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Abstract As robot bodies become more capable, the motivation grows to better

coordinate them—whether multiple limbs attached to a body or multiple bodies as-

signed to a task. This paper introduces a new formalism for coordination of periodic

tasks, with specific application to gait transitions for legged platforms. Specifically,

we make modest use of classical group theory to replace combinatorial search and

optimization with a computationally simpler and conceptually more straightforward

appeal to elementary algebra.

We decompose the space of all periodic legged gaits into a cellular complex in-

dexed using “Young Tableaux”, making transparent the proximity to steady state

orbits and the neighborhood structure. We encounter the simple task of transition-

ing between these gaits while locomoting over level ground. Toward that end, we

arrange a family of dynamical reference generators over the “Gait Complex” and

construct automated coordination controllers to force the legged system to converge

to a specified cell’s gait, while assessing the relative static stability of gaits by ap-

proximating their stability margin via transit through a “Stance Complex”. To in-

tegrate these two different constructs—the Gait Complex describing possible gaits,

the Stance Complex defining safe locomotion—we utilize our compositional lexicon

to plan switching policies for a hybrid control approach. Results include automated

gait transitions for a variety of useful gaits, shown via tests on a hexapedal robot.
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1 Introduction

Gait transitions are ubiquitous among legged animals and essential for robots.

Whereas there is a long and still lively debate about the reason for their value to an-

imal runners (optimized joint loads? [4]; optimized energetics? [5]; muscle function

or bone strain? [21]), the more limited capabilities of legged robots ensure for years

to come that different maneuvers in different environments at different speeds under

varied loading conditions will require the adoption of distinct locomotion patterns,

along with necessitating the ability to transition between them safely and efficiently.

The great variety of gaits found in nature—quadrupedal walking, trotting, pacing,

and galloping; hexapedal wave gaits and alternating tripods [15, 11, 22]; and so

on—persuades us of the importance in building a general framework to identify and

produce reliable transitions amongst all gaits a robot can use.

A variety of methods have been proposed for switching gaits in legged robots,

however most have not considered underactuated systems, in which legs do not have

full control over the timing of stance and recirculation throughout a full stride. Ex-

amples of underactuated legged robots include the RHex robotic hexapod [17] and

the RiSE climbing robot [19], legged machines respectively capable of running and

climbing on many unstructured terrains. In the case of RHex, each leg contains a sin-

gle actuator, thus modification of gait timing must occur during recirculation, so as

to not produce inconsistent toe velocities during stance. For RiSE this is even more

imperative when climbing a wall because inconsistencies of toe velocities while at-

tached to a climbing surface can cause a robot to lose grip and fall. For this reason,

we have developed a variety of prior methods using only gait timing modification

during leg recirculation [10, 9] in order to change gaits during locomotion.

This paper focuses upon methods of merging low-level regulation control of

gaits, as described above, with high-level task planning, in which hybrid control of

various different gait strategies is necessary. We address the problem of producing

safe, efficient gait control for underactuated robots via switching policies amongst

families of gait limit cycle attractors. We do so by exploiting the algebraic structure

of two distinct symbolic decompositions of the limb phase space: the Gait Com-

plex, introduced in Section 2; and the Stance Complex, introduced in Section 3. Our

techniques in this paper build upon basic ideas presented in [12], but we introduce

methods that are more general and more comprehensive in scope, particular to the

application of gait switching. Our specific contributions lie in the introduction of

these two cellular decompositions of the phase space that we use to

i. enumerate the allowable gaits of a legged system;

ii. design a mixed planning/control method to navigate amongst them;

iii. execute these transitions in real-time during continuous legged locomotion.

Initial results are presented for a walking hexapod, while future applications in-

clude feedback-driven general terrain locomotion for walking, running, and climb-

ing robots, while requiring minimal sensory information and computational power.
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2 Hybrid Control Over the Gait Complex

2.1 The Gait Complex, Gaitsn[T]

In [2], we endow T
n+1/T ≈ T

n with the structure of a cell complex, denoted

Gaitsn[T], the disjoint union of its j-skeleta

Gaitsn[T] =

n
∐

j=0

Gaitsn[T]j ,

collections of j-dimensional submanifolds assembled in Gaitsn[T]j , with appropri-

ate “gluing” identifications at their boundaries [6]. Although the cardinality of this

cell complex must grow combinatorially in the degrees of freedom, n, it is suffi-

ciently regular to enjoy the additional structure of a Delta Complex wherein each

cell of each of the skeleta is the image of a standard unit simplex whose boundaries

are formally associated via a family of “characteristic maps” [6].

