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SUMMARY
We propose an event-driven algorithm for the control of
simple robot assembly problems based on noncooperative
game theory. We examine rigorously the simplest setting –
three bodies with one degree of freedom and offer extensive
simulations for the 2 DOF extension. The initial analysis
and the accompanying simulations suggest that this
approach may indeed, offer an attractive means of building
robust event driven assembly systems.

KEYWORDS: Noncooperative game; Robot assembly; Event-
driven algorithm

1. INTRODUCTION
This paper, a sequel to that cited in reference [1], concerns
the simple assembly problem depicted in Figure 1, where a
set of objects lying on a table are managed by a robot
manipulator. The parts are unactuated and cannot move
unless gripped and dragged by the robot. We are interested

in developing feedback based approaches to the automatic
generation of actuator commands that cause the manipulator
to move such a set of pieces from an arbitrary initial
disassembled configuration to a specified final assembled
configuration. Traditionally within the motion planning
literature, assembly has been approached in an open-loop
manner: an “off-line” geometric trajectory planning phase is
followed by an “on-line” trajectory-tracking phase.2,3 How-
ever, general problems of motion planning may alternatively
be solved by an approach that employs feedback to achieve
“planning” via event driven reactions. In this paradigm, the
planning and action phases are consolidated: motion plans
and control commands are generated simultaneously by a
closed loop vector field – the result of applying the reaction
rules at every state encountered along the way. In contrast to
open loop plans, if the vector field is appropriately
constructed and implemented, then the robustness against
small disturbances as well as obstacle avoidance and
convergence to the goal state may be guaranteed. Closed
loop systems compensate as well for large unanticipated
disturbances that are not too frequent and leave the state
within the domain of attraction of the goal.

Recent work in extremely simplified problem settings
suggests that such feedback techniques may be extended to
the problems depicted in Figure 1 as well: the automatic
generation of parts mating sequences along with the motion
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Fig. 1. Simplified 2 assembly scenarios: (a) 2 DOF Exogeneous assembly; (b) 2 DOF Endogeneous assembly; (c) 1 DOF Exogeneous
assembly; (d) 1 DOF Endogeneous assembly.
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control problems that arise at each step in the sequence of
moves1,4. Although limited at present to such simplified
versions of the problem wherein the parts have one or two
degrees of freedom and have simple shapes, these tech-
niques may well generalize to higher degrees of freedom
and more complex shapes as does the original framework.
Yet there is another complication arising in multiple parts
assembly that has not yet been addressed in the closed loop
motion planning literature: the situation wherein the robot
inhabits the same configuration space as the parts being
manipulated*.

Figure 1(a), depicts the previously investigated exoge-
nous version of the problem. Since the pieces inhabit one
copy of �2 and the robot is isolated in another, the free
placements of the pieces in the associated configuration
space are independent of the robot’s location. A simulation
study of a feedback based solution to this problem has been
presented in reference [4]. In the one degree of freedom
version of this exogenous problem, depicted in Figure 1(c),
the pieces inhabit the line � and the robot is isolated in a
parallel copy. A correctness proof for a feedback based
solution to this one degree of freedom exogenous assembly
problem is offered in reference [1].

However, in the most relevant settings of the assembly
problem, the robot cannot be separated from the enviroment
to be manipulated – a situation we will call the endogenous
assembly problem. In this problem setting, the robot
inhabits the same copy of �2 as the pieces, as depicted in
Figure 1(b) for the two degree of freedom case. For the one
degree of freedom case depicted in Figure 1(d) the robot lies
on the same line as the pieces. Now, the free placements of
the pieces and the robot become interdependant. For
example, once the robot is included in the workspace, the
topology of the free configuration space will potentially
change depending on which part the robot mates.

1.1. Contribution of the paper
In this paper, we present a feedback based solution to the
endogenous assembly problem, offer extensive simulation
study of its generalization to the two degree of freedom case
(Figure 1b), and prove its correctness for the 1 degree of
freedom case (Figure 1d).

Specifically, we suggest in �2 and show in �1 that by
sequentially switching among a family of feedback con-
trollers, a plan can be generated in a completely reactive
manner that is ensured of convergence – either to successful
completion of the assembly or to termination in a spurious
local minimum if and only if the task is infeasible. This is
achived via the following steps:

Move part: We design a set of feedback controllers – one
for moving each different part. Each of these controllers
is defined by a navigation function5 for the corresponding
part-mated-to-robot pair that encodes the goal configura-
tion for assembling that part along with the obstacles
presented by all the other parts when doing so.

Mate part: The robot is sent to mate with one designated
part at a time and if the mating succeeds, continues with
the assembly of that part until it becomes blocked. The
mating is achieved by a controller again arising from a
navigation function that encodes the allowed mating
configurations and presents all the parts as obstacles.

Next part: If a mating fails because the robot encounters a
local minimum of the mating function prior to reaching
the designated part, then next-part is chosen and mate-
part is re-invoked. Similarly, when move-part terminates
at a local minimum of move-part function, then a next-
part is chosen and mate-part is re-invoked. Once blocked
in this fashion, the robot switches to the assembly of the
other part.

The assembly plan is implicitly defined by which and in
what order the individual parts’ controllers are selected
during a given run. An assembly plan is correct if it implies
the composition of controllers in a manner that ensures task
achievement in case of feasible assembly and termination in
case of infeasible assembly. Snapshots from a typical
simulation run of our algorithm applied to the degree of
freedom endogenous assembly problem depicted in Figure
1b, are presented in Figure 2.

1.2. Motivation
Why is this little problem worth studying? It is a matter of
considerable interest to us that a “dumb” feedback policy is
capable of making what appear to be “strategic” decisions.
For example, the problem depicted in Figure 2 requires that
a subset of initially correctly placed parts be moved out of
the way in order to bring a blocked part into place and our
feedback policy does indeed figure this out. We would like
to understand how such capabilities might be predicted and
generalized but the 1DOF case (Figure 1b), its utter
simplicity notwithstanding, turns out to be the hardest
endogenous problem for which we presently have a
provably correct algorithm. Thus, it appears that novel
techniques of analysis suited to this problem will be
required in order to better understand what degree of
“strategy” we may expect in general from such switching
feedback controlled systems.

