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Abstract
This paper revisits the concept of specific resistance, ε, a dimensionless

measure of locomotive efficiency often used to compare the transport cost of
vehicles [6], and extends its use to the vertical domain. As specific resistance
is designed for comparing horizontal locomotion, we introduce a compensa-
tion term in order to offset the gravitational potential gained or lost during
locomotion. We observe that this modification requires an additional, exper-
imentally fitted model estimating the efficiency at which a system is able to
transfer energy to and from gravitational potential. This paper introduces a
family of such models, thus introducing methods to allow fair comparisons
of locomotion on level ground, sloped, and vertical surfaces, for any vehicle
which necessarily gains or loses potential energy during travel.

1 Introduction

Specific resistance, a dimensionless measure of locomotive efficiency, has often
been used as a comparison of transport cost for both biological and engineered
systems. In the robotic domain, where locomotion may include significant
vertical motion, such as in the case of climbing robots, unmanned aerial
vehicles, etc., the transport cost may include significant amounts of changing
gravitational potential, not accounted for in calculations of specific resistance.
In this paper, we provide motivation to extend this measure of transport
cost to the vertical domain and apply models of locomotive efficiency in the
presence of changing gravitation potential to several mobile robotic systems.
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Gravitational potential has been considered with specific resistance, but
always assuming a perfect efficiency of conversion. McGeer’s unactuated grav-
ity walker, for instance, uses the work performed by gravity to determine a
specific resistance of ε = 0.02 [11], while similar, actuated bipedal machines
inspired by passive dynamics have achieved similar, albeit slightly higher,
values, ε ≈ 0.05 [4]. The mismatch between the purely mechanical and the
electromechanical systems suggests that additional inefficiencies are present,
and must be considered when considering gravitational potential on actuated
systems.

The need for a specific resistance calculation invariable to the slope of
locomotion is apparent when considering the growing literature of climbing
robots. While specific resistance has been compared for a variety of ground
vehicles—an exhaustive comparison at time of publication is in [8]—no sim-
ilar comparison has been performed for climbing robots. With dynamic and
efficient climbers [3, 5, 10], as well as various other robots that climb on a
variety of surfaces at differing speeds [13, 1, 9], we believe the lack of a for-
mal comparison to be something that needs addressing in the climbing robot
community. This paper outlines a methodology by which specific resistance
can be applied to climbing robots—even those that only climb on sloped sur-
faces rather than vertical, such as in [2, 5]—and compared to other climbing
robots as well as to the growing list of ground robots covered in work such
as [8].

When considering level ground robots that occasionally encounter sloped
surfaces and hills, our compensated specific resistance is also of use. We
have applied automated tuning algorithms to allow a robot to learn efficient
locomotion strategies by evaluating specific resistance [15]. A shortcoming
of this approach is the need for level ground on which to tune behaviors.
With a gravity-compensated calculation of specific resistance, we can apply
our methods to a variety of terrain geometries, rather than being limited to
level ground only. Additionally, with more and more accurate models of a
robot’s motion while changing elevation, it is possible to apply compensated
specific resistance as a near instantaneous measure of locomotive efficiency,
thus providing even greater feedback to systems such as automated tuning
algorithms.

2 Technical Approach: Specific Resistance in the
Vertical Domain

Specific resistance is defined as the power required to keep a vehicle in motion,
divided by the weight times the velocity of travel:

ε =
P

mg v
(1)
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A mass in a frictionless environment requires no additional power to keep
itself moving, thus a “perfect” specific resistance has the value ε = 0.0.
Dissipative effects—friction, impacts, and any inefficiencies—result in lost
energy during locomotion, all of which specific resistance reflects in a single
dimensionless measure. Using the Hamiltonian of a system, the sum of kinetic
(T ) and potential energy (Vg for gravitational, Vp for power plant energy),
we can account for these dissipations:

H(t) = T (t) + Vg(t) + Vp(t) (2)

Due to dissipation,H(t) will be monotonically decreasing over time, d
dtH <

0. Considering specific resistance on level ground ( d
dtVg = 0) and at near-

constant speed ( d
dtT ≈ 0), we directly correlate any “drain” of energy, the

derivative of the Hamiltonian, to the measured power plant output P =
− d

dtVp. The power measured at the power plant, therefore, is a fair measure
of the dissipative energies, and thus is reflected as the numerator of (1).