We find it useful to index the various cells of the complex, Gaitsn[T], by means

of equivalence classes of Young Tabloids [16], T ∈ T
n+1
k+1 , arrays of (typically)

unevenly long strings of integers taken from the set {1, . . . , n + 1} with no replace-

ment, each of whose k + 1 rows denotes a “virtual leg” (a subset of legs that is

locked in steady state at the same relative phase for the gait being described), and

whose row order corresponds to the cyclic order of virtual legs in the gait. We show

formally in [2] that a certain quotient (that is, a complete transversal of left cosets

[16] arising from a particular subgroup) of the permutation group Σn+1 × Σk+1 is

in one-to-one correspondence with the gait complex Gaitsn[T]k, but for purposes of

this paper it suffices to provide the following intuitive characterization of the equiv-

alence classes as follows. Two tabloids, T ,T ′ ∈ T
n+1
k+1 , index the same cell in the

k-skeleton, Gaitsn[T]k if and only if: (i) there is a bijection between their rows (each

considered as an unordered collection of integers); and (ii) the bijection is some

power of the “full shift”, ζ ∈ Σk+1 : (1, 2, . . . , k, k + 1) 7→ (k + 1, 1, 2, . . . , k).
In this paper, we make twofold use of the Young Tabloids. First, each Tabloid

provides an algorithmic specification of a gait generator over the cell it indexes.

We will sketch the nature of this algorithm in Section 2.2 and provide some illus-

trative examples in Table 6. Second, a computationally simple Tabloid operator,

∂ : T
n+1
k+1 → 2T

n+1
k computes the set of tabloids indexing the boundary cells in

Gaitsn+1[T]k of the cell in Gaitsn+1[T]k+1 indexed by its argument. We will use

this operator as the key computational component in the transition planner presented

in Section 4. Given length constraints, it does not seem possible in this paper to

present any more formal an account of these ideas (which are formally developed in

[2]) and we seek rather to provide an intuitive feeling for what the machinery offers

through the use of examples and the informal pictures and tables in the Appendix.
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2.2 The Gait Fields

While not required for qualification as a Delta Complex, we find in this application

the need for a family of “normal” maps nT : T
n+1 → T

n−k associated with each

cell indexed by its tabloid T ∈ T
n+1
k+1 whose Jacobian yields the normal bundle,

TpT
⊥ defined by the corresponding inclusion map. Specifically, we use them here

to build gradient vector fields that “force” the resulting flows toward the designated

cell wherein the flow of the desired reference field is known to produce a desired

gait. To do so, first observe (as shown formally in [2]) that

νm : T
m → [0, 1] : (r1, ..., rm) 7→ 1 −

1

m

m
∑

i=1

cos ∠ri (1)

is a perfect Morse function with critical points in {0, π}
m

each of which have Morse

index specified by number of π entries. It follows that the flow associated with

the gradient vector field, grad ν m, takes almost all initial conditions in T
m to the

identity, (e2πi0, . . . , e2πi0). Thus, given a tabloid, T ∈ T
n+1
k+1 , the Morse function

ν T := νn−k ◦ nT defines a gradient vector field whose flow brings almost every

initial condition in T
n+1 to the cell in T

n+1/T that T indexes. Examples of the

normal maps associated with each cell of the three-legged complex, Gaits2[T] are

listed in Table 1.

Denote by R1
BC : T

1 → TT
1 the “Buehler Clock” reference generator first

introduced in [18] that encodes a one dimensional circulation flow undergoing a

phase interval of slow “stance” motion corresponding to the behavior we presume

appropriate when a leg is in contact with the ground, followed by a complementary

phase interval of fast “recirculation” corresponding to the time interval over which

a leg will be lifted off from the ground and returned ready for its next stance phase.

