of safety that  provides the key ingredient in their 
design. 

If one re-reads this paper and substitutes for each 
@ the safe version, @s and substitutes for Da the in- 
duced restriction dynamics fa  ID^^, then all the same 
definitions and algorithmic procedures are applicable. 
Clearly, however, the domains, DQS,  can be expected 
to be much smaller, and the corresponding problem of 
deployrnent much more difficult. 

In the near future we plan to consider the “obsta- 
cle” of all those ball states that  can never again be 
batted because they are out of reach, or unalterably 
becoming so. We will attempt to build a “contain- 
ing” version of the sequenced manipulation of section 
4. In this scenario, a ball would be thrown into the 
workspace and the robot would first insure that it is 
brought “under control” so as not to fly out of reach 
before settling‘ into its descent toward the palming 
goal. Moreover, the robot would be capable of con- 
taining balls that  we try to poke out of its workspace. 

More realistic obstacles will raise even more inter- 
esting versions of the deployment problem. We hope 
to work on doors and windows soon. 

References 
M. Buhler, D. E. Koditschek, and P. J .  Kindl- 
mann. Planning and control of a juggling 
robot. International Journal of Robotics Re- 
search, 13(2):101-118,1994. 

Martin Buhler. Robotic Tasks with Intermittent 
Dynamics. PhD thesis, Yale University, New 
Haven, CT,  May 1990. 

R. R. Burridge, A. A. Rizzi, and D. E. 
Koditschek. Dynamical pick and place. Technical 
Report CSE-TR-235-95, University of Michigan, 
Ann Arbor, MI, 48105, April 1995. 

M. A. Erdmann and M. T. Mason. An exploration 
of sensorless manipulation. IEEE J. Rob. and 
Aut., 4(4):635-642, Aug 1988. 

Tomas Lozano-Pkrez et al. Handey: A robot sys- 
tems that recognizes, plans, and manipulates. In 
Proceedings IEEE Int. Conf. Robotics and Aut., 
pages 843-849, 1987. 

Daniel E. Koditschek. Robot control systems. 
In Stuart Shapiro, editor, Encyclopedia of Artifi- 
cial Intelligence, pages 902-923. John Wiley and 
Sons, Inc., 1987. 

[7] Jean-Claude Latombe. Robot Motion Planning. 
Kluwer, Boston, MA, 1991. 

[SI Tomis Lozano-Perez, Matthew T. Mason, and 
Russell H .  Taylor. Automatic synthesis of fine- 
motion strategies for robots. The International 
Journal of Robotics Research, 3(1):3-23, 1984. 

[9] D. M. Lyons and A. J .  Hendriks. Planning by 
adaption: Experimental results. In Proceedings 
IEEE International Conference on Robotics and 
Automation, pages 855-860, 1994. 

[lo] Damian M. Lyons. Representing and analyzing 
action plans as networks of concurrent processes. 
IEEE Transactions on Robotics and Automation, 
9(3):241-256, June 1993. 

[Ill P. J .  Ramadge and W. M. Wonham. Supervi- 
sory control of a class of discrete event processes. 
SIAM J.  Control and Optimization, 25( 1):206- 
230, Jan 1987. 

[12] A. A. Rizzi and D. E. Koditschek. Further 
progress in robot juggling: Solvable mirror laws. 
In Int. Conf. Rob. and Aut., pages 2935-2940, 
1994. 

[I31 Alfred A. Rizzi. Dexterous Robot Manipulation. 
PhD thesis, Yale University, 1994. 

[I41 Alfred A. Rizzi, Louis L. Whitcomb, and D. E. 
Distributed real-time control of a 

IEEE Computer, 25(5), 
Koditschek. 
spatial robot juggler. 
May 1992. 

[I51 J .  L. Synge and B. A. Griffith. Principles of Me- 
chanics. McGraw Hill, London, 1959. 

[I61 C. P. Tung and A. C. Kak. Integrating sens- 
ing, task planning and execution. In Proceedings 
IEEE International Conference on Robotics and 
Automation, pages 2030-2037, 1994. 

[17] Louis L. Whitcomb, Alfred Rizzi, and Daniel E. 
Koditschek. Comparative experiments with 
a new adaptive controller for robot arms. 
IEEE Transactions on Robotics and Automation, 
9(1):59-70, 1993. 

297 