A system that travels vertically, however, must perform work with or
against gravity, d

dtVg 6= 0, which should therefore be taken into account
in the calculation of specific resistance. A simple solution is to offset the
output of the power plant with any gravitational power, d

dtVg. Doing this,
however, complicates our notion of specific resistance, compounding a mere
measurement of power and velocity into a model of the interaction of the
various energy sources. The simplest version would contain a numerator of
P −mg v sin(θ), where θ is the angle of motion relative to horizontal, thus
offsetting electrical power with gravity. This modification, however, assumes
perfect conversion between power plant and gravitational potential. We in-
troduce an additional term in our model, β(θ) ∈ C∞[S1, R+], to reflect a
conversion efficiency. Higher values of β indicate that the power plant must
output greater amounts of energy per unit energy of gravitational potential.
Our new equation for compensated specific resistance, ε̂, is a model of the
interaction of θ with the measured ε, and, by compensating for gravitational
potential, will produce near constant results over a range of angles:

ε̂(θ) =
P − β(θ)mg v sin(θ)

mg v

=
P

mg v
− β(θ) sin(θ) (3)

With a model rather than a simple measurement, we propose fitting func-
tions for β(θ), which we initially perform for a constant value of β(θ) = β0.
For robots on slopes and vertical terrains, this requires at least two differently
sloped surfaces in order to perform a fit.

To provide a simple example noting the chiefly linear nature of gravity’s
interaction with power consumption, we consider the case of a ball rolling on
a flat surface. In absence of all other dissipative forces, we consider a ball in
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motion subject to only gravity and rolling resistance. In the case of rolling on
a purely horizontal surface, the ball will be decelerated by the force of rolling
resistance, defined as the coefficient of rolling Crr, multiplied by the normal
force.

frr = Crrmg (4)

On a surface angled at θ degrees, the body is affected by both gravity
and rolling resistance. While rolling resistance decreases in either positive
angles or negative angles, it does so with the cos(θ) from the normal force.
The gravitational force directed along with motion, however, changes with
sin(θ), and is thus linear when considering our model of specific resistance.
The following equations sum up the forces affecting the ball’s motion.

f = fg + frr (5)

frr = Crrmg cos(θ) (6)

fg = mg sin(θ) (7)

Fig. 1 shows modeled data using basic assumptions of ball mass (1 kg),
radius (0.1 m), velocity (1m

s ) and coefficient of rolling resistance (Crr = 0.15,
a value typical of a tire on pavement), over a range of angles from −90◦ to
90◦. As seen, the gravitational force dominates the “power” measurement
(estimated from additive and dissipative forces on the ball), and a linear fit
is relatively adequate.

3 Experiments and Results

We experimentally test our calculation of ε̂(θ) by applying differently con-
figured robots to surfaces at varying slopes. We make use of both a RHex
hexapedal robot [12], and a similar, but smaller EduBot machine [14], includ-
ing a modified version of EduBot with wheels rather than legs.

We ran an EduBot robot with wheels on a variety of sloped surfaces found
on the Penn engineering campus, testing both up and down at angles of 2.9◦,
3.8◦, and 4.5◦, as well as on horizontal ground, during which we collected
power and velocity data. A plot of how the specific resistance measurement
is affected by θ is shown in Fig. 2. A linear fit of ε, assuming β(θ) = β0 = 1.28,
is shown. If we were to apply this value of β0 to the equation for ε̂(θ), we
could produce a model that achieves near-constant values over a wide range
of slope angles.

A second dataset comes from experiments that have been performed on
the RHex robot, with which we have tuned gaits for rugged, sandy terrains.
In this experiment, shown in Fig. 3, the robot was run 70 m both up and
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Fig. 1: A simple model of a rolling ball on an angled surface. The force due to
gravity dominates the power, thus specific resistance follows a close-to-linear
curve through a wide range of angles. ε̂(0) = 0.093 and β0 = 0.1.
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Fig. 2: Effect of slope angle, θ, upon the measured specific resistance, ε. A
wheeled vehicle is run on various sloped surfaces (typical length of 10 m),
from which we fit a linear model, ε̂(0) = 0.23, and β0 = 1.28. While the
horizontal axis is sin(θ), angles in degrees are marked as well as vertical gray
lines.

.
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down a sandy road inclined at approximately 3◦, while power and GPS data
were collected. While the GPS provides only an extremely noisy measurement
of travel, the data shows overall differences in both power consumption and
velocity, when averaged out on the different slopes. Applying our methods, we
compute β0 = 3.04 for this scenario, indicating that, for RHex on sandy, loose-
packed surfaces, we achieve a lower efficiency at converting into potential
energy, not surprisingly, than for the wheeled machine on smooth, inclined
surfaces.
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Fig. 3: The RHex robot was run up and down a rugged, sloped road. From the
noisy measurements of a GPS, we compute a fit for ε, in which ε̂(0) = 1.52
and β0 = 3.04. Vertical gray lines note angle in terms of degrees.

4 Experimental Insights

Specific resistance abstracts away the details of locomotion into a single
number. Similarly, our compensated version simplifies additional details of
locomotion, most importantly, the manner in which a system interacts with
gravitational potential, into a simple model of energy efficiencies, β(θ).
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The physics of gravity, and how gravity interacts with power consumption,
dictates that measurements of ε will be continuous with respect to θ, thus
locally linear, allowing us to compute a value of β0 and normalize specific
resistance with our compensated version, ε̂(θ). How locally linear the function
is, however, is also of importance, as all vehicles eventually have angles at
which their locomotion mechanisms no longer work as expected, necessitating
a complicating move away from a constant β(θ) to higher order polynomials.