This simple rhythm generator can be “pushed forward” to T
2 via the inclusion (5)

as R2
BC := P 1 2 · R1

BC ◦ p† 1 2 . The sum, F 2
PR = R2

BC − grad ν 1 2 , which can

be written in angular coordinates (see footnote 3) as

F 2
PR(x1, x2) = R1

BC(x1)

[

1
1

]

− sin(x1 − x2)

[

1
−1

]

. (2)

induces a flow under which almost every pair of phases is brought to a bipedal

“pronk”—a limit cycle characterized by both legs recirculating in phase—a cycle

over the cell in Gaits1[T] indexed by 1 2 ∈ T
2
1 .

In contrast, let us construct the alternating phase bipedal gait generator displaying

the archetype of a gait in the “antiphase” cell of Gaits1[T] indexed by 1
2 ∈ T

2
1 . By

conjugation, R2
AP := Dh2

TR ·F 2
PR◦

(

h2
TR

)−1
, through the translation, h2

TR : T
2 →

T
2 : (x1, x2) 7→ (x1, π + x2), we define a new vector field

R2
AP (x1, x2) = R1

BC(x1)

[

1
1

]

− sin(x1 − x2 + π)

[

1
−1

]

. (3)

that shifts the roles of the two invariant submanifolds of the pronking field, F 2
PR.
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Table 6 provides a detailed listing of the various intermediate fields required to

construct two of the most familiar hexapedal gaits: the alternating tripod, R6
AP [18],

and the stair climbing gait, R6
Stair [14]. All of the gaits used in the experiments

reported here are generated in a similar manner.

3 The Task of Locomotion and the Stance Complex

The Gait Complex, Gaitsn−1[T], describes all possible gaits for an n-legged robot.

Locomotive differences exist, however, amongst the various gaits. We introduce a

second cellular decomposition of T
n, the Stance Complex, Stancen[T], to describe

the inherent discreteness of legged locomotion and note all possible leg support con-

figurations. We utilize this complex to identify a priori which cells of Gaitsn−1[T]
produce viable statically stable locomotion.

Computation of static stability margin of locomotion can be determined by pro-

jecting the mass center onto a support polygon defined by a robot’s surface con-

tacts, a computation that can be quite expensive in the presence of complex sur-

face interactions [1]. For a particular contact configuration of limbs, a single cell

of Stancen[T], we argue, this stability margin is locally a continuous function of

posture, but varies more dramatically (and discretely) when toe contacts are added

or removed, other cells of Stancen[T]. In the case of underactuated robots, where

available postures are limited by low numbers of degrees of freedom, this is partic-

ularly true. Even for high degree of freedom system, the workspace of individual

limb motions can be quite small when compared to body size, thus expounding the

small variation in stability margin within a cell of Stancen[T] compared to dramatic

changes when making or breaking contact.

3.1 The Stance Complex

The Gait Complex of Section 2 describes all possible gait timings, noting specific

leg phase relationships. Of the immense number of possible gaits, 1082 for a 6-

legged robot, not all are locomotively viable, as many may recirculate legs together

which produce unstable configurations of the robot’s body. Stancen[T] provides us

with accurate constraints regarding this aspect of the locomotion task.

Each axis of the n-torus corresponds to the possible gait timings for an individual

leg during locomotion, containing both stance and recirculation as discrete regions

on the axis. The duty factor of a gait, δ ∈ (0, 2π), reflects the percentage of stride

spent in stance versus recirculation, thus for an individual leg i, if xi < δ the leg

is considered to be in stance. This demarcation is defined for each axis of the torus,

thus producing a complex Stancen[T] of 2n total cubical cells, as well as intersect-

ing faces and edges. As an example of a cubical member of Stancen[T], consider

the cell where ∀ixi < δ. This cell corresponds to all legs in stance, while ∀ixi ≥ δ
is all legs in recirculation.
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3.2 Examples: Stance2[T] and Stance3[T]

If we consider the 2-torus, the space of gait timings for a bipedal robot, there exist

four cells shown. One cell on this torus has both legs in stance, two cells have a

single leg recirculating, and one cell has both legs recirculating. Assuming a quasi-

static locomotory system, it would be dangerous for the robot to use a gait that tries

to recirculate both legs at once, thus this last cell should be avoided.

