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Abstract—We report on progress toward a continuous
time full 6 DOF translational body state estimator for a
hexapod robot executing a jogging gait (with 4 consecutive
phases: tripod stance, liftoff transient, aerial, and touchdown
transient) on level ground. We use a sequence of dynamical
models imported into a standard Kalman Filter to fuse
measurements from a novel leg pose sensor and a conventional
inertial measurement unit. We implement this estimation
procedure on the hexapod robot RHex and evaluate its per-
formance using a visual ground truth measurement system.
We also compare the relative performance of different fusion
approaches implemented via different model sequences.

Index Terms—Legged Robot, Sensor Fusion, Kalman Fil-
ter, Leg Pose Sensor, Inertial Measurement Unit

I. INTRODUCTION

The hexapod, RHex [1], exhibits unprecedented mobility
for a legged autonomous robot [2]. Using an open loop
feedforward control strategy, the machine runs at speeds
exceeding five body lengths per second on even terrain
[3], and negotiates badly broken and unstable surfaces, as
well as stairs [4]. Initial empirical studies of controllers
relying on cheap and inaccurate sensory feedback cues
have resulted in significantly improved performance (in-
clinometers on slopes [5]; leg touchdown cues over broken
terrain [6]) and entirely new behaviors (body pitch sensitive
accelerometers for flips [7]; leg touchdown cues for pronk-
ing gaits [8]). Theoretical considerations and simulation
evidence [9] suggests that the availability of accurate, full
body state estimates as well as force interactions with the
surrounding environment throughout the stance and aerial
phases of locomotion, should confer considerably greater
agility still.
However, building a sensor suite that can deliver full

body state information — six configuration coordinates
together with their six time derivatives — at data rates
relevant to motor control (∼ 1kHz) remains a challenging
problem in legged robotics because of the constraints upon
onboard instrumentation combined with extreme variations
in operating regime. Recently, we have introduced a novel
leg configuration-based full body pose estimator (hereafter
referred to as the “leg pose sensor”) for a hexapod robot in
tripod stance [10]. In walking gaits with no aerial phase,
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complete 6 degree of freedom (DOF) body pose in contin-
uous time can easily be extended from the above tripod-
stance body pose in principle from a purely kinematic
model [11] without velocity state estimation. In contrast,
an alternating tripod runner experiencing significant aerial
phases (with the concomitant touchdown/liftoff transients) 1

would seem to require full body state estimation — both
velocity and configuration information. In order to build
the required estimators, of course, the sensor suite must
incorporate enough information to allow the reconstruction
of full state from the record of past measurement filled in
by some dynamical model.
During stance, complete 12 dimensional continuous time

body state estimates can be computed from the leg pose
sensor by means of direct pose measurement and recourse
to online differentiation. Absent any other available sen-
sors, these stance state estimates may be carried through
the transient and flight phases only by the adoption of
some dynamical prediction model. Although the RHex leg
pose sensor delivers accurate high bandwidth body pose
estimates during stance (potentially marred by drift effects
resulting from toe slippage [11]), overall performance
throughout a complete stride is limited by inaccuracies in
the transient phase models and the deleterious effects of
online differentiation. In contrast, an inertial measurement
unit (IMU) continuously delivers derivative (typically linear
acceleration and angular velocity) information over all
phases of a stride, degraded by saturation and drift effects
in the physical sensor that can dramatically reduce the
accuracy of the resulting integrated position estimates.
Their complementary strengths and weaknesses motivate
us to seek better body state estimation than either could
afford alone by fusion of the leg pose sensor and IMU
together. Therefore, in this paper we join to the leg pose
sensor a complete rigid body IMU (3 DOF rate gyro and 3
DOF semiconductor accelerometer) and compare the per-
formance of a few alternative dynamical models in fusion

1Note that hexapedal running gaits need not entail an aerial phase
to be “dynamical” in the sense of requiring careful management of
kinetic energy to insure balance and steady progress [12]. However, RHex
develops its greatest energy efficiency and highest speeds in gaits with
long aerial phases, hence, in this paper, we focus our empirical tests on
a “jogging” gait with an aerial phase exceeding 25% of the complete
stride. By “touchdown” and “liftoff” transients, we refer to intermediate
configurations where some number of legs fewer than three are in ground
contact.
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Fig. 1. Left: RHex with 4-bar leg equipped with strain-based leg configuration sensor stands on the meadow; Right: Four consecutive intervals during
the ith jogging stride, C(i).