Of course, the problem is completely trivial when we
remove the requirement that the task be based on feedback
(reactive planning). But for the problem of interest, rather
than developing a plan of assembly at the beginning of
manipulation which is then executed, our plan must be
generated as the assembly evolves. As will be shortly seen,
this is not a standard problem in either control theory or
optimization and the question now arises: how is the global
convergence of such a hybrid system to be guaranteed? This
paper develops a methodology for studying that question.
Our present methods of proof rely on the notion of a
noncooperative game. Convergence is established by show-
ing that the equilibria of the resulting discretely iterated
system have attracting properties – global asymptotic
stability in case of feasible assembly and local asymptotic
stability with no additional periodic limits in the infeasible
assembly case.

We are of course interested ultimately in more realistic

* There does not seem to be too much attention paid even in the
traditional motion planning literature to the distinction between
exogenous and endogenous assembly situations. A notable
exception is given in reference [6].
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tasks such as 2DOF (and ultimately 3DOF) endogenous
assemblies. Indeed, the 1DOF algorithm presented here
appears to generalize in a straightforward manner to such
settings as we try to suggest in the simulation study of
Section 2.5. However, the analysis developed here has not
yet found generalization to these settings and we offer the
present work in the hope that others may be motivated to
work on the problem as well.

1.2.1. Feedback. The tradeoffs between feedforward (pre-
dictive planning) and feedback (reactive planning) have
been by now exhaustively debated both in the robotics
literature and beyond7,8 to the point that there seems little
worth in holding forth for one or the other in abstraction*.
Crudely speaking, feedforward achieves performance and
feedback achieves safety: clearly, both are needed and may
be applied at the various levels in the robot command
hierarchy. Our view is that performance may always be
added after a system is working safely but that the converse
may not always be true.

The notion of safety in question here relates to the
predictability of the inevitably encountered error detection
and recovery cycle. Our experience suggests that failures in
machine reliability frequently occur because of events
which are not intrinsically unrecoverable but which violate
dramatically our models and cannot be anticipated. Wire-

wrapped boards occasionally send spurious signals, balls fly
off paddles in completely “wrong” directions, defective
parts slide off the gripping tool in a novel fashion; all
manner of temporary setbacks occur which “might” have
been made right with a little more a thought”. But there can
never be sufficient thought. While control and recovery
policies founded on human anticipation are clever, they
intrinsically take an “optimistic” view – that any possible
environmental state transitions have been included in the
exception handler. In contrast, feedback policies take the
most “pessimistic” view in providing a response to any
possible state the environment could be in at any moment.

To be a little more concrete, let the state of the
environment be represented by some set of elements b�B
(positions of each unactuated degree of freedom) and u be
the means by which a robot can change the state of the
environment according to the rule:

ḃ= f(b, r) (1)

In the specific problem posed in this paper, f represents the
manner in which the object’s position is affected by that of
the robot r when it is being moved by the robot. We seek a
means of assigning to the robot a next part to assemble as a
function of its previous state, a function,

r=�(b) (2)
that induces a closed loop system governed by the iterates of
the map:

T(b)=f(b, �(b))* A related discussion can be foun in reference [9].

Fig. 2. Sequence of moves in a 5 part assembly. Diamonds represent goal positions of the shaded, numbered disks. The robot is depicted
by the dark disk.
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in such a fashion that a large set of initial conditions are
eventually drawn into the desired goal G after a number of
moves. More preferably, we desire that almost all initial
conditions can be guaranteed to eventually arrive at the
goal.

1.2.2. Contrast with planning. In contrast, much work in
robotics is concerned with developing plans,

u=�(t; b0) (3)

to bring b from a specified initial condition b0 to a desired
final condition. In artificial intelligence, the tradition has
been to write down � in the form of “if-then-else”
statements. In control theory, the tradition has been to write
down � in a form that effectively inverts the plant around a
reference path from start to finish. Because they are written
by humans, plans having the form of (3) can result in
impressive behavior when all is as modelled. But � is often
very sensitive to b0 (an open-loop move-box-to-pallet will
fail badly if the box is not initially as assumed) and relies
very strongly upon the predictive model as represented by
Eq. (1). Of course most implemented robot systems
surround (3) with periodic sensor derived “verification”
checks and include “exception handling”. But no human
programmer can anticipate all the varied ways in which the
real world will depart from the response model (1). And
assuming, as is typical, that anticipated errors are recovered
by invoking a variant of (3) with the new view of the present
environment bk there is established an effective closed
loop,

bk+1 = f(bk, �(k, bk))

a form of (2) whose steady state properties are almost never
worked out and, moreover, rarely easy to ponder. Since we
hope to study the reactions the world will have to our choice
of actions, we prefer to start with (2).

1.3. Background literature

1.3.1. Robotic assembly and factory automation. Our
focus on correctness proofs for geometrically simplified
assembly feedback laws is motivated in part by the hope of
helping to integrate geometrically detailed approaches to
robotic assembly within factory automation settings. On the
face of it, the coarse view of part shape taken here seems to
limit the application of these ideas to relatively unstructured
problems with simple components wherein unexpected and
potentially persistent disturbances necessitate the reactive
emphasis. One imagines tasks such as changing batteries,
packing groceries, arranging furniture, and so on. In
contrast, the last decade’s advances in automated assem-
bly3,10,11 address the geometric and operational details of
mating, seemingly to the exclusion of error detection and
recovery procedures. For example, the Archimedes system12

already functioning in an important practical application
setting, incorporates fast collision detection applicable to
very complex part geometry, sophisticated mating func-
tions, and detailed provisions for respecting various user
specified insertion constraints, but no checking for the
success of the operations, nor any provision for handling

failure. Historically, the experience reported in the robotics
literature2,13 suggests that both geometric detail and online
error detection and recovery will be important even in
structured factory assembly applications. Our attention is
focused exactly on this problem – on the global convergence
of the assembly operation from as large a set of initial
conditions as possible – and we have intentionally “post-
poned” a careful treatment of the geometry in the interests
of beginning to get this aspect of the assembly problem
right.