Fig. 1 Stance2[T]: Demar-
cations between stance and re-
circulation produce 4 unique
cells in the Stance Complex.
With a stance duty factor
of 50% (δ = π), there exists
only a single gait (dashed line)
that does not pass through the
cell corresponding to both
legs recirculating together
(upper right).

x1 < δ x1 ≥ δ
x
2

<
δ

x
2
≥

δ

Considering a similar system on the 3-torus, depicted as a cube with faces identi-

fied in Fig. 2, we demarcate each axis with regions dedicated to stance and recircu-

lation to produce a total of 8 cubical cells in the Stance Complex. Depending upon

the exact mechanics of the robot, it may be undesirable to recirculate certain sets of

legs together. In the figure we highlight potentially dangerous cells that recirculate

2 or 3 of the legs together at the same time. The cell where all legs are in stance, or

only a single leg recirculates, would be considered safe cells.

Fig. 2 Stance3[T]: A total
of 8 unique cubical cells exist
in the Stance Complex for
the 3-torus. In this figure
are highlighted the 4 cells
which recirculate 2 or more
legs of a 3-legged robot
simultaneously. A safe gait,
in this scenario, would try to
only recirculate a single leg at
a time, two such gaits possible
when δ = 2

3
2π.

x1
< δ

x1
≥ δ

x
2 <

δ

x
2 ≥

δ

x
3

<
δ

x
3
≥

δ
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3.3 Static Stability Metric

We utilize Stancen[T] to define in general the global properties of static stability

for an n-legged robot. This approach allows us to evaluate gait stability simply by

studying the cells through which a given gait passes.

Fig. 3 For basic analysis of
static stability, we consider a
robot with single actuators per
hip, similar to the RHex-style
robot shown. With such a
model, the stability margin of
gaits is computed.

(a) Basic model of rotary joint
quadruped

(b) Picture of a RHex-
style hexapedal robot

Fig. 4: Stance4[T]: There exist 16 cubical cells within Stance4[T], with varying

stability values between all. Cells with more legs in stance (represented as shaded

circles on simple representations of robot at bottom) have greater stability margins.

Figure 4 shows analysis of the Stance Complex on T
4. Using our simple model

of a quadrupedal robot (Fig. 3), each cell is tested for static stability, consisting

of a total of 160, 000 tested configurations for the 16 cubical cells, taking into full

consideration the entire gait space of T
4. Cells with more legs in stance offer greater

static stability. Similarly, certain cells with two legs in stance perform better than

others, for instance showing that the cells corresponding to a trot gait, cells 6 and 9,

have greater stability than those for pace and bound gaits.
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4 Planning and Control Approach

Utilizing both the Gait Complex and Stance Complex, we develop a mixed planning

and control approach to automate safe switching between gaits. We intersect cells

of s−1 (Gaitsn−1[T]) with unsafe cells of Stancen[T] in order to prune gait cells

that do not produce safe locomotion. A search algorithm is then used to plan routes

amongst the remaining cells to generate a sequence of Young Tabloids that are used

in a hybrid switching controller that transitions between gaits, while avoiding dan-

gerous, unstable cells of the Stance Complex.

4.1 Transitions on Hasse Diagram of Gaits

The planning component of our hybrid controller relies heavily upon the partial or-

der relation of adjacency by boundary (that we denote by ≻) in the Gait Complex.

Topologically, it is impossible to pass from one cell to an adjacent neighbor of equal

dimension without passing through a “neighbor” on the shared boundary. The very

notion of cell adjacency is characterized by this partial order—conveniently cap-

tured by the formalism of the Hasse Diagram [16]. As different leg combinations

incur very different locomotion behaviors (different passages through Stancen[T]
in the present problem dealing with static stability) the choice of intermediate cells

along the way from one to another gait—i.e., the particular path through the Hasse

Diagram—requires a level of methodical scrutiny that we entrust in the present pa-

per to a planner. The strong correspondence between the cellular structure of the

Gait Complex, Gaitsn[T], and the tabloids, T
n we use to index it affords our plan-

ner a very simple operation over the latter that faithfully represents the boundary

operation over the former which we now outline.