algorithms that deliver translational body state estimates
throughout the entire stride in steady state hexapod running.
This represents an important first step in a general full
(12 dimensional) body state estimator we are presently
developing by fusing orientation data and importing more
accurate physical-based models for each phase.
The idea of sensor fusion has spread widely within

the mobile robotics community, largely for application
to wheeled vehicles, including pure inertial navigation
systems (INS) with Kalman Filtering [13], INS/GPS fu-
sion, sensor fault detection [14], model selection [15], and
INS/vision fusion [16]. However, for legged robots, we
have found only a very few accounts of sensor fusion,
addressing such problems as sonar-based localization [17]
and multilayered-decision algorithms [18]. Nowhere in the
databases we have searched2 have we come across any
paper related to full body state estimation in legged robots
by sensor data fusion of INS with other sensory modalities.
In summary, we find no prior statement nor solution to the
problem posed by this paper: the fusion of leg pose and
IMU sensor data in a dynamical gait.
Section II introduces notation and illustrates the nature

of the “jogging” gait we will study here, followed by
a description of algorithm of body state from two inde-
pendent sensing sources. Section III describes the various
dynamical models in each phase of a stride we will build
into our statistical filters. Section IV examines the accuracy
of the resulting body state estimator implemented on RHex
pictured in Figure 1 (Left), followed by a brief conclusion
in Section V.

II. BODY STATE FROM TWO INDEPENDENT SENSING
SYSTEMS

In this section, we first illustrate the dynamic locomotion
in a hexapod robot, followed by a brief review on the
structure of the standard Kalman Filter (KF) as a means of
establishing notational conventions . Next, we introduce
the methodology to obtain full 6 DOF body state in
translational motion from two independent sensing sources
(leg pose sensor and IMU) without any fusion as the
baseline comparison.

A. Dynamical Locomotion (Jogging Gait)

Determining the right dynamical model for the jogging
gait promises to be complicated since the physical robot

2We have searched the Compendex and IEEExplore data bases using
the key words “Legged Robot”, “Sensor Fusion”.

acts as a lagrangian system with 36 different models
depending on touchdown-stick/touchdown-slip/liftoff con-
ditions on each leg. Without sensing ability to detect toe
slippage as well as unknown stability condition under fast
switching among large number of models, we simplify
that problem by using three models in four successively
repeating phases - tripod stance phase, liftoff transient
phase, aerial phase, and touchdown transient phase - as
a starting point to describe this jogging locomotion and to
estimate full body state.
Consider the typical sequence of leg contact conditions

occurring during steady state operation in a stable dynami-
cal locomotion depicted in Figure 1 (Right). During the i th

stride interval, C(i):=[t1(i) t5(i)]⊂R, a tripod stance interval,
ΥS(i):=[t1(i) t2(i)], is succeeded by a period of time when
the legs begin to liftoff, ΥL(i):=[t2(i) t3(i)], followed by an
interval of aerial flight, ΥA(i):=[t3(i) t4(i)], then touching
down through another period of varied leg contacts, Υ T (i):=

[t4(i) t5(i)], to the fixed tripod stance interval ΥS(i+1) of
the next stride, C(i+1). We conceive of the liftoff and
touchdown intervals, ΥL(i),ΥT (i) as “transients” because
they typically exhibit complex sequences of successive leg
contacts that reveal little consistent pattern from run to run
(or, often, even from stride to stride). In our implementation
, the crucial leg contact information required to detect the
onset and termination of each of these phases of a stride
may be gleaned directly from the individual leg strain-
based configuration sensors.

