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ABSTRACT

We investigate the stability of a one degree of freedom me-
chanical spring-mass system modulated by a feedforward
\clock" that sti�ens and relaxes a Hooke's law potential
force according to a periodic rhythm. At the present
early stage of inquiry, we o�er suÆcient conditions for
local asymptotic stability of an isolated periodic orbit
when there is no feedback to the clock at all but some
viscous friction in the mechanism. We conjecture that,
absent feedback, a lossless mechanical system cannot ex-
hibit an asymptotically stable limit cycle in response to
such rhythmic excitation.

Keywords: legged locomotion, coupled oscillators, clock
driven system, CPG, feedforward control, biomechanics,
spring-mass model

1. INTRODUCTION

The motivation for this inquiry arises from a practical
problem in robotics, inspired, in turn, by our reading
of the biological literature. A recently reported set of
experiments [3, 19] demonstrate that a simple compliant
leg hexapod robot, completely open loop with respect to
any task level perception, can negotiate widely varied and
dramatically adversarial terrain when its leg motors are
driven by a purely feedforward \clock" reference signal.
At present, no analytical machinery is available that can
inform directly our e�orts to improve and re�ne this de-
vice, speci�cally with regard to the introduction of simple
task level sensors for the purpose of instrumenting low
bandwidth feedback. The results reported here represent
our �rst steps toward that end.

Originating with Wilson's [20] seminal analysis of in-
sect leg coordination, scientists have identi�ed a spec-
trum of biologically inspired coordination control strate-
gies whose two extreme endpoints we wish to examine
analytically. On the one hand a \re
ex" based perspec-
tive [4,5] stresses the key role of sensory data in mediating
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the control signals sent to an animal's muscles. Alterna-
tively, the \clock" [8,11,12,14] view of animal motion con-
trol stresses the role of pattern generation | periodic ref-
erence trajectories that act as feedforward control signals
| in the coordination of such cyclic behaviors as walking,
running, and so on. The robotics literature also explores
a comparable spectrum of coordination approaches from
re
ex [2, 15] through pure clock [16, 17]. In a recent pa-
per [10] the second author and colleagues re-examine the
\re
ex" end of this coordination spectrum in the speci�c
context of locomotion. In this paper, we are concerned
more with the \clock" end. To the best of our knowledge
Berkemeier and colleagues [1] comprise the only previous
group that has explored analytically the issue of a clock
stabilized 1 dof mechanism. That work addresses a simi-
lar coupled system, utilizing rest length as the control in-
put, and introducing approximate return maps derived by
perturbation methods. Unfortunately, such perturbation
techniques are guaranteed to work only for very small val-
ues of the damping coeÆcient | what appears to be the
ultimate source of stability in the �rst place. In this pa-
per we provide closed form exact return maps from which
we derive suÆcient conditions for local stability that are
easily related to the physical parameters yielding guaran-
teed behavioral conclusions over the broad range of the
model's operation.

A second motivating in
uence from the biological lit-
erature concerns the model of actuation. Hill's classical
view [7] of muscle presents a combination of a nonlinear
passive spring and an \active" component that generates
additional force based on the motor commands [13]. A
phenomenological view, characteristic of the biomechan-
ics community, has lead to studies of in vivo locomotion
behavior suggesting that e�ective leg sti�ness is altered
by the motor nervous system to adapt to external dis-
turbances and control gait [6]. Altering the gait through
changes in the available potential energy has a long his-
tory of success in the robotics literature as well [15]. For
this reason, our simple model posits a sti�ness control,
again, in contrast to the model in [1].



2. THE SETTING

A 1-DOF Hooke's Law Hopper with Adjustable
Sti�ness
We consider a one degree of freedom (mechanical) hopper1

on a real interval, X1 � R, that consists of a point body
mass and a massless (Hooke's Law) springy leg pointing
downward. Letting X := TX1 = X1 � R, de�ne the con-
tact set, G := fx 2 Xjx1 < 0g, with stance (or contact)
mode2

_x = fp(x) =

�
x2

�px1 � bx2

�
; x 2 G (1)

and aerial mode,

_x = fL(x) =

�
x2
�1

�
; x 2 L := X � G; (2)

where the control takes the form of an \adjustable" sti�-
ness, p 2 P := R

+ .