Hybrid control schemes for factory automation, dating
back to Lyons’ pioneering work14 represent an increasingly
popular area of contemporary research15,16. The central
difficulty in applying such discrete control methods to
practical problems lies in choosing the “coarsening” – in
effect, designing a partition of the underlying configuration
space such that transitions between its cells can be exactly
modeled at the higher level. The convergence of our discrete
time game and its formal correspondence to continuous time
motions suggests an alternative approach to the problem of
hybrid control in assembly.

1.3.2. Game theory. Our analysis of the 1DOF discrete
system is guided in part by Ba

˙
sar’s study of noncooperative

games17. Specifically, we have found their work on the
existence, stability and iterative computation of non-
cooperative equilibria18 in nonquadratic convex Nash games
particularly relevent to our studies. Motivated by their
results, previous work has reported a noncooperative game
formulation of robotic tasks in general19,20 and a cooperative
game – theoretic interpretation of exogenous assembly1.

1.3.3. Nonholonomy. Assembly problems present more
environmental (unactuated) degrees of freedom to be
manipulated than there are robotic (actuated) degrees of
freedom with which to manipulate. In consequence, as it is
intuitively clear, contact with the environment must be
repeatedly made and broken, and as seems less obvious but
can be formally demonstrated, event driven robot strategies
must have a hierarchical nature. This may be seen by noting
that the formal correspondence to nonholonomical con-
strained dynamics21. In our view, the key observation in this
context has been made by Bloch et al.22 who have shown
that all mechanical problems featuring nonholonomic
kinematic constraint in mechanical systems fall into the
class of control systems identified by Brockett23 who
showed that even when these systems are completely
controllable, they fail to be continuously stabilizable. Our
interpretation of this formal result animates much of our
work in this area and indeed motivates the premises of this
paper: since no single smooth feedback law can avail, we
are led to introduce multiple families of feedback laws and
then tune and switch between them.

2. PROBLEM SETUP
Given N unactuated disks in �n (the “parts”), denote the
location of the center of the ith by bi , and its radius by �i .
The total configuration of the parts is denoted
b=[b1, . . . , bN ]��Nn. Given an actuated disk in �n (the
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“robot”), denote the position of its midpoint by r, and its
radius by �r . We will consider the simplest quasi-static
(purely kinematic) version of the problem* adopting the
simple first order generalized damper model for robot
motion,

ṙ=� (4)

where � denotes an applied force. All the results of this
paper can be generalized to the Newtonian model of motion
at the cost of greater notational effort yet without changing
the essential features of the problem or its solutions1.

We will posit a robot “gripper” capable of engaging and
releasing the parts as desired. As an extension of the
generalized damper model of motion, the parts are assumed
to move with the robot when engaged and are motionless
when released. Reflecting these assumptions we write

ḃi =ci(bi, r)ṙ i=1, . . . , N

where, ci is the coupling function between the robot and the
unactuated part that vanishes when the two bodies are not
touching, |bi �r|��i +�r . In this paper, it is convenient to
assume that ci(b, r)=1 when |bi �r|��i +�r (and that it
vanishes otherwise as stated). More realistic coupling rules
that vary smoothly with the relative distance have been
presented in reference [1] and do not change the essential
features of this problem. In contrast, introducing a more
realistic version of ci that makes the mating sensitive to the
relative orientation of the two disks adds another dimension
to the robot’s configuration space, raising attendant techni-
cal questions that we have not yet considered.

Assume, finally that perfect sensing information is
available: the robot always knows exactly where it and all
the parts are located. The robot’s task is to move the pieces
to their “assembled” positions while avoiding collisions.

2.1. Feedback-based solutions
A feedback based solution takes the form of a robot force
law, �=g(b), along with a gripper schedule that results in the
robot visiting and re-visiting (if necessary) each body until
the desired assembly is achieved and never permitting two
bodies to collide. Thus, we require a solution that brings all
initial configurations to the destination from within the
connected component of the configuration space and that
stops the robot after some time if the destination is
infeasible.

A navigation function, � : �→� is a non-degenerate
potential with one minimum in the interior of and taking its
maximum uniformly on the boundary of its domain, �,
some smooth manifold with boundary. The associated
gradient dynamical system

ḃ=� [D�]T(b) (5)

will asymptotically approach this minimum, without con-
tacting the boundary (i.e., avoiding collisions), from all
initial conditions outside a set of measure zero. It is
guaranteed that such functions exist for any configuration

space of interest including the present one [24]. Such a
function relevant to the present case, �̃, is constructed in
reference [1], inspired by the general design introduced in
reference [24] and may be written in the form:

�̃=
(	N

i=1 
i)
k

�
(6)

where the term 
i encodes the body’s distance from the
desired position in the completed assembly, di��n, as

i = ||bi �di ||

2, and the mutual intersections of parts compris-
ing the configuration space “obstacle” to be avoided is
encoded as

�(b, �)=�i≠ j
j=n
i=n

i=1
j=i+1

(||bi �bj ||
2 � ( �ij)

2), (7)

where �ij =�i +�j .
Now consider the application of this function to the case

of independently actuated bodies. The actuation vector
(torques applied to the ensemble of bodies) is generated
according to the gradient field (5). The curve b(t) simultane-
ously specifies the time varying position of the ensemble of
bodies in the configuration space. They appear in the
workplace to find their way cooperatively in the specified
“assembled” configuration if this is possible. This presumes
a robot that can independently and simultaneously manip-
ulate all the bodies at once – a most impractical assumption.
Rather, we will assume the robot can move one body at a
time and our original feedback controller must be adapted
so that the robot attends to one body at a time.

2.2 The exogenous setting: A cooperative game
To do so, remove the bodies’ independent actuators, and
place an actuated robot in a space “parallel” to their
workplace (refer to Figure 1(a) and (c)), leading to the
exogenous assembly case. It can be shown that there exists
no single continuous feedback control � for (4) capable of
forcing the robot to visit and re-visit each body until they
are all brought into the desired goal locations1. Instead, the
procedure in Reference [1] is to introduce a family of
continuous feedback laws based upon the navigation
function �̃* and then design an effective rule to switch
between them. We desire that the bodies’ motions tend to
decrease the “cost”, �̃. However, only the robot is actuated,
thus only one body may move at a time. A high-level
controller operates in principle by selecting a body i and
applying: the low-level control law ḃi =�Dbi�̃ – the
navigation function gradient evaluated while all the other
bodies remain fixed in their positions. The body is halted at
a relative minimum and the next body is chosen based on
having the largest magnitude of the navigation function
gradient at this minimum point. By interpreting Dbi

�̃ as the

* This structure characterizes most of the classical nonholonom-
ically mechanical systems and as shown in reference [21] also
describes the essential features of assembly problems.