B. Notation Associated with the Kalman Filter

Given a discrete time-invariant plant

xk+1 = Φxk + Γuk + wk

with measurement

yk+1 = Hxk + vk

where the process noise wk and measurement noise vk

are white with zero means and covariance defined by
E [wkwT

k ] = Q and E [vkvT
k ] = R, a Kalman Filter

incorporates two steps: a time update (priori estimate),

x−
k+1 = Φx+

k + Γuk

P−
k+1 = ΦP+

k ΦT + Q
(1)

and a measurement update (posteriori estimate)
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Kk+1 = P−
k+1H

T (HP−
k+1H

T + R)−1

x+
k+1 = x−

k+1 + Kk+1(zk − Hx−
k+1)

P+
k+1 = P−

k+1 − Kk+1HP−
k+1

(2)

where P is error covariance matrix and K is the so
called Kalman gain. Upon initializing the value of state,
x0, and error covariance matrix, P0, the Kalman Filter
continuously delivers the best state “optimal” estimates by
consecutively performing these two updates at each time
stamp. In practical implementation w is determined by
selection of model [19] and v is based on experimental
noise measurement.

C. Body State from Leg Pose Sensor

During tripod stance phase, ΥS(i), the generalized leg
pose sensor (requiring information of toe position with
respect to center of mass (COM)) delivers 3 DOF COM
translation data with respect to that of initial touchdown
moment, t1(i), detailed in [11]. The velocity state results
by differentiating the displacement information and also
provides take-off velocity for the following phases, where
we adopt a ballistic model for the aerial phase and a
constant velocity model for each transient phase (rather
than the alternative constant acceleration model) due to
significant noise effects in differentiating to obtain takeoff
acceleration. These models have a six dimensional state
and form the basis for the body translational estimates.

D. Body State from Inertial Measurement Unit

Unlike the leg pose sensor which delivers measure-
ment only during tripod stance phase, an IMU continually
delivers measurements across all phases within a stride.
Translational body state can be obtained by direct inte-
gration and double integration from acceleration data in
world coordinates derived from strapdown accelerometer
data with orientation compensation made by gyro.
The standard way to apply an Kalman Filter in an “IMU

only” navigation system is to use a constant acceleration
model as plant, ΦIMU , in the time update and use ac-
celerometer data in the measurement update [13] where

ΦIMU =

⎡
⎣ 1 DT 1

2DT 2

0 1 DT
0 0 1

⎤
⎦ HIMU = [0 0 1] (3)

and DT is the time difference between measurement3.

III. FUSION ALGORITHM FOR BODY STATE
ESTIMATION

In general, sensor selection is strongly constrained by
tradeoffs related to hardware issues of space, complexity,
cost, performance, and reliability. Once the sensor is cho-
sen, the only room remaining for improvement arises from
choice of model/algorithm to achieve better estimation

3It has long been remarked in the literature that since its dynamical
model is unobservable, the associated Kalman Filter of this “IMU-only”
system doesn’t guarantee better performance than direct integration. Of
course, the naive assumption of white noise and likely inaccurate initial
error covariance matrix add to the confusion.

performance. In this paper we focus on comparing the
fusion performance of independent sensing source and
evaluating the consequences of importing different models
into the Kalman Filter.
As discussed in Section II-A, simplifying jogging loco-

motion by three different models fitting into 4 consecutive
phases in one stride significantly reduces the complexity
of modeling work. However, selecting correct combination
of models for a given succession of phases within a stride
remains a challenge. In this initial effort, we have chosen to
work with the simplest possible models that decouple the
(physically coupled) high dimensional mechanism through
reliance on a few basic 1 DOF linear dynamical plants. In
a similar spirit, we adopt a “hard” switch (discontinuously
reset initial state) between models with continuously pass-
ing the initial conditions (state and model covariance), and
assume the availability independent, accurate switch timing
cues. In future work, we will take a more formal point of
view and seek to implement switching procedures based
upon the analysis of multiple hybrid models against which
this preliminary inquiry may be compared.
We choose a constant acceleration model as one of

the models in all three phases due to its straightforward
interpretation as the basic model for integration in state
equations. In the tripod phase we also try to deploy
IMU measurement in prediction equation to form IMU
integration model consequently reducing the prediction
error in the Kalman Filter. In contrast, in the aerial phase,
a ballistic model is clearly motivated by physical first
principles. Finally, models of the transient phases amount
to guesswork at the present time, and we simply adopt a
common sense constant velocity assumption (also used in
leg pose sensor).
The details of each model are now listed as follows:

A. Tripod stance phase - constant acceleration model,
Gacl

The model is the same as shown in (3), and both position
measurements from leg pose sensor (z1) and acceleration
measurements from IMU (z2) are imported in the measure-
ment update:

ΦGacl
=

⎡
⎣ 1 DT 1

2DT 2

0 1 DT
0 0 1

⎤
⎦ HGacl

=
[

1 0 0
0 0 1

]

B. Tripod stance phase - IMU integration model, G imu

We use the IMU measurements acted as “true measure-
ments” as external input (= u) which also plays the role
of “true state” in the time update (prediction), and use
position measurements from leg pose sensor (z1) as solo
measurements update. In this case, the plant reduces to the
constant velocity model:

ΦGimu =

⎡
⎣ 1 DT 0

0 1 0
0 0 0

⎤
⎦ ΓGimu =

⎡
⎣

1
2DT 2

DT
1

⎤
⎦

HGimu = [1 0 0]
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C. Aerial phase - constant acceleration model, Aacl

The same as the that in ground phase, but instead of
two, only one measurement from IMU (z1) is available for
measurement update: ΦAacl

= ΦGacl
, HAacl

= [0 0 1].

D. Aerial phase - ballistic model, Abal

The ballistic model is actually a constant velocity model
without external input (u = 0) in lateral and forward
directions and with gravity as external input (u = g) in
vertical direction, and the same as previous one, only one
measurement from IMU (z1) is available for measurement
update: ΦAbal

= ΦGimu , HAbal
= HAacl

.

E. Transient phase - constant acceleration model, Tacl

Exactly the same as the that in aerial phase: ΦTacl
=

ΦAacl
, HTacl

= HAacl
.

F. Transient phase - constant velocity model, Tvel

The same as ballistic model of aerial phase in lateral
and vertical directions (without external input, u = 0):
ΦTvel

= ΦAbal
, HTvel

= HAbal
.

IV. EXPERIMENT RESULTS

A. Experiment Setup

We have evaluated these estimators experimentally on a
version of RHex (50 cm x 20 cm x 30 cm), incorporating
the required sensors including: the customized leg pose
sensor detailed in [10]; a 3 DOF rate gyro (Fizoptika
VG941- 3A) and 3 DOF accelerometer suite (Analog
Device ADXL210 ×2) on COM. To assess performance
improvements resulting from the fusion of leg pose and
IMU data, we have run RHex under the Ground Truth
Measurement System (GTMS) the independent visual
ground truth measurement system detailed in [20]. This
yields another set of 6 DOF translational body state (3
DOF from position measurement and 3 DOF from their
derivatives) for comparison. We quantify performance by
presenting the standard root mean squared (RMS) error,
given by χ(p,p̂):=

√
(||p−p̂||22/M) where p represents the state

from GTMS; p̂ denotes the same state from output of the
algorithm; and M is the length of the data.
To establish the baseline for all models, we collect the

raw data from sensors and output from GTMS during
experimental runs for offline post model performance eval-
uation. RHex’s relatively constrained kinematics precludes
the exercise of its yaw degree of freedom (barring inten-
tional excitation of slipping motion on particular toes such
as would be required for turning). Therefore, we perform
straight-line experimental runs on flat terrain not only to
simplify the evaluation process but also to preclude the
need for a new turning model, particular to this one robot.
we only compare data during stable jogging locomotion
after transient from standstill. Table I lists the offline phase
timing information on RHex obtained from 10 experimental
runs, including length and percentage of time interval of
each phase in one complete stride.

TABLE I

EMPIRICAL PHASE RELATIONS IN RHEX JOGGING GAIT

Tripod Stance Liftoff Transient Aerial Phase Touchdown Transient
mean (std) mean (std) mean (std) mean (std)

Average time interval in each phase in one complete stride (ms)
96.1 (5.9) 29 (4.9) 55.2 (6.6) 36 (5.5)

Percentage time interval of each phase in one complete stride (%)
44.4 (2.73) 13.4 (2.3) 25.5 (3.0) 16.7 (2.6)