A Clock-Based Switching Controller
We posit a controller in the form of a one dimensional
tunable \clock" | a system de�ned on the circle, � 2 S1,

_� = wc =
2�

Tc
; (3)

whose state, �, is �ltered by an output function, �(�).
In order to obtain a periodic pulse train, o(t), we de-
�ne �(�) := po + �p[unit(�) � unit(� � wc�)], where
\unit(�)" denotes the unit step function. Four param-
eters de�ne the control signal: controller period, Tc;
forcing duration, �; o�set value, po; and forcing incre-
ment, �p, as depicted in Figure 1. Denote by B :=
f(�p; �)j�p > 0 ^ � 2 (0; �)g = R

+ � (0; �) the physi-
cally meaningful forcing parameter space.

�
�

t
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Figure 1: The clock-based switching controller.

The Clock Controlled 1-DOF Hopper
The clock controlled hopper is obtained by simply con-
necting the output of the clock-based switching controller,
o(t), to the input of the mechanical hopper system, p, as
depicted in Figure 2. There results an autonomous three
dimensional hybrid dynamical system, _q = F (q) where

1This system is presented in dimensionless coordinates, x =
[x1; x2]

T
2 X , with dimensionless time, t.

2Gravitational acceleration is ignored during the stance mode.

q = [x1; x2; �]
T 2 Q := X � S1. In this coupled sys-

tem the control actions are limited to the (physically un-
realistic but illustrative) binary choice of p 2 fpo; phg
representing a \relaxed," po 2 P , and a \sti�ened,"
ph := po +�p 2 P force pro�le. Although the resulting
discontinuities in the vector �eld preclude the standard
guarantees of existence and uniqueness [9], we will avoid
distracting technical considerations by bounding from be-
low the magnitude of the time intervening between suc-
cessive control actions, i.e. Tc > � > 0.
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Figure 2: Clock controlled 1-DOF hopper.

3. DERIVATION OF THE RETURN MAP

Continuous-Time Dynamics and Associated
Transformations
The clock controlled hopper is a hybrid dynamical
system, whose coupled state space, Q, will be partitioned
into three \modes":

a normal (stance) mode, N ,

_q =

�
fpo(x)
wc

�
; q 2 fq 2 Qj� 2 (wc�; 2�) ^ x 2 Gg| {z }

N :=

;

a forced (stance) mode, F ,
_q =

�
fph(x)
wc

�
; q 2 fq 2 Qj� 2 [0; wc�] ^ x 2 Gg| {z }

F :=

;

and a 
ight mode, A,
_q =

�
fL(x)
wc

�
; q 2 fq 2 Qjx 2 Lg| {z }

A:=

.

(4)

We prefer to study the mechanical component (hopper)
stance behavior in a normalized coordinate system. The
linear transformation,

gp : X ! Yp; y = gp(x) = Gpx; Gp =

�
�p �=�p
0 
p=�p

�

itself parametrized by p (where �p =
p
p, � = b=2, 
p =q

�2p � �2), yields the Real Jordan Canonical form of the



linear vector �eld, Eq.(1), generating the familiar planar
rotation and dilation expressions for the 
ow. This, in
turn, motivates a passage to polar coordinates, leading to
what we will term the normalized energy-phase coordinate
system, E := R+ � S1,

m : Y ! E ; e =

�
�
�

�
= m(y) =

� jjyjj2
arctan(�y1

�y2
)

�
;

yielding dynamics,

_e = ~fp(e) =

� ���

p

�
; ~f tp(e(0)) =

�
exp [��t] �(0)

pt+ �(0)

�
;

(5)

that are conjugate to Eq.(1) via ~f tp � m Æ gp Æ f tp Æ g�1p Æ
m�1. One can always choose the dimensionless coordinate
system, X , so that 
po = 1 and 
ph > 1, which we now
assume.