* Our function �̃ takes exactly the same extrema as those
presented in reference 1, but differs in that we do not bother to
“squash” the unbounded derivatives at the boundary in order to
facilitate the presentation. Adding such “squashing” terms is
straightforward and does not change any of our results.
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derivative of the projection of �̃ to the N�1 dimensional
subspace where the other bodies are at (b1, . . . , bi�1,
bi+1, . . . , bN ), the high-level controller may be seen as
refereering an N-player game where each body’s payoff is
simply the projection of �̃ onto its configuration space.
Since each payoff is a coordinate slice of the same global
function, this is a cooperative (identical payoff) game. The
correctness of this two-level controller for the case n=1 is
demonstrated by establishing the global convergence of this
identical payoff game1.

2.3 The endogenous setting: A noncooperative game
We use the term game to describe a discrete dynamical
system on a state space of players, {bi}i=1,N* whose
evolution is governed by the limiting properties of a set of
coupled gradient vector fields in a manner that is now
described.

We presume a set of “payoff” functions �̃(b1, . . . , bN)i=1,N

– a collection of smooth scalar valued maps on the state
space. Denote by b̄i =

�
(b1, . . . , bi�1, bi+1, . . . , bN ) a vector in

the subspace �(N�1)n, corresponding to the removal of the ith

component of b��Nn. Define the vector field fi to be the
negative gradient of the map �̃i with respect to the vector bi

fi(bi; b̄i)=
�

� [Dbi
�̃i((b1, . . . , bN ))]T. (8)

Here, the semicolon notation is intended to call attention to
the parametric role that the other players b̄i = (b1, . . . , bi�1,
bi+1, . . . , bN ) will play in the motion of player bi . When
�̃1 = �̃2 = . . .= �̃N , we have the situation of Section 2.2.
Otherwise, we have a general noncooperative game. Motion
on this subspace of the state space will be governed by the
limit properties of the gradient dynamical system

ḃi = fi(bi; b̄i)

whose integral curve through the initial condition b0
i will be

denoted by f t
i(b

0
i ; b̄i). When fi(b*i ; b̄i)=0 implies that

Dbi
fi(b*i;b̄i) has full rank, it can be guaranteed that the limit

set f ∞
i (bi; b̄i)=

�
limt→∞ f t

i(bi; b̄i) of every trajectory through any
possible initial condition is some isolated singularity
f ∞

i (bi; b̄i)={b*i}. This rank condition holds generically over
b̄i but it will not be true for all b̄i – that is, the vector field
fi passes through bifurcation points as the parameters
(b1, . . . , bi�1, bi+1, . ., bN) vary over the state space. In order
to proceed, the same limiting properties must persist even at
bifurcation.

With these assumptions and notation in force, each
function �̃i gives rise to a (generally discontinuous) map
f ∞

i (bi; b̄i) of the entire space into the ith projection.
Letting �: �Nn→{1, . . . , N} denote some indexing scheme,
we refer to the iterates of the discrete map,
T(b)=(T1(b), . . . , TN(b)), with components

Ti(b)=�f ∞
i (b)

bi

if i= �(b), i=1, . . , N
otherwise

(9)

as determining a game of the players {bi}i=1, N . The fixed
points of the discrete system are the solutions of the game.

Note that for a simple 2-player game, which we will
shortly introduce, the indexing can be as simple as:

�(b1, b2)=�1 if b�f �1
2 (0)

2 if b�f �1
1 (0)

2.4 Endogenous assembly setting leads to a
noncooperative game
When the robot is mated in the same space with different
objects, the free configuration spaces for each mated robot-
body pair changes depending on which body the robot is
mated with.

For ease of exposition, we will specialize the discussion
to the one degree of freedom case, n=1. The simulation
study n=2 will make clear the appropriate generalization,
and this more focused discussion will facilitate the formal
presentation of Section 3. Consider 2 bodies*. The position
of each body, i=1, 2 is denoted bi�Bi, Bi�R, its desired
position di�Bi , and its radius �i. Let b�B1 B2 denote the
vector of all positions and d�R 2 the vector of all the desired
positions. The robot’s position is denoted by r�� and its
radius is �r .

The bodies must never be allowed to touch each other as
they are dragged along the way to their respective goal
positions. The physical constraint that the bodies cannot
overlap results in a free configuration space consisting of 2
disjoint regions, only 1 of those being physically mean-
ingful. For example, in the 2-body assembly case, the legal
body configurations are in B=Bu �Bi with

Bu =
�

{(b1, b2) : b2 �b1 >�12}; Bl =
�

{(b1, b2) : b1 �b2 >�12}

as depicted in Figure 3. A feasible task is one for which the
desired destination is in the same connected component as
the initial configuration.

When mated, the position of the robot and that of the
body are coupled, describing a new 1-disk (an interval)
centered at bi +oi �r with the radius �r +�i where
oi =sgn(r0 �b0

i ). Note that o1 and o2 will be of the same
magnitudes, but different signs where the sign of each will

* In this case, the bodies to be assembled are the players.

* Notice that barring a push communicated through intermediate
bodies, a robot on the same line as the spheres can manipulate only
its two nearest neighbors. We will require that the bodies never be
allowed to touch each other. In this setting, assemblies with a
greater number of bodies are not feasible in one degree of
freedom.

Fig. 3. Disconnected components of the assembly space.
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depend the relative position of the associated body with
respect to the robot. If the robot is mated to body 1, the legal
body configurations are B̃= B̃u � B̃l :

B̃u =
�

{(b1, b2) : b2 � (b1 +o1�r)>�12 +�r};

B̃l =
�

{(b1, b2) : b1 +o1�r �b2 >�12 +�r }

If the robot is mated to body 2, the legal body configurations
are B̃= B̃u � B̃l :

B̃u =
�

{(b1, b2) : b1 � (b2 +o2�r)>�12 +�r };

B̃l =
�

{(b1, b2) : b2 +o2�r �b1 >�12 +�r }

Without loss of generality, assume b2 <r<b1 so that o1 =�1
and o2 =1.