B. Performance Evaluation

Table II lists the statistical results (mean and standard de-
viation from 10 experimental runs) of RMS error between
data from output of algorithm and that from GTMS for all 6
DOF translational body state, including COM displacement
in lateral (rx), fore/aft (ry), vertical (rz) directions, and
their derivatives (ṙx, ṙy , and ṙz). Data associated with leg
pose sensor (A), IMU (B), and IMU with KF (C) detailed
in Section II-C and Section II-D mean body state derived
by only one sensor source without fusion with the other
one. After these the table displays results from 8 different
fusion algorithms detailed in Section III resulting from the
combination of two different models in each of three differ-
ent phases (23 = 8) - constant acceleration model (Gacl)
and IMU integration model (Gimu) in tripod stance phase,
constant acceleration model (Aacl) and ballistic model
(Abal) in aerial phase, and constant acceleration/velocity
model (Tacl/Tvel) in transient phase. For convenience in
the following discussion, these 8 fusion data traces are
numbered from 1 to 8 as the reference index. In this
particular setting the leg pose sensor also functions as a
touchdown detection sensor for phase switching. Figure
2 shows 3 DOF displacement vs. time from one of the
experimental runs, where the trace of each state is broken
out in two subplots for ease of view. Each trace represents
one state’s data over time with a legend according to Table
II, including data from independent GTMS (green dot line),
leg pose sensor (A, blue solid line), IMU (B, cyan solid
line), IMU with KF (C, cyan dashdot line), and 8 fusion
results (1-8, red solid line, magenta dashdot line, yellow
dash line, and black dot line).
Table II shows the body state from leg pose sensor (A)

has good performance in displacement but very poor in
velocity due to noisy derivative process. In contrast, that
from IMU (B), or IMU with KF (C) which is not much
different from (B), has the opposite character - good in
velocity but very poor in displacement due to accumulated
integration error. This phenomenon also can be checked in
Figure 2, especially in rx where leg pose sensor has better
displacement estimates but IMU preserves high frequency
components indicating better velocity estimates. These two
sensor’s dramatically different characteristics serves as the
fundamental motivation for fusing sensor data for better
state estimation. We also observe that the fusion data,
no matter which one we choose among 8, have better
performance in comparison to the data from single sensor
source for most of the state (but not quite all states).
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Fig. 2. Translational COM displacement (lateral (rx), fore/aft (ry), and vertical (rz)) measured by GTMS (green dot line), leg pose sensor (A, blue
solid line), IMU (B, cyan solid line), IMU with KF (C, cyan dashdot line), and 8 fusion results (1-8, red solid line, magenta dashdot line, yellow dash
line, and black dot line) according to Table II.

This is understandable since Kalman Filter “blends” the
performance of prediction model with that of true measure-
ment correction based on the idealized assumption of white
noises and model covariance, and these departures from
the ideal likely preclude uniformly improved performance.
Nevertheless, even absent these “requirements” Kalman
Filter still performs its robustness and merit to deliver better
estimates for most of state.

Table II also suggests the way in which different models
may affect the overall performance. For hybrid applications
like locomotion requiring rapidly switched it is difficult
to tease out the performance of each model from the
overall performance since that of each successive individual
is strongly affected by initial conditions supplied by its
predecessor and in some cases the short time duration
of a model’s validity may preclude error convergence.
However, from the ultimate results still exhibit “trends” that
match physical sense and mathematical expectations. For
example, in aerial phase the ballistic model (Abal) in most
cases is better than kinematic model (Aacl) (ex: comparing
7 to 5, 3 to 1). In tripod phase kinematic model (Gacl) is
better than IMU integration model (Gimu) in velocity but
opposite in displacement because in kinematic model IMU
used in measurement update will keep its strong effect over
time which helps performance of velocity but also damages
that of displacement, resulting in less performance in
displacement comparing to IMU integration model which
only use leg pose sensor as measurement update. We also
observe overall performance is considerably impacted by
models chosen in transient phase.