These transformations a�ect neither the time nor the
clock state, �, hence, for constant parameter, p, the
coupled system dynamics in the new coordinate system,
c = [e; �]T 2 Cp := Ep � S1, is obtained by appropriately
augmenting Eq.(5) and Eq.(3).

X
Ypo

Yph

Epo

Eph

gpo

gph m

m

h

Figure 3: The induced change of coordinates, h, makes
the diagram relating the normal and forced modes com-
mutative.

The parametric dependence of gp on the normalized
spring sti�ness, p, causes the normalized coordinate sys-
tems for the normal mode, Ypo , and the forced mode, Yph ,
to be di�erent. As a consequence, their respective nor-
malized energy-phase coordinate systems di�er as well.
The change of coordinates h : Epo ! Eph is given by
eph = h(epo) = m Æ gph Æ g�1po

Æm�1(epo), as depicted in
the commutative diagram of Figure 3, where we de�ne,

h1(epo) := �po

h1(�po )z }| {

ph�po

po�ph

cos(�po )
q
1 + [T1 Æ tan(�po )]2

h2(�po ) := arctanÆT1 Æ tan(�po);
(6)

introducing for convenience in the sequel the �rst of 4

aÆne maps, T1(s) :=

po�

2
ph


ph�
2
po
s + �


ph

�
1�

�
�ph
�po

�2�
. The

inverse function, h�1, has the same structure as h except
that the parameters po and ph are interchanged in the

above formulae,

epo = h�1(eph) =

"
�phh

�1
1 (�ph )

h�12 (�ph )

#
;

h�11 (�ph ) :=

po�ph

ph�po

cos(�ph )
q
1 + [T�11 Æ tan(�ph)]2:

For use in the sequel, we state two facts as established
by direct computation.

Lemma 1: h02(�) :=
dh2(�)
d�

=

ph

po

�
1=h1(�)

�2
Corollary 1: (h�12 )0(�) :=

dh
�1

2
(�)

d�
=


po

ph

�
1=h�11 (�)

�2
Details of the Return Map Derivation
For our study, we choose to de�ne a Poincar�e section cor-
responding to the forcing start instant, characterized by
� = 0, � := fc 2 Cpo j� = 0g. The 
ow of the coupled
system Eq.(4) has the property that all the state tra-
jectories originating in � will return to it after some �-
nite time. Sampling on the event of return to � relates
the three dimensional continuous-time system Eq.(4) to
its corresponding two dimensional discrete-time Poincar�e
map Eq.(8). The independent states in � are �po and
�po , but we �nd it advantageous to work in an alternative

energy-phase coordinate system; R := R+�S1 de�ned by
z : Epo ! R,

r =

�
v
a

�
= z(epo) :=

�
exp [�(�� �TD)] �po

�po � �TD

�
; (7)

where �TD := arctan(�=
po) represents the touchdown
boundary phase in Epo . Notice that v is the dimensionless
touchdown velocity, and a is the dimensionless delay in
the time that the next forcing interval starts relative to
the last touchdown instant3. Figure 4 illustrates a typical
state trajectory of the coupled system projected onto Ypo
coordinates.
Each returned state, r 2 R, can be assigned a unique

\mode sequence" | a string over the alphabet fN ;F ;Ag,
Eq.(4) | according to the sequence of modes that its fu-
ture continuous-time trajectory passes through on the way
to the next return. This de�nes a partition of R accord-
ing to common mode sequence. We will concentrate on a
speci�c mode sequence, FNAN , and evaluate the corre-
sponding return map, n(r). Denote hopper state (in R)
at the kth Poincar�e sample by rk. The next Poincar�e sam-
ple is given by rk+1 = n(rk) = z ÆN2ÆAÆN1 ÆF Æz�1(rk)
where the factors are de�ned as N1 := ~fTSTpo

(1st nor-

mal stance), F := h�1 Æ ~f�ph Æ h (forced stance), A :=

m Æ gpo Æ fTFLA Æ g�1po
Æm�1 (
ight), N2 := ~f

ak+1
po , (2nd nor-

mal stance) The forcing mode, F , starts right after the
Poincar�e sampling and lasts for a constant interval, �. In

3These useful return map coordinates, v and a, were proposed
to us by Prof. Philip Holmes in a personal communication.
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Figure 4: A typical hopping cycle viewed in the Ypo plane.
Note that in Ypo the angle swept is equal to the time it
takes to 
ow in the normal stance mode, N .

this formula, TST is the remaining stance time after forc-
ing is concluded, and TFL is the time it takes to complete
the following 
ight phase | both functions, in turn, of
their respective initial conditions. Several properties of
the intermediate maps will help us decompose this return
map computation into two manageable steps, thereby af-
fording computation of the component states, v and a,
independently.