Now let us endow the controller with the objective
functions defined previously,

�̃i(b1, . . . , bN )=
(bi �di)

k

�̃

where �̃i encodes the N�1 remaining obstacles when the
robot is mated with body i. The obstacle function can then
be expressed as:

�̃(b)=(b1 ��r �b2)
2 � (�12 +�r)

2

Since only one body may move at a time, a two-level
controller is once again required and operates as already
explained. It chooses from among the low level controllers
fi(bi, b̄i)=�Dbi

�̃i , applies it until the robot becomes blocked,
navigates towards the next mating body selected based on
the indexing scheme and then proceeds similarly. We can
write the high level controller as the discrete dynamical
system

b(k+1)=T(b(k)) (10)

where the T : �Nn →�Nn is the transition map from one
“blocked” robot configuration to the next. The solutions of
the game determine whether the assembly is to be
succesfully completed or terminated. The analysis of these
solutions in Section 3 forms the central contribution of the
paper.

2.5. A simulation study: 2 DOF endogenous assembly
In conjunction with the 1DOF analysis, to be presented
below, we have pursued an extensive simulation study of the

2DOF version of our feedback solution to the endogenous
assembly problem*. This solution takes the form of the
hybrid controller depicted in Figure 4. The next-part
decision is made by an index function, � (9), that chooses the
part whose gradient field (8) has the greatest magnitude.

As outlined in the introduction, assemble-part is com-
posed of two classes of controllers: mate-part and
move-part. The mate-part controller is defined by the
gradient vector field generated by a navigation function
whose goal encodes the designated next mate and whose
obstacles include all the other parts. In the case that this
mating is impossible (i.e. the robot and the piece to be
mated are not presently in the same connected component of
the configuration space), the switching automaton goes back
to the next-part state and chooses the part whose gradient
magnitude is next greatest and the process repeats. If the
designated contact is achieved, then the move-part algo-
rithm defined by the gradient field (8) brings the robot-part
pair towards that part’s goal set until its motion becomes
blocked, that is, the vector field (8) goes to zero. The
switching automaton once more goes back to find-next state,
and the process repeats. When all the parts’ gradient fields
are sufficiently small, the automaton declares the assembly
task complete and the robot remains in its state. Thus, the
whole assembly can be viewed as the robot refereeing a
noncooperative game being played between subassemblies.

The nature of the present simulation study and the form
of the presentation are directly inspired by the work
reported in reference [4]. A typical anecdotal run illustrating
the rudimentary “strategy” displayed by this scheme has
been discussed in the introduction (Figure 2). However
strategic, the robot’s decisions will typically not yield
optimal performance, and, depending upon the particular
initial conditions and the difficulty of the final assembly,
some runs may result in unnecesarily numerous switches
between parts or arc length traveled. As an example,
consider the situation depicted in Figure 5. Observe that in
this particular case, no part except part 1 is near its goal
configuration.

The sample run for this case is shown in Figure 6 – where
the frames show sequentially (but not uniformly in time)

* Portions of this section are taken from reference [25].

Fig. 4. The composition of behaviors.
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sampled moves of the robot-starting with the initial
configuration. In the top center frame, the robot moves part
1 away from its goal position and then it moves part 4 closer
to its goal position. It then moves part 5 closer to its goal
position. In the next frame, we observe part 2 being moved
to a closer neighborhood of its assembled position.
Similarly, part 3 is moved to a closer neighborhood of its
assembled position in frame 6. Part 0 is then moved to its
goal position in the next frame. The robot then improves the
positional accuracy of the parts. Thus, it is clear that this
sequence of moves is not “intelligent” since the maneuver
might have been made in a smaller number of moves. It is,
however, fully automatic and an appropriate sequence of
moves will be made from any initial condition.

2.5.1. Statistics. To test the performance we have given up
in the interests of autonomous feedback plan generation, we
have conducted an extensive simulation study of the
problem domain depicted in Figure 7. Our assemblies
contain six disk-like objects of varying radii. We consider
six different randomly chosen final assembly configurations
of increasing difficulty as measured by log �(d) – the log of
the destination’s � value, corresponding to the “tightness”
of final fit as shown in Figure 7.

In all the simulation runs reported, the initial position of
the robot is the left upper corner of the workspace. In the
graphs, each data point represents the mean and standard
deviation of 25 runs with random initial configurations. In
this study, we use four measures of performance:

1. Normalized assembly path length, npl=
Rtf

ti
||ḃ|| dt

||b(0)�d ||
, as

reported in Figure 8;

2. Normalized robot path length, rpl =
Rtf

ti
||ṙ|| dt

||b(0)�d ||
as

reported in Figure 9;
3. The number of times the robot switched between the

parts as reported in Figure 10;
4. Positioning inaccuracy pi= ||b(tf )�d|| as reported in

Figure 11;

where ti and tf denote, respectively, the starting and finishing
times of an assembly.

Note that the assembly path length measures the distance
traveled in �2N by the disk-like parts from an initial
configuration to a final “assembled” configuration. In order
to account for the variations in the initial conditions, it is
normalized by the Euclidean distance from the initial
configuration to the goal configuration. Notice that this
“straight line” from initial condition to goal in the collected
configuration space is generally infeasible – it runs through
obstacles wherein the bodies must touch or overlap – so the
ratio must be greater than unity. How much greater than
unity seems like a reasonable measure of the “awkward-
ness” of the plan realized in the particular run.