V. CONCLUSION

We have introduced a continuous time full 6 DOF
translational body state estimator for a hexapod robot
executing a jogging gait (i.e. with a significant aerial phase)
on level ground based on a small number of naive models
imported into a standard fusion (Kalman Filter) combining
measurements from a leg pose sensor and IMU. We have
implemented the algorithm on RHex and evaluated the
performance with respect to an independent visual ground
truth measurement system (GTMS). We observe smaller
RMS errors (in most of the state variables) resulting from
the fusion algorithm than from those associated with either
single sensor source (either leg pose sensor or IMU) alone.
These results bear out intuition. On the one hand,

combining the leg pose sensor and IMU data significantly
ameliorates the accumulating integrator drift associated
with IMU alone. On the other hand, without IMU’s comple-
mentary data supplements, the leg pose sensor alone isn’t
able to deliver continuous time full body state estimation,
even with simple models adopted for transient and aerial
phases. In practical implementation on RHex IMU has
stronger advantage in velocity state while the leg pose
sensor is a cleaner source of displacement state information
in displacement state. It seems clear that this sort of sensor
fusion represents a better alternative for obtaining good
state estimates than either sensor type alone.
Beyond the extension to orientation states, the obvious

next step toward gaining practical utility for this work lies
in the area of multiple hybrid model switching: how to
swap out one model and replace it with another model
during online execution. To do this properly, it will be
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TABLE II

RMS ERROR OF BODY STATE ESTIMATION ACCORDING TO

DIFFERENT FUSION ALGORITHMS AND MODELS DETAILED IN

SECTION III

Model Type Body State - Velocity
ṙx ṙy ṙz

(cm/s) (cm/s) (cm/s)
mean (std) mean (std) mean (std)

A Leg Pose Sensor 22.26 (5.26) 21.62 (3.46) 19.43 (14.36)
B IMU 14.29 (4.04) 24.74 (3.28) 13.21 (6.92)
C IMU with KF 14.28 (3.97) 24.91 (3.31) 12.42 (4.81)
1 Gacl + Tacl + Aacl 12.38 (3.77) 14.23 (2.49) 13.00 (4.46)
2 Gacl + Tvel + Aacl 9.46 (5.56) 13.62 (2.55) 13.19 (5.32)
3 Gacl + Tacl + Abal 12.91 (4.44) 14.13 (2.50) 12.31 (4.71)

4 Gacl + Tvel + Abal 10.19 (6.38) 13.55 (2.55) 13.63 (5.35)
5 Gimu + Tacl + Aacl 17.15 (3.61) 13.44 (2.07) 14.76 (3.75)
6 Gimu + Tvel + Aacl 18.85 (2.39) 19.65 (4.15) 16.75 (4.54)
7 Gimu + Tacl + Abal 16.38 (3.26) 13.38 (2.04) 13.96 (3.91)
8 Gimu + Tvel + Abal 18.20 (2.28) 19.57 (4.17) 16.34 (4.49)

Model Type Body State - Displacement

rx ry rz

(cm) (cm) (cm)
mean (std) mean (std) mean (std)

A Leg Pose Sensor 3.85 (1.52) 4.22 (0.80) 0.68 (0.16)
B IMU 7.49 (3.17) 12.75 (1.78) 1.57 (1.35)
C IMU with KF 7.54 (3.17) 12.80 (1.81) 1.63 (1.33)

1 Gacl + Tacl + Aacl 5.71 (2.64) 5.16 (0.84) 0.62 (0.17)
2 Gacl + Tvel + Aacl 4.10 (3.31) 5.08 (0.82) 0.78 (0.27)
3 Gacl + Tacl + Abal 6.16 (2.80) 5.14 (0.84) 0.66 (0.19)
4 Gacl + Tvel + Abal 4.59 (3.47) 5.06 (0.83) 0.90 (0.30)
5 Gimu + Tacl + Aacl 2.52 (0.38) 4.32 (0.82) 0.75 (0.18)
6 Gimu + Tvel + Aacl 3.53 (1.20) 4.89 (0.97) 0.95 (0.26)
7 Gimu + Tacl + Abal 2.47 (0.35) 4.31 (0.82) 0.73 (0.18)
8 Gimu + Tvel + Abal 3.54 (1.23) 4.89 (0.97) 0.95 (0.25)

necessary to introduce more realistic physical models, such
as the Spring loaded inverted pendulum (SLIP) model for
the tripod stance phase, and more complex combinations
of physically motivated ground contact models during the
touchdown and liftoff transient phases.
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