Proposition 1: The return map, restricted to mode se-
quence FNAN , has the structure;

rk+1 = n(rk) =

�
vk�(ak)

Tc � � � TST (ak)� 2vk�(ak)

�
: (8)

where TST (a) and �(a) are de�ned in the proof below.
Proof:
The mode sequence, FNAN , models the physical situa-
tion where each hopping cycle4 has a unique forcing inter-
val which starts and ends in the same stance mode. Thus,
the states whose forced trajectories experience these tran-
sitions along the way to the next return may be speci�ed
as

FNAN := V \ (�2 Æ n)�1(V) (9)

where V := fr 2 Rja 2 [0; �]g, and � is the unique root
of T�1ST (a) = 0.
First, we derive the energy component of the return

map5, n1(r) := �1 Æ n(r). Note that �1 Æ z Æ ~f tpo(e) =
id
R+

, if e 2 fe 2 Epo j� = �TDg (which corresponds to
the touchdown boundary as depicted in Figure 4). Fur-
thermore, since the 
ight is lossless and the take-o� and

4A hopping cycle is the interval between two consecutive touch-
down events.

5Henceforth, we will refer to the projection onto the ith coordi-
nate of any function, f : Rn ! R

n, either by �i Æ f or fi.

touchdown heights are the same, we have �1 Æ m Æ gpo Æ
fTFL
A

Æ g�1po
Æ m�1 = idR. Therefore, the only energy

change occurs during the kth cycle stance, which con-
sists of NFN modes from its touchdown to take-o�,
n1(r) = �1 Æ ~fTSTpo

Æ h�1 Æ ~f�ph Æ h Æ z�1(r). For ease of
exposition in the sequel, we reorganize this expression ex-
ploiting the fact that h1 (Eq.(6)) and �1 Æ z�1 (Eq.(7))
are linear in � and v, respectively6.

n1(r) := v�(a); �(a) := "(a)l1(a)l2(a);

"(a) := exp [��(a+ � + TST (a))]

l1(a) := h1 Æ T2(a)
l2(a) := h�11 Æ T3 Æ h2 Æ T2(a)

(10)

where T2(s) := s+ �TD , and T3(s) := s+ 
ph�.
Second, we derive the phase delay component of the

map, n2(r) := �2 Æ n(r). Here, we exploit the fact that
the time interval between two consecutive forcing start
events is a constant, Tc. It follows that the intermediate
time intervals must satisfy � + TST + TFL + ak+1 = Tc,
which yields n2(r) = Tc � � � TST � TFL. In normalized
energy-phase coordinates, the angle swept by the state
vector Eq.(5) is a linear function of time7. For the normal
stance, 
po = 1, �� = �t, therefore, the remaining stance
time, TST , can be computed as TST (r) := T4 Æ �FE(r),
T4(s) := �s+�+�TD, using the forcing end phase, which
is given by �FE := h�12 ÆT3Æh2ÆT2(a), yielding TST (a) :=
T4Æh�12 ÆT3Æh2ÆT2(a). The 
ight duration, TFL, is a linear
function of the take-o� speed, which is also the touchdown
speed for the next step, TFL(rk) = 2vk+1 = 2vk�(ak).

