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Abstract— This paper examines the design of a parallel
spring-loaded actuated linkage intended for dynamically dex-
terous legged robotics applications. Targeted at toe placement
in the sagittal plane, the mechanism applies two direct-drive
brushless dc motors to a symmetric five bar linkage arranged
to power free tangential motion and compliant radial motion
associated with running, leaping, and related agile locomotion
behaviors. Whereas traditional leg design typically decouples
the consideration of motor sizing, kinematics and compliance,
we examine their conjoined influence on three key charac-
teristics of the legged locomotion cycle: transducing battery
energy to body energy during stance; mitigating collision losses
upon toe touchdown; and storing and harvesting prior body
energy in the spring during stance. This analysis leads to an
unconventional design whose “knee” joint rides above the “hip”
joint. Experiments demonstrate that the resulting mechanism
can deliver more than half again as much kinetic energy to
the body (or more than double the kinetic energy if the full
workspace is used), and offers a five-fold increase in energy
storage and collision efficiency relative to the conventional
design.

I. INTRODUCTION

In this paper, we simultaneously examine the effects of
motor sizing, transmission, and compliance to arrive at
a novel leg design for a running machine whose “knee”
joint rides above the “hip” joint (see Fig. 1). Programming
mechanical work in a physical machine requires an ability to
both transduce energy to the body, and then control its release
along degrees of freedom appropriate to the task at hand. We
judge the performance of this integrated electromechanical
powertrain by how well it can accomplish the former, namely
extracting energy from the battery, delivering it to the body,
and retaining it there.

Our methodology for doing so entails the study of a 1 DOF
template [1] that exposes the key design challenges arising
from such problems of energy transfer and management
by focusing on a particular hopping behavior [2], albeit
one nearly ubiquitous in dynamical locomotion [3], [4].
Specifically, the stance event of this dynamical system can
be used to pull both efficiency [5] and agility [6] criteria
back into the design space of the mechanism.

A. Related Literature

For a robot doing work in the physical world, the dynam-
ical interactions between the machine and its surroundings
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Fig. 1. Physical machine with emphasis on leg kinematics and annotated
model.

(humans, objects, and the ground) govern the system’s per-
formance. This was first apparent in the pursuit of manipu-
lator force control [7]–[11] and refined in actuators designed
not only to exert forces, but to have forces exerted upon
them [12]–[15]. In legged locomotion, there are obvious
advantages to having an actuator allowing for transparent
[16], [17] and flexible (subserving in part or whole a variety
of functions, including “motors, brakes, springs, and struts”
[18]) manipulation of the system’s natural dynamics. This
paper builds on previous work by the authors, which consists
of a simplified numerical study [19].

The design of a machine capable of harnessing its natural
dynamics in pursuit of its tasks involves the simultaneous
representation and selection of components across a diver-
sity of physical modalities spanning compliance properties,
power characteristics, materials, and kinematics—first to
construct the mechanical stage upon which the dynamics can
be played out, and then to direct effectively their recruitment
for the task at hand. Notwithstanding their intimate coupling
in the physical platform, parameters representative of these
distinct physical modalities have traditionally been optimized
individually or pairwise at a given operating point. Leg
design is considered in [20]–[23], compliance in [24]–[27]
and actuator selection in [13], [29]–[31].

B. Contributions and Organization

Experiments with a physical prototype of the mechanism
proposed by our analysis suggest that the novel resulting
design allows a fixed power source to deliver 1.6x as much
kinetic energy to the body (2.1x if the full workspace is
used), a 4.8x decrease in losses due to collisions, and 5.6x



the energy storage in the spring (shown in Fig. 4, 5, 6
respectively and in Table III).

Section II introduces our design methodology, followed by
a detailed discussion of the template and leg kinematics in
Section III. Section IV proposes dynamic task specifications
from first energetic principles and summarizes the results of
a numerical study that yields the novel design. Section V
introduces the design prototype, describes the experimental
study, and compares the numerical and empirical results.