In contrast, the robot path length measures the distance
traveled by the robot in its two dimensional configuration
space as it shuttles to and fro between the parts, both mating
to and then moving each one it visits. We now discuss the
graph summaries of this simulation study.

a. Normalized Path Length vs. Assembly Difficulty.
Figure 8 shows that normalized path length varies in manner
that matches our intuitive expectation – the closer the parts
need to be packed together, a greater distance they need to
be moved. In other words, the path-length performance
correlates inversely with the assembly difficulty: destina-
tions with very small � values corresponding to tightly
packed goals such as in Figure 7(f) are more difficult to
assemble than loosely packed goals with higher � values
such as in Figure 7(a). Note that path length is on average
about five times longer than the Euclidean distance between
the initial and final configurations. Two factors account for
this: First, the parameter k3 of the moving function �m is
chosen such that the obstacle avoiding term dominates
unless the part is close to its destination which means that in
general parts move away from their assembled positions
before moving towards them. Secondly, in many of the
randomly generated initial assembly configurations, some
parts, although at their assembled positions, must be moved
away before other parts can be assembled. This is another
illustration of how the Euclidean straight line configuration
space from start to goal is an overly optimistic normal-
ization measure – it runs through infeasible points.

b. Robot Path Length vs. Assembly Difficulty. The
normalized path traveled by the robot also matches our
intuitive notions of assembly difficulty. Again, tightly
packed assemblies such as in Figure 7(f) cause the robot to
travel a longer path length than that of a more loosely
packed assembly.
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2
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1
3

4
5
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0

4
5

3

Fig. 5. A 6 sphere assembly sequence with destination
�=8.8 1048.
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The path traveled by the robot is of magnitude about 30
times that of the Euclidean distance between the initial and
final assembly configurations. Three factors contribute to
this: First, as explained earlier on, the robot is initially
located on the upper left corner of the workspace – far from
the parts to be assembled and this fact is not accounted for
in our normalization. Secondly, the k2 parameter of the
mating function �m is chosen such that the obstacle
avoidance terms dominate which means that the robot
travels in a path distant from all the parts. Finally, in some
of the randomly generated initial configurations where some
of the parts are located close to their assembled positions,
the robot may move some parts away from their locations
before moving them back.

c. Switches vs. Assembly Difficulty. Figure 10 shows the
mean standard deviations for the number of switches. Here

we observe that the number of switches required to
complete an assembly rises as a function of the assembly
difficulty. The easy assemblies require on average each part
to be switched three times while the more difficult
assemblies have both a greater mean of the number of
switches as well as higher variance.

d. Positional Inaccuracy vs. Assembly Difficulty. One
expects that the positional inaccuracy of the assembled parts
should similarly increase with the difficulty of the assembly.
The more closely the parts need to be assembled together,
the more crucial it would seem that the robot place a part
precisely at its first attempt since the chance of that part
being blocked by other assembled parts increases once the
parts are assembled. Accordingly, as the assembly task
becomes more difficult (i.e. the destination lies close to the
configuration space obstacle so that the final destination
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Fig. 6. Sampled assembly sequence.
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entails a densely packed arrangement), we have seen above
that the robot spends more time in transit between the part
transportation episodes. In contrast, the data show that once
the parts’ destinations start almost touching each other,
positioning accuracy starts increasing. Our observation is

that the robot’s placement of the middle part in Figure 7
becomes increasingly “sloppy” (i.e. after placement, the
part’s center is not exactly, but rather almost at its
destination) as the difficulty of final packing increases.
More densely packed destinations may incur a steeper cost
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Fig. 7. Assemblies of increasing difficulty.

Fig. 8. Normalized path length statistics.

Fig. 9. Normalized robot path length statistics.

Fig. 10. Switching statistics.

Fig. 11. Positional inaccuracy statistics.
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function, so that the small gradients cannot occur until the
center part has been placed almost exactly at its designated
destination.

3. 1 DOF 2-BODY ENDOGENOUS ASSEMBLY
In this section, we will limit our attention to the particular
case of two parts, N=2, on the line, n=1. We will first
construct the game transformation function, T : �2 →�2, and
then simplify the associated dynamical system defined by its
iterates through a diagonalization argument. That is, we will
note that there exist two scalar valued functions, ri : �→�,
i=1, 2 such that

(T ° T)(b)=((T ° T)1(b1, b2), (T ° T)2(b1, b2))

=(r1 ° r2(b1), r2 ° r1(b2)).

These diagonalizing functions are called ‘reaction func-
tions’ in the game theoretic literature. Their existence is
guaranteed when �̃1, �̃2 are convex – a nearly universal
assumption within that literature. However, for the present
application, such an assumption would make no sense: the
space in question is not even convex, so there is no
possibility of defining convex functions upon it! Never-
theless, one fact is key: all the bodies must remain in the
connected component of the feasible assembly space they

start in. This constraint eliminates all but one branch of our
reaction sets which can then be represented as the graph of
“reaction-like” functions (that we denote rli(b̄i), rui(b̄i),
respectively, on each disjoint component of the feasible
assembly space). These functions are piecewise algebraic
and can be solved in closed form, as shown graphically in
Figure 12.

In turn, the availability of simple closed form expressions
for T ° T enables us to exhaustively analyze the steady state
properties of this game.

One final note in passing concerns the complexity of this
analysis relative to the extreme simplicity of the problem
setting. Indeed, in most numerical examples, the conclusion
depicted in Figure 13 emerges from straightforward graph-
ical analysis. Unfortunately, graphs do not constitute proofs,
and of course, we are concerned with developing analytical
tools that may achieve insight in higher dimensional settings
such as that simulated in Section 2.5.

3.1. Summary of analysis
Recall, that the only component, Ti(b), of T(b) in Eq. 9 that
moves at all must move the component of its argument, bi ,
to the limit set of the ith gradient system. This limit set
consists of those n-vectors, bi, that make the gradient vanish

Fig. 12. Top: Reaction function for feasible assembly space for part 1 (left) and part 2 (right); Bottom: Reaction function for infeasible
assembly space for part 1 (left) and for part 2 (right).
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as parametrized by the possible values of b̄i ,

Ri(b̄i)=
�

{bi��n : fi(bi, b̄i)=0}.