4. RETURN MAP ANALYSIS

Fixed Points
Fixed points of the return map, n(r), must satisfy n(r�) =
r�, which is equivalent to

�(a�) = 1

v� = Tc���a
�

�TST (a
�)

2

; r� =

�
v�

a�

�
: (11)

Clearly, the existence and number of �xed points are gov-
erned by �, since the second formula in Eq.(11) simply
evaluates the corresponding touchdown speed for a given
forcing delay value, a�. Recall, as well, that the return
map, Eq.(8) is only valid for Poincar�e states in the mode
sequence FNAN , so we must also require that r� is in
that subset as well8, as characterized in Eq.(9). We will
call the �xed points of n \valid" if and only if they are
in this mode sequence. Figure 5 illustrates three di�er-
ent cases, where Eq.(8) can have one, two or no valid

6Note that "(a) models the total loss due to viscous friction in
stance, while l1(a) and l2(a) represent the e�ects of the forcing start
and forcing end parameter alternations, respectively.

7The delay and the angle are related by a linear function, �� =

p�t in Ep (Eq.(5)).

8From Eq.(9) and Eq.(11) it follows that a� 2 [0; �] ) r� 2

FNAN .



�xed points. Figure 6 summarizes the numerical param-
eter space study that illustrates the relationship between
the existence of valid �xed points and the controller (forc-
ing) parameters, �p and �.
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Figure 5: The plots of the �(a) and TST (a) functions
(
ph = 1:2 and � = 0:5) for three di�erent � values re-
sulting in one, two and no valid �xed points.

Conjecture 1: For any � > 0 there exists a non-empty set
Bs(�) � B, such that for all (�p; �) 2 Bs(�), �(a�) = 1
has real roots, and all the solutions, a�, satisfy j�0(a�)j >
0. Furthermore, there is a unique a� 2 [0; �] such that
�0(a�) > 0.

0 100
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100
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Bs(�)Bs(�)

� = 0:05 � = 0:25

Figure 6: Numerical computation of Bs(�) for; (a) � =
0:05, (b) � = 0:25. The white region is the open set
of parameter values, � and �p, yielding a unique valid
�xed point satisfying �0(a�) > 0. In the gray region, even
though �(a) = 1 has roots, all of them are invalid. Finally,
there is no �(a) unity crossing for the parameter pairs in
the black region.

Local Stability Analysis
The return map (Eq.(8)) must be linearized about the
�xed points to determine local stability. The Jacobian of
the return map evaluated at the �xed points is given by

J(r�) := Dn(r)jr� =
�

1 v��0(a�)
�2 �T 0ST (a�)� 2v��0(a�)

�

with two eigenvalues, ��(v
�) = 1

2

�
tr �p�

�
where

tr := 1 � T 0ST (a
�) � 2v��0(a�) is the the trace, and

� := (1�T 0ST (a
�)�2v��0(a�))2+4T 0ST (a

�) is the discrim-
inant of J(r�). The following results obtain from direct
computation

Lemma 2: The determinant of the Jacobian at the �xed
points is jJ(v�; a�)j = �T 0ST (a�).
Lemma 3: The �rst derivative of TST (a) with respect to
a is related to �(a) (Eq.(10)) by

dTST (a)

da
= �

�
1

l1(a)l1(a)

�2

(12)

Corollary 2: T 0ST is a negative de�nite function whose
magnitude is constrained depending on the dimensionless
normalized damping coeÆcient, �,

� > 0 , �T 0ST (a�) 2 (0; 1)
� = 0 , �T 0ST (a�) = 1
� < 0 , �T 0ST (a�) 2 (1;1)

(13)

Proposition 2: For � > 0, any �xed point, r�, satisfying
�0(a�) < 0 has a real eigenvalue outside the unit circle for
all v� > 0, and therefore, is unstable.
Proof:
De�ne a discriminant bound, � := (1 � T 0ST (a

�))2 +
4T 0ST (a), and a trace bound, tr := 1 � T 0ST (a

�). Corol-
lary 2 implies that for � > 0, we have tr > 1 and
� = (1 + T 0ST (a

�))2 > 0. Therefore, for v� > 0 and
�0(a�) < 0, tr > tr > 1 and � > � > 0, hence,

�+ = 1=2( tr +
p
� ) > 1=2( tr +

p
� ) = 1, which is

on the real axis and outside the unit circle.