Anecdotally, early results with a legged robot show that the gait can have
a large effect on the local linearity of ε. Some gaits, perhaps poorly tuned
ones, exhibit worsening dynamics—and inefficient locomotion—as the slope
changes. Other gaits exhibit decent linear fits over a wide range of slopes,
much like the wheeled platform previously described.

With respect to climbing robots, our equation for ε̂ is immediately applica-
ble to behaviors on vertical terrain, even if such behaviors do not necessarily
translate onto horizontal surfaces. By collecting data over a range of surface
angles (and over a wide range, due to the fact that sin(θ) changes slowly
for angles approaching 90◦), we can apply compensated specific resistance to
experimental data from that of climbing robots.

We study the fitting of a linear model to the application of a robotic wall
climbing machine. One version of the RiSE V2 robot, weighing 5.17 kg (no-
ticeably heavier than prior description in [13] due to the recent addition of
body actuation and sensor payloads), was tested on an angled stucco surface,
ranging in angles from 60◦ to 80◦ in order to collect power information. The
robot used an alternating tripod gait in an open-loop fashion, in order to
provide as fair of a comparison as possible amongst various angles. Fig. 4
shows box-and-whisker plots of the specific resistance values at different an-
gles, along with a locally linear fit.

Comparing to data presented in [8], the RiSE climbing robot’s perfor-
mance, with a compensated specific resistance of 23.05 while climbing at an
overall average of 2.2cm/s, is similar to quasi-static walking robot, not sur-
prising as this version of RiSE is a quasi-static climbing robot. Future work
intends to pursue similar comparisons for dynamic and fast climbing robots
such as those described in [3] and [9].

Depending upon surface type and locomotion behavior, the locally linear
fit may be insufficient to describe specific resistance’s relationship with grav-
ity, such as when the challenge of a sloped terrain is too great for a mobile
robot. An example of this is provided in Figs. 5-6. In a set of experiments
conducted on an angled hill in a desert terrain, the X-RHex robot [7], an up-
dated version of the RHex robot, was commanded to successively hike up and
then down an angled hill. In a first set of experiments, the robot’s gait was
commanded open-loop, shown in Fig. 5. In a second experiment, Fig. 6, the
gait was modulated by the pitch angle of the robot while climbing, as anec-
dotal results indicate that RHex-style robots perform suitably better when
an open-loop gait is offset by the pitch of the hill, thus keeping the legs under
the robot’s body.
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Fig. 4: Upon fitting a linear segment to experiments conducted with the RiSE
climbing robot, we obtain the following values: ε̂(0) = 23.05 and β0 = 102.9.
Vertical gray lines mark surface angle, in degrees.

The robot with pitch offset enabled for its gait consumes significantly less
power to climb uphill, maintaining a suitably linear fit of specific resistance
during hill climbing. Without pitch offset, the specific resistance is better
described as a higher order polynomial, with a quadratic fit shown in Fig. 5.

5 Conclusions and Future Work

We have presented a modification to the calculation of specific resistance in
order to take into account changes in gravitational potential during loco-
motion. By comparing data from several platforms, we have shown locally
linear models to provide, in several cases, good methods for comparing lo-
comotion on variously angled surfaces, while also suggesting that, in other
cases, higher-order models are required.

The non-linearities sometimes encountered with our models are to be ex-
pected, and we believe they will be quite useful for behavior testing. The
compensated version of specific resistance can be used to provide a near-
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Fig. 5: X-RHex uses an open-loop gait to climb and descend an angled sur-
face. While downhill locomotion (left-hand side) provides sufficiently good
locomotion, the uphill locomotion (right-hand-side) gets dramatically worse
with higher angle slopes. Both linear and locally quadratic line fittings of the
raw data are shown.

constant value of locomotive efficiency over a range of locomotion scenarios
on horizontal or sloped terrain. As such, noting highly non-linear events dur-
ing locomotion can be useful, as they may allow a robot to easily realize times
at which its behavioral strategy may be insufficient and should be changed
due to changes in the surface and slope. Additionally, ranges of linearity for
given platforms or locomotion styles may provide arguments for various gaits
or methods of locomotion over others, depending upon performance.

Additional future work will continue the collection of data regarding climb-
ing robots, tested over a wide variety of angles, in order to provide compar-
isons amongst many climbing platforms, in addition to the existing literature
of level ground robot comparisons.

Lastly, we intend to test the application of this method to automated
behavior tuning across a wide range of surface angles, to test whether our
compensated version of specific resistance provides a better instantaneous
measure of locomotive efficiency.
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Fig. 6: In a second experiment, X-RHex uses a gait in which the robot’s legs
are commanded to stay centered underneath the robot’s body, based upon
the slope of the hill measured from an IMU. While going uphill (right-hand
side) the robot maintains a nicely linear fit of specific resistance, indicating
suitably good locomotion.
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