In the game-theoretic setting, the set Ri ={bi : bi =ri(b̄i)} is
known as the reaction set of part i – since it represents the
set of optimal moves for each body i given those b̄i of other
bodies17. In our case, they have the form as shown in Figure
14. Suppose for some b̄i��N(n�1) it is the case that the
Hessian, Fi(b

R
i , b̄i)=

�
Dbi

fi(bi, b̄i), has full rank at each critical
point, bR

i �Ri(b̄i). Standard arguments from dynamical
systems theory now imply (e.g., consult 26) that Ti will map
all but a set of measure 0 of bi��n to the local relative
minima of �̃ – i.e., those bR+

i �Ri(b̄i) at which Fi(b
R+
i , b̄i) is

positive definite. Suppose, further, that there is one and only
one such minimum, bR+

i �Ri(b̄i), for each parameter value,
b̄i. According to the implicit function theorem, we may now
express the surface of minima

R+
i (b̄i)=

�
{bi��n : fi(bi, b̄i)=0 and Fi(bi, b̄i)>0}

as the graph of a function ri : �N(n+1) →�n

R+
i (b̄i)=

�
{bi��n : bi =ri(b̄i)},

that solves for the root of fi(bi, b̄i)=0. Under these
circumstances, we might very simply parametrize the
component of Ti as

Ti(bi, b̄i)=ri(b̄i).

where ri�C[R(N�1)n, R] is referred to as the reaction
function17. In the present setting, this would correspond to
the situation that one part’s intermediate destination when
mated to the robot is determined completely by the other
part’s location, independent of its own initial placement.
The singleton property does not hold for the reaction sets of
our game, however their restriction to each disconnected
component of the free configuration space – R+

i (b̄i)� B̃u and
R+

i (b̄i)� B̃i respectively – does turn out to have only one
branch. These we will indeed parametrize as the graph of
the “reaction functions,” whose appropriate compositions,
rim ° rjm(bi), govern the motion of each mated part on each
disjoint component of the feasible assembly space.* The
points at which the reaction sets (functions) intersect –
shown in Figure 13 – constitute the fixed points of the
discrete map, T ° T, which in turn, determine the properties
of the solution to the game and, hence, whether the
assembly is successfully completed (feasible assembly) or
not (infeasible assembly).

3.2. Notation and preliminaries
Define b�R 2 as b=

�
[b1 b2]

T and d�R 2 as d=
�

[d1 d2]
T. In the

rest of the sequel, we assume w.l.o.g that (d1, d2)�B̃l.
Denote the canonical unit vectors as e1 =[10]T, e2 =[01]T and
a rotated basis as �1 =

�
e1 �e2 and �2 =

�
e1 +e2. Define �̃i =
 k

i /�̄
where


i =eT
i (b�d)

and

* Here and throughout the sequel, the index j is taken to be the
opposite of i and the index m is either l or u respectively.

Fig. 13. Graphical depiction of reaction sets. Left: Part 1; Right: Part 2.

Fig. 14. Fixed points of discrete maps (shown with black dots).
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�̃=��̃u�̃l; �̃u(b)=�� T
1b�o1�r � (�12 +�r);

�̃l(b)=� T
1b+o1�r� (�12 +�r)

Note that �̃�1
l (0) and �̃�1

u (0) corresponds to the two
boundaries of the obstacle space respectively. It is clear that

i vanishes on the boundary at two distinct points li and ui

li =di�2 +�j(�12 +�r �o1�r) ej; ui =di�2 +�i(�12 +�r +o1�r)ej;

�1 =1; �2 =�1

lying on the lower �̃�1
l (0) and the upper �̃�1

u (0) respectively.
Observe that if we define

�=��u�l �u(b)=�� T
1b��12 �l(b)=�T

1b��12

then

�̃=�(b��)��r; �=�r��o1

0 �; �r =�r(2�12 +�r).

It will prove convenient in the sequel to distinguish regions
of freespace – “feasible orthants” – defined by half planes
through these points both parallel and orthogonal to the goal
lines 
i =0. Accordingly, define

�ui
(b)=

�
eT

j (�b+ui) �li(b)=
�

eT
j (b� li) (11)

Now take

H+
ui

=��1
ui

(0, ∞]� B̃u; H0
ui

=��1
ui

[0]� B̃u;

H�
ui

=��1
ui

[�∞, 0)� B̃u; (12)

and similarly for B̃l.
Finally, define �i to be the set projection, �i(B)=

{bi:b�B}.

3.3 Analysis
We show in this section that the reaction set – the zero set
of the “self”-gradient which takes the form

Di�̃i =

 k�1

i

�̃2 �̃i where �̃i(b)=k�̃�
iDi �̃ (13)

is the graph of a function – when restricted to each B̃u and
B̃l respectively. The proofs of all but the most central of
these results are presented in [27].

Lemma 1: The zero set �̃i = �̃�1
i [0] is an hyperbola both of

whose distinct branches intersect transversally the free-
space boundary at ui and li respectively.

Lemma 2: The branches of �̃i both admit parametrizations
giu and gil by bj.

Taken together, these observations lead to the following
summary.

Proposition 1: The reaction set for part i consists of a
single connected curve in each component B̃u and B̃l that
intersects the boundary at exactly points ui and li, respec-
tively.

Lemma 3: The reaction set for part i is, when restricted to
the closed freespace B̃l or B̃u, parametrized by a piecewise

smooth implicit function – that is there exists a piecewise
smooth and continuous scalar valued map ri such that

{b�B̃l : Di�̃=0} � {b�B̃l : bi =ri(b̄i)}

and similarly for B̃u.

Proof: Let us first consider the case B̃l. First we show that
the reaction set in B̃l is a graph of some function and next we
will exhibit the function explicity. Based on lemma 6
presented in reference [27], the following holds:

(i) H�
l1

��̃1 =0/; H+
l2

��̃2 =0/;
(ii) H0

li
�
 �1

i [0]��̃i ={li}
(iii) H+

l1
�
�1

1 [0]=0/; H+
l2

�
�1
2 [0]=0/

Thus, each constituent open half space H�
i of �̃l includes

either 
�1
i [0] or �̃i but not both. Since lemma 1 shows that

�̃i has only one branch in B̃l B̃u, this demonstrates that the
reaction set itself has one branch. Note that the branches of
�̃i and 
�1

i [0] join at li or (ui) as shown in lemma 5
presented in reference [27] and �j(


�1
i [0]��̃i)=Bj. Thus,

the reaction set is the graph of some continuous function rim
defined on Bj – which can be constructed as follows:

r1m
(b2)=�d1

g1m(b2)
if b2��2(H

�
m1

)
otherwise

r2m
(b1)=�d2

g2m(b1)
if b1��1(H

�
m2

)
otherwise

To see that rim
is piecewise smooth, observe that each branch

is differentiable. To see that rim
is continuous, first consider

part 1. Take b2�B2. For b2��2(H
�
m1

�H+
m1

), the result follows
from the fact that it is differentiable at b2.
If b2��2(H

0
m1), then b2 =eT

2l1 by definition. Then
limb2→(eT

2l1)+r1m
(b2)=d1 and limb2→(eT

2l1)�r1m
(b2)=g1m(eT

2l1). Using
proposition 1, we know g1m

(eT
2l1)=d1. Hence the result. �

We can now define the discrete map governing the motion
of each player i as ril ° rjl

.