Proposition 3: For � > 0, any �xed point, r�, satis-
fying �0(a�) > 0 has two complex conjugate eigenvalues
inside the unit circle, when v� 2 Vc := (v; v), and two
real eigenvalues inside the unit circle, when v� 2 Vsr :=
(0; v][ [v; v), and therefore, is stable for all Tc values that
results in v� 2 Vs, where

Vs := (0; v): (14)

and v, v, and v are de�ned in the proof below.
Proof:
Since �0(a�) > 0, � is a quadratic function of v� possess-
ing two positive roots, 0 < v < v. We partition the touch-
down speed space, R+ , into 3 cells according to the sign
of �: Vr1 := (0; v] =

�
v�j0 � �(v�) < �

	
; Vc := (v; v) =

fv�j�(v�) < 0g; and Vr2 := (v;1) = fv�j�(v�) � 0g.
For all v� 2 Vr1, the discriminant and trace are mono-

tonically decreasing and bounded by 0 < 2
p�T 0ST (a�) <

tr < 1� T 0ST (a
�), 0 < � � �. Therefore, the eigenvalues

are real, and inside the unit circle.
For all v� 2 Vc, the discriminant is negative, � < 0.

Therefore, the eigenvalues of J(a�) are complex conju-

gate. Lemma 2 states that j��j2 = �T 0ST (a�), which is



known to be less than unity by Corollary 2 for � > 0.
Therefore, both eigenvalue functions, ��, are complex
and lie on the circle with radius

p�T 0ST (a�) inside the
unit circle.
For v� 2 Vr2 the eigenvalues are real, and by conti-

nuity, ��(v) = tr(v) = �p�T 0ST (a�) > �1 Note that
tr is monotonically decreasing, and � is monotonically
increasing for v� 2 Vr2. Let v := ��1� (�1). It follows
that 8v� > v, ��(v

�) < �1. Hence, for v� 2 (v; v) the
eigenvalues are real and inside the unit circle.

Theorem: In the presence of viscous friction, � > 0,
the clock controlled 1-DOF hopper, Eq.(4), has a locally
asymptotically stable limit cycle (hopping gait) for the
mode sequence FNAN , if there exists a valid a� such
that �(a�) = 1 and �0(a�) > 0 (Eq.(10)), and Tc is chosen
so that v� 2 Vs (Eq.(14)).
Proof:
For a �xed a�, Eq.(11) shows that v� is completely de-
termined by choice of Tc. From Proposition 3, the valid
�xed point, r� = (v�; a�), is locally asymptotically stable,
if �0(a�) > 0, and v� 2 Vs when � > 0.

Corollary 3: If there exists a valid a� such that �(a�) = 1
and �0(a�) > 0, and Tc is chosen so that v� 2 Vs, then
FNAN contains an open positively invariant attracting
subset.

5. CONCLUSION

We have presented a simple vertical spring-mass hop-
ping model modulated by a biologically inspired clock-
based feedforward strategy for controlling gait | in this
simple setting, steady state hopping height. Our stability
results take the form of e�ectively computable suÆcient
conditions imposed upon the roots of Eq.(11). As we state
in Conjecture 1, it is clear from numerical study (although
not yet formally demonstrated) that these suÆcient condi-
tions are always satis�ed for one and only one �xed point
over a signi�cant portion of those physically meaningful
parameter values consistent with lossy operating condi-
tions. Further, we suspect that losses in the mechanical
system are necessary for stability of the coupled system
when the control is imposed in this feedforward manner
with no sensory feedback pathway.
The longer term goal of this research would be to lever-

age an understanding of more elaborate (i.e., mechanically
and biologically more realistic models) from relationships
between the controller parameters and the system behav-
ior exhibited by this caricature. Moreover, we are in-
vestigating \low bit rate" feedback schemes that confer
stability in the absence of mechanical losses and greatly
increase the domain of attraction in all circumstances.
Finally, we are looking into parallel composition and syn-
chronization [10] of CPG-based controllers to handle me-
chanical systems of higher degree of freedom, such as the
hypothetical SLIP [18] and physically extant Rhex [3,19].
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