Given a tabloid, T ∈ T
n+1
k+1 , indexing a cell in Gaitsn[T]k there is a very simple

operation,

∂ : T
n+1
k+1 → 2T

n+1
k ; 0 ≤ k ≤ n

yielding the tabloids that index all its boundary cells in a manner we merely sketch

here (but present rigorously along with a proof of correctness in [2]) as follows. For

each pair of contiguous rows of T , collapse the entries into one row comprising the

union of the entries of the pair. Compute such a collapsed tabloid for each successive

continguous pair of rows, including, finally, the first and the last row, so as to achieve

a set of k + 1 tabloids in T
n+1
k . Each of these indexes one and only one adjacent

(boundary) cell in the (k − 1)-skeleton, Gaitsn[T]k−1. Hopefully, it is intuitively

clear that the “tabular inverse” of this operation,

∂−1 : T
n+1
k → 2T

n+1
k+1 , 0 ≤ k ≤ n

yields the one-row-longer tabloids that index the cells that share a boundary com-

ponent indexed by the argument. For example the partial order adjacency relation at

the quadrupedal “half-bound” gait (for example reported in [8]) is computed as
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{

1
2
3
4

,
1
2
4
3

}

= ∂−1
{

1
2
3 4

}

≻
{

1
2
3 4

}

≻ ∂
{

1
2
3 4

}

=
{

1 3 4
2 , 1

2 3 4 ,
1 2
3 4

}

Considering legs in recirculation, this definition of adjacency makes intuitive

sense: when multiple legs enter recirculation together, as legs within the same row

of a tabloid would, it is possible for one leg to speed up while another slows, thus

splitting the row apart as the current gait cell changes. Conversely, legs entering

recirculation may wait indefinitely for other legs—so long as the robot remains stat-

ically stable—such that they synchronize, merging rows of a tabloid.

Using this definition of adjacency between tabloids, and starting from the initial

“pronk” tabloid on T
6, 1 2 3 4 5 6 , we build an adjacency matrix amongst all 1082

cells of Gaits5[T], shown in Fig. 5a. This matrix is block adjacent, since a given

tabloid may only be adjacent to cells with either one less or one more length in

rows. If we extend our definition of adjacency to allow multiple sequential rows to

be compressed together (or a single row split into more than rows)—a reflection

that more than two groups of legs can split or join in a given operation (or, more

topologically, that we will allow immediate passage to boundaries of boundaries

of cells in the gait complex)—this expands the definition of the Hasse Diagram to

include other adjacencies, shown in Fig. 5b.

(a) Hasse Diagram of Young Tabloids (b) Hasse Diagram including multi-
dimensional adjacency

Fig. 5: Hasse Diagrams over the set of Young Tabloids. A 1082×1082 matrix repre-

sents the graph of gait cells, white dots representing adjacency. Cells are in order of

increasing dimensionality, block-wise groupings shown here, prior to filtering based

upon the Stance Complex.

Lastly, before applying a discrete planner over this set of gait cells, we prune

based upon static stability. In our basic implementation of the Stance Complex, we

limit ourselves to cells that do not recirculate either ipsilateral nor contralateral legs

(excluding the middle pair) together, thus only allowing 18 out of the 64 cells of

Stancen[T]. This conservative restriction on the Stance Complex, when intersected

with the Gait Complex, reduces allowable gait cells to only 477 of the original 1082,
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however all 477 are statically stable gaits. Another result of the conservative esti-

mate of gait stability is the existence of disconnected clusters of gaits in the Gait

Complex. Of the 477 gaits, 301 exist in one large cluster (including the most com-

monly accessed legged gaits for N = 6) with another two symmetric clusters of 87
gaits, while each of the two circular crawls is likewise disconnected from all other

gaits. By our estimation of static stability, it is impossible to reach one cluster from

another, due to our constraints on ipsilateral and contralateral legs.

4.2 Planning Gait Complex Switching

We consider the problem of an underactuated robot, where freedom to control leg

phasing only occurs during recirculation. To discretely plan over this set of opera-

tions, we utilize an A* planner that computes cost, in terms of total transition time,

between arbitrary cells of the Gait Complex.

The cost of an individual transition between two cells depends upon the initial

phase of the first gait. Given that legs must recirculate together to switch, we sum the

wait time until legs begin recirculation with total time of recirculation to get actual

cost. An admissible heuristic in this case is cost of 1.0, as adjacent cell transitions

cannot take more than one stride.