Proposition 2: When restricted to B̃l, ril ° rjl
(bi)=di .

Proof: First consider part 1 and write rjl
explicitly in

r1l ° r2l
:

r1l ° r2l
(b1)=�r1l

(d2)
r1l

(g2l
(b1))

if b1��1(H
+
l2
)

otherwise
(14)

Noting that d2��2(H
�
l1

), write r1 , explicitly in eq. 14,

r1l ° r2l
(b1)=

d1

d1

g1l
(g2l

(b1)

if b1��1(H
+
l2
)

if g2l
(b1)��2(H

�
l1

)
if g2l

(b1)��2(H
0
l1

�H+
l1
)

(15)

Now �̃2 �H+
l2

=0/ and H+
l1

�H+
l2

implies that �̃2 �H+
l1

=0/ ,
which implies that g2l

(b1)��2(H
�
l1

) which then implies
g1l

(g2l
(b1))=d1. Thus, r1i ° r2l

(b1)=d1. Similar reasoning can
be used to show r2l ° r1l

(b2)=d2. �
It can be seen that each player reaches its destination in at

most two moves – depending on their relative configurations
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and the first player.
Let us now consider the case for Bu. It will prove

convenient to establish the giu
are increasing functions.

Lemma 4: ||g�iu
||>1+

1
k�1

.

Let us also define intervals of Bi – seperated by points eT
j uj

and hi =g�1
ju

(eT
i ui) as:

G+
i ={bi : �ibi ��ihi}; G0

i ={bi : �ie
T
j uj <�ibi < �i hi};

G�
i ={bi : �ibi ��ie

T
j uj}; (16)

and note that they yield a partition of B̃i by showing that
�ie

T
j uj <�1hi . First, let it be remarked that since giu

is an
increasing function and �ie

T
j uj <�ie

T
i ui , g�1

ju
(�ie

T
j uj)<

g�1
ju

(�ie
T
i ui). As g�1

ju
(�ie

T
j uj)=dj , it then follows that �ie

T
j uj-

<�ihi. Finally, it is easy to show that G�
i =�i(H

x
uj) where

x=�+ if i=1
� if i=2

(17)

The following proposition shows that the reaction set is the
graph of a piecewise smooth and continuous function in
B̃u .

Proposition 3: When restricted to B̃u ,

riu ° rju
(bi)=

di

giu ° gju
(bi)

giu(dj)

if bi�G+
i

if bi�G0
i

if bi�G�
i

Proof: Write rju
explicitly in riu ° rju

explicitly as:

riu ° rju
(bi)=�riu

(dj)
riu

(gju
(b))

if �ibi��i(H
x
mj

)
otherwise

(18)

Now write riu
explicitly in eq. 18

riu ° rju
(bi)=

giu
(dj)

di

giu ° gju
(bi)

if bi��i(H
x
uj
)

if gju
(bi)��j(H

y
ui
)

otherwise

(19)

where y is understood to be opposite of x. First note that
�i(H

x
uj
)=G�

i . Secondly note gju
(bi)��j(H

y
ui
) implies that

�igju
(bi)>�ie

T
i ui and since gju

is an increasing function,
�ibi >�ig

�1
ju

(eT
i ui) which then implies that bi�G+

i . Hence, the
result. Finally, since riu ° rju

is the composition of two
piecewise smooth and continuous functions, it itself is also
so. �

Proposition 4 in reference [27] shows that a discrete map
having the form of riu ° rju

has no limit cycles.

Corollary 1: riu ° rju
has no periodic orbits other than fixed

points.

Proof: Since riu ° rju
is of the same form as that given in

proposition 4, it has no periodic orbits other than its fixed
points.

Remark: Our computations show that we have case (i) of
the proposition.

3.4. Example case
In this example, the desired destination is arbitrarily set to
d=(5, �1). Figure 15 shows the configurations spaces for
the edogenous case. The reaction sets are as shown in Figure
16. The discrete maps governing the motion of each player
are then as shown in Figure 17.

4. CONCLUSION
We have argued that endogenous assembly – assembly of
parts into a goal configuration by a robot that inhabits the
same workspace – is a generalization of the exogenous
assembly problem explored by the second author in a
previous paper [1]. This paper proposes a noncooperative
game-theoretic formulation for endogenous assembly

Fig. 15. Configuration spaces: The case when O1 =–pr and O2 =pr.

Fig. 16. Reaction sets.
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problems that seems to also effectively generalize the
perspective of a cooperative game introduced in that earlier
work.

Including the robot as a body with physical extent within
the workspace presents each robot mated part with a
different free configuration space geometry (and, likely,
topology) defined by the remaining ungrasped parts. We
have constructed a set of distinct artificial potential
functions �i, each encoding a navigation procedure for the
robot mated part moving among these obstacles. We
develop from these constructions an algorithm for choosing
the next part for the robot to mate with and moving that
mated pair against the backdrop of the stationary unmated
remaining parts.

We present the analysis of convergence of this algorithm
for the simplest instance of 1 DOF 2-body sphere assem-
blies within this framework along with an extensive
simulation study of its implementation in a 2 DOF
workspace. We have started to study the convergence
properties of the noncooperative game interpretation of
exogeneous assembly to 2 DOF N-body case. Our simula-
tions indicate that in the case of feasible assembly, the
assembly is always successfully completed where the
number of switches made is dependent on the indexing
scheme used. It remains to be proved analytically that the
scheme ensures the completion of the assembly task for all
arbitrary initial configurations in the case of feasible
assembly or its termination otherwise.
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