II. DESIGN

A. Actuator Selection

This analysis will assume that actuator selection is per-
formed to maximize both torque density (Nmkg ) and Km

(Nm√
W

) according to [29] and [13] respectively. This selection
greatly improves the actuator transparency [16] and is ac-
complished by minimizing or even eliminating the motor’s
gearbox for given torque requirements and surrendering a
significant fraction of the robot’s mass to the actuators.
Moreover, for a given motor geometry it can be shown that
Km is invariant to winding specifics (arrangement and wire
gauge)1. Since the motor controller’s thermal load is however
not invariant to winding (Joule heating ∝ 1

R ), the choice of
wire gauge should be used to ensure that the motor controller
is not limiting (in the thermal sense) the performance of the
motor and motor controller system.

B. Leg Mechanism

In an effort to balance actuation affordance with the
associated costs (framing, complexity, internal forces), the
leg will be designed with two planar degrees of freedom.
The actuators must then be connected either in series (add
velocities) or parallel (add forces). A parallel combination is
favored since desired toe forces can be achieved with smaller
gear reduction, thereby improving transparency compared to
a series actuation strategy.

Since the mechanism will be constructed using rigid links
connected by revolute joints, Kutzbach’s equation [32] shows
that the closed chain must have five links. Without any
additional prior knowledge, bilateral symmetry is desirable
to assure equal affordance in both tangential directions and
so two pairs of links will have the same lengths, l1 and l2.
Finally, the fifth link will be chosen to have zero length to
maximize workspace [13], and to improve the performance
according to the first measure specified below2. This link-
age type will now be fixed, its link lengths and operating
range comprising the kinematic leg design freedoms to be
considered in detail in Section III.

1Assuming a constant motor winding volume, V, made up of wire with radius ρ
and length, L, V = πρ2L. The resistance of the winding, R, can be related to cross
section and wire length as R ∝ L

A ∝
1
ρ4

. The motor constant, Kt, depends linearly
on the number of turns of wire around the core, so Kt ∝ L ∝ 1

ρ2
. Motor torque,

T = Kti, so T ∝ i
ρ2

and the Joule heating in the windings, Q = i2R ∝ i2

ρ4
.

Finally, Km = T√
Q
∝ ρ0 and is therefore invariant to winding configuration.

2Using the numerical measure specified in Subsection IV-A the jump energy
decreases as the distance of the fifth link increases fairly linearly for distance ≤ 0.5m
with a slope of -30 J/m.

C. Compliance

The design of this robot will include an elastic element
taking the form of a linear spring with stiffness, k, attached
in parallel with the motor. This provides two main benefits:

1) the motors can do work (on the spring) even if the toe
is not on the ground [33]

2) energy can be harvested by the spring from stride to
stride (discussed further in Subsection IV-C) [34]

The disadvantage of using a parallel spring is that the
motor will be doing unnecessary work against the spring in
the vast majority of precision tasks. The measures specified
in Section IV prioritize highly dynamic maneuvers involving
large exchanges of energy over tasks that require fine control,
hence this compromise is acceptable.

In contrast, we do not incorporate any series elastic
element in the design under investigation. The main benefits
of series elastic actuation [14] are:

1) decreased reflected motor inertia
2) stable force control
3) elastic energy storage

The assumed actuator selection mitigates the first problem.
Stable force control is highly desirable, but typically comes
at the cost of dynamically isolating the motor, decreasing
both the actuation and proprioceptive sensing bandwidth.
New designs allow this isolation to be modulated using
variable compliance [24], but other tradeoffs must be made3.

D. Design Criteria

In the pursuit of highly dynamic machines that can ma-
nipulate themselves and their environment in useful ways,
management of the system’s energy (η) is of utmost impor-
tance [28]. During stance, kinetic energy must be transduced
by the motor, from stored chemical potential energy into
kinetic energy in the body. This kinetic energy should then
be retained by minimizing losses and harvesting from stride
to stride to improve efficiency and boost peak energy. In
summary, solutions to this problem of dynamical energy
management can be judged according to three quantitative
criteria of merit:

1) effective conversion from chemical to mechanical en-
ergy

2) mitigation of collision losses
3) harvest of energy from stride to stride

These thematically distinct but parametrically intertwined
measures will now be evaluated in the context of the template
described in Section III using both numerical simulations and
experiments conducted on the physical machine shown on
the left of Fig. 1.