4.3 Controller Activation

Our controllers take a given sequence of tabloids, as output by the A* planner, and

construct individual reference field controllers, following from the examples in Sec-

tion 2.2. Several additional controller modifications are as follows.

Foremost, active control of leg phase occurs only during recirculation. We as-

sume legs in stance to be “rigidly” attached to the surface, particularly relevant

when considering climbing robots where inappropriate torquing of individual feet

may cause them to lose grasp. In this way, the gradient field simply zeros any action

along axes for legs currently in stance.

The duty factor of the system is also modified when the robot approaches new

gaits. A virtual biped gait, such as the alternating tripod, will use a gait with 50%

duty factor when close in phase space. A simple controller that provides an algebraic

relationship between duty factor and phase is detailed in [7].

Lastly, in our definition of the reference field controllers, we leave freedom in the

choice of the exact structure of an individual tableaux. 1

t( 1 2
3 4 ) = { 1 2

3 4 ,
2 1
3 4 ,

1 2
4 3 ,

2 1
4 3}

Each tableaux describes the same system, consisting of the same limit cycle gait,

with different enumerations of legs within the rows of the tableux. The distinction

1 Following the terminology of [16], a tabloid is the equivalence class of all numerically filled-in
diagrams whose rows are identical, disregarding the order of the integer entries of each row.
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between individual tableaux, however, affects the construction of the related refer-

ence field controllers, as the first element of each row is chosen as leader (formally

specified by the choice of left inverse as exemplified by p 1 2 in equation (5)). To

effect a rational choice of “leader” in any new instantiation of a gait, we consider all

identified tableaux of a specific tabloid T , and make use of the one whose potential

function has the lowest value.

argmin
T ′∈t(T)

νT ′(r)

By selecting the minimum cost potential function from which to generate our

reference field, we achieve an online adjustment of the transient behaviors of the

system such that it follows near-minimum distance paths between gaits, without in-

troducing local minima (as each possible x has the same stable critical point and our

system always decreases in potential). For an alternating tripod gait, this operation

includes a total of 36 function evaluations in order to choose an ordering.

5 Experimental Results

Using a hexapedal robot platform, we have implemented our gait transition method

and shown its efficacy in producing near arbitrary transitions between safe gaits

while preventing loss of static stability. We discuss examples of such transitions,

compare with a naı̈ve coupled oscillator approach, and project directions in which

this research will enable new behaviors for both walking and climbing legged robots.

5.1 Gait Switching

Our new gait switching methods attempt to rectify deficiencies in our prior ap-

proaches. For the domain of climbing robots, we have constructed hand-designed

transitions between gaits [10], but these transitions were not easily generated nor

guaranteed. Further work produced control laws that converged to desired gaits [7],

but was limited to a small number of gaits with no choice of which exact gait to con-

verge. The methods described here attempt to automate the generation of transitions,

allow transitions between arbitrary pairs of gaits, while preventing static instability.

Fig. 6 shows the transition from a crawl gait to the alternating tripod gait.The

top of the figure shows the sequence of tabloids that the planner has determined to

converge the fastest. The bottom plot shows roll, pitch, and yaw angles, relatively

stable while undergoing a transition of gait.

Fig. 7 shows two different attempts to produce a non-trivial gait transition. The

first uses the tabloid-derived control law to simply converge to the desired gait,

however it has the undesireable results of poorly designed paths of convergence,

following from a basic coupled oscillator approach [12]. The second uses a sequence

of planned intermediary gaits to produce a transition that retains static stability.
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Fig. 6 A sequenced transition
of Young Tabloids between
gaits. At each switch time,
the controller changes, con-
verging to the next gait. End
result is a transition behavior
that avoids static instabilities.
Each line is a “phase offset”
of a given leg [?], with green
regions indicating stance.
Phase control occurs during
recirculation while adjust-
ment of duty factor (ratio of
green to white) takes place
as the system reaches desired
gaits.

(a) Direct Controller Transition (b) Planned Sequence of Controllers

Fig. 7: Two transitions between gaits. The planned sequence (right) prevents loss of

static stability, while the direct approach (left) loses static instability, as measured

by pitch-roll-yaw angles from a Vicon system.

As can be seen in the plots, the unplanned version recirculates too many legs

together, loses static stability, and pitches, rolls, and yaws during the transition. The

planned version remains relatively level throughout the entire transition. Inconve-

nient and disruptive during a level ground walk, such perturbations would be catas-

trophic in a climbing setting, or even, most likely, in a high performance dynamical

level ground setting.
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6 Conclusions and Future Work

We have introduced a combined planning and control method that uses both discrete

and continuous representations to plan and execute transitions amongst gaits imple-

mented on an underactuated legged robot. Introduction of both the Gait Complex, a

structure that characterizes all the possible one-cycles achievable with an n-legged

machine, as well as the Stance Complex, classifying the ground contact status of all

legs, brings about a greater understanding of the space of gaits, and points the way

to global approaches for gait control.

In these preliminary experimental results, it seems possible that naı̈ve transitions

using gaits that simply avoid bad cells of the Stance Complex may perform just as

well as the planner’s sophisticated use of cell adjacency. Furthermore, the situation

is of course a good deal more complex than we allow in this first paper on these

cellular decompositions. For example, the present gait reference fields (Sec. 2) yield

steady state limit cycles whose paths maintain rigid phase relationship amongst legs.

There is no reason not to consider more general gaits whose orbits may wind about

the torus in different ways in order to avoid bad cells of the Stance Complex. 2

We are currently studying methods of extending our level-ground transitions to

domains in which the terrain varies, such as climbing over rubble-like obstacles

or transitions between level-ground locomotion and vertical climbing, in which we

expect different sets of viable gaits to be available to us. In both of these cases,

studying how body geometry and contact mechanics affect the allowable cells of

the Gait and Stance Complexes is part of our future work.

Acknowledgements This work was supported in part by the ONR HUNT project, the DARPA
SToMP project, and an Intelligence Community Postdoctoral Fellowship held by the first author.

Appendix A: The Gait Complex and its Defining Inclusions

The gait complex Gaitsn[T] is a cellular decomposition of T
n built upon the image

of T
n+1 under the “shearing map” [3],

sn+1 : T
n+1 → T

n : (r1, . . . , rn, rn+1) 7→ (r1r
−1
n+1, . . . , rnr−1

n+1). (4)

The cells of Gaitsn[T] arise by “shearing” down all of the “diagonal” subspaces

of T
n+1—that is, all of those orbits wherein some subset of entries maintain the

identical phase—and thus represent via a single n-tuple, an “orbit” of (n+1)-tuples

that circulate while maintaining the same relative phase. 3

2 For an example of a more complicated family of reference gait generators capable of producing
such “winding” limit cycles, consider the example in Fig. 3 of [20].
3 We will shift back and forth as a matter of convenience between representing phase as an “angle”
x, or as a point on the unit circle in the complex plane, r = e2πix, where e is the standard
exponential map.
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For example, the bipedal steady state gaits may be coarsely distinguished by

whether or not the legs are held in the same phase (“pronking”) during circulation

through periodic stride. Following the account at the beginning of Section 2.2, we

use the Young Tabloid T = 1 2 ∈ T
2
1 to index the bipedal “Pronk” by defining a

parametrization of the appropriate diagonal,

p 1 2 : T
1 → T

2 : r 7→ (r, r);P 1 2 := Dp 1 2 =

[

1
1

]

; p† 1 2 (r1, r2) := r1,

(5)

(that we display along with its Jacobian matrix, P 1 2 , and a choice of left inverse

, p† 1 2 , made apparent in the discussion of Section 2.2) which is then “sheared

down” to get the representative cell, Gaits1[T]0 =
{

s2 ◦ p 1 2 (T1)
}

—in this case,

the single“vertex” s2 ◦ p 1 2 (r) = e2πi0. In contrast, if the legs are out of phase in

steady state, then we locate the gait in the sheared image of the identity map of the

two-torus to get Gaits1[T]1 =
{

s2 ◦ pT (T2)
}

for T = 1
2 ∈ T

2
2 , which evaluates to

the entire “circle” s2◦pT (r1, r2) = e(2πi(x1−x2)). The Delta Complex formalism

[6] requires these inclusions be made from the domain of a simplex,

∆[m] := {(x1, x1 + x2, . . . , x1 + . . . + xm) ∈ [0, 1]m :

0 ≤ x1 + . . . + xj ≤ 1, j = 1, . . . m}

and given a Young Tabloid, T ∈ T
n+1
k+1 with toral inclusion, pT : T

k+1 → T
n+1, the

associated “characteristic function” is p̃T := pT ◦ exp
k+1 where exp

m : ∆[m] →
T

m : (x1, . . . , xm) 7→ (e2πix1 , . . . , e2πixm). Continuing along this specific exam-

ple, for m = n + 1 = 2, the Delta Complex formalism now re-assembles these two

sets—the zero-skeleton, Gaits1[T]0, and the one-skeleton Gaits1[T]1—into the cell

complex, Gaits1[T] = Gaits1[T]0
∐

Gaits1[T]1 by identifying their shared point

e2π0 via the characteristic maps as detailed in [2]. The corresponding generalization

of this construction to the 3-legged gait complex is listed in Table 1 and depicted in

Figure 8 which also provides a view of the 4-legged gait complex.
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(a) Gaits2[T] from s3 ◦ pT : T
3 → T

2 (b) Gaits3[T] from s4 ◦ pT : T
4 → T

3

Fig. 8: An exhaustive view of the cells of the “three-legged” gait complex (left) and

a typical view of the “four-legged” gait complex (right) annotated by their associated

Young Tabloids, T , and examples of some of the gaits they represent.

Tabloid InclusionMaps NormalMap Gait

T ∈ T
3
k+1 ∆[k + 1]

p̃
T

−→ T
3 s3
−→ T

2 nT (r1, r2, r3) Name

1 2 3 (x) 7→ (e2πix, e2πix) 7→ (e2πi0) (r1r
−1
3 , r2r

−1
3 ) Pronk

1 2
3

(x1, x1 + x2) 7→ (e2πix1 , e2πix1 , e2πi(x1+x2)) 7→ (e−2πix2 , e−2πix2 ) r1r
−1
2 Reverse Flip

1 3
2

(x1, x1 + x2) 7→ (e2πix1 , e2πi(x1+x2), e2πix1 ) 7→ (e2πi0, e2πix2 ) r1r
−1
3 Incline

2 3
1

(x1, x1 + x2) 7→ (e2πi(x1+x2), e2πix1 , e2πix1 ) 7→ (e2πix2 , e2πi0) r2r
−1
3 Flip

1
2
3

(x1, x1 + x2, x1 + x2 + x3) 7→ ∅ Ripple

(e2πix1 , e2πi(x1+x2), e2πi(x1+x2+x3)) 7→ (e−2πi(x2+x3), e−2πix3 )

1
3
2

(x1, x1 + x2, x1 + x2 + x3) 7→ ∅ StairClimbing

(e2πix1 , e2πi(x1+x2+x3), e2πi(x1+x2)) 7→ (e−2πix2 , e2πix3 )

Table 1: The Gait Complex Gaits2[T]
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Gait Field Formula Change of Coordinates

Bipedal Pronk [18] R2
P R P 1 2 · R1

BC ◦ p†
1 2 − grad ν 1 2 ∅

Alternating Phase Biped [18] R2
AP Dh2

T R · R2
P R ◦

`

h2
T R

´−1
(x1, x2) 7→ (x1, x2 + π)

Three-Legged Pronk [13] R3
P R P 1 2 3 · R1

BC ◦ p†
1 2 3 − grad ν 1 2 3 ∅

Three-Legged Crawl [14] R3
CR Dh3

T R+ · R3
P R ◦

“

h3
T R+

”−1
(x1, x2, x3) 7→ (x1, x2 − 4π

3 , x3 − 2π
3 )

Hexapedal Alternating Tripod [18] R6
AP P 1 4 5

2 3 6

· R2
AP ◦ p†

1 4 5
2 3 6

− grad ν 1 4 5
2 3 6

∅

Hexapedal Stair Gait [13] R6
Stair P 1 2

3 4
5 6

· R3
CR ◦ p†

1 2
3 4
5 6

− grad ν 1 2
3 4
5 6

∅

Table 2: Gait Fields over Limb Phase Coordinates.
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