III. MODEL

The system under consideration is a two degree of freedom
monopedal robot shown on the right of Fig. 1 with exposed

3The complexity of adding a means of varying the compliance must be weighed
against its benefits. Additionally, since compliance cannot be varied arbitrarily quickly,
the operating regime must be chosen carefully, but these considerations are outside the
scope of this paper.



electromagnetic actuator dynamics. It will be considered in
the sagittal plane with emphasis on a 1DOF template (vertical
hopping).

The body consists of a point mass, M , motors with inertia,
J , and a massless leg with two pairs of rigid links of length
l1 and l2. Each motor is connected between l1 and the body
and they are coaxial and mirrored, resulting in angles θ1
(clockwise positive) and θ2 (counter-clockwise positive). For
convenience, the motor angles will be expressed in difference
and mean coordinates, derived in Subsection III-A.

A. Radial Leg Kinematics

The individual motor angles (θ1, θ2) expressed in the
world frame are mapped to difference and mean coordinates
according to

a :=

[
α
β

]
= F1(q) :=

[
π
0

]
+

1

2

[
1 1
1 −1

]
q

q :=

[
θ1
θ2

] (1)

We will find it convenient to work in abstract polar
coordinates4

p :=

[
α
r

]
= F2(a) :=

[
α√

l22 − (l1 sinβ)2 − l1 cosβ

]
(2)

as well as cartesian coordinates

x :=

[
x1
x2

]
= F3(p) :=

[
r sinα
−r cosα

]
. (3)

Since we are primarily concerned with vertical hopping,
the radial coordinate, r, and the radial infinitesimal kinemat-
ics of the leg linkage:

Eleg,r :=
∂β

∂r
=

r2 − l21 + l22

r2l1

√
− l

4
1+(l22−r2)2−2l21(l22+r2)

l21r
2

(4)

can now be composed with the gear ratio, to express the
infinitesimal map from either motor shaft output torque to
radial toe force

Etot,r(r) :=
∂θ

∂β

∂β

∂r
= EmEleg,r(r) (5)

Accounting for this composition constitutes a necessary
but frequently neglected modeling step, as the motor gear
ratio (Em) and leg EMA [32] (Eleg,r) are typically consid-
ered to reside in two different domains of design, [31], [35].

B. Unconventional Operating Region

Following the more generic discussion of kinematic pa-
rameters in Section II, an important distinction between our
study and the convention in recent locomotion literature
arises from the choice of joint limits, β ∈ [β0, π]. The recent
literature assumes β0 = π/2 [20], [22], [23], [36], whereas

4Under the assumption that l2 = l1 + l0, all positive lengths, we can
rewrite the second slot function as F22(β) := h ◦ cos β, where h(u) :=
l1[

√
u2 + (l1 + 2l0)/l1 − u] is clearly monotone down. Since cos is monotone

down on [0, π] it now follows that F22 is monotone up on that domain.

Fig. 2. Eleg,r for r ∈ [r0, r0 + r], defined in Eqn. 5, and indexed by
operating point r0 detailed below.

we will allow the driven links to travel twice that range by
setting β0 := 0.

Since the mechanism’s work against gravity is a function
of physical length traveled, we find it convenient to normalize
the link lengths as a function of β0, relative to the constraint
of fixing the maximal and minimal range of toe extension,
respectively, rmax := F22(π) = l1+l2, and rmin := F22(β0)
(where F22 denotes the second component (4) of F2). The
two extreme examples of the portion of Eleg,r exposed by
choice of r0 are depicted in Fig. 2. Observe that the single
condition where β0 = π

2 implies rmin = 0.2 represents
conventional leg kinematics as it is the only region (in red)
that exists entirely inside β ∈ [π2 , π].

C. Tangential EMA is Design Invariant

The infinitesimal kinematics associated with moving the
toe in the tangential direction (perpendicular to r): Eleg,t :=
∂α
∂x |x=0 = 1

r is clearly invariant to α as well as link lengths
l1 and l2. The workspace of this leg will form an annulus
since α ∈ [0, 2π], bound by rmin and rmax. Therefore
workspace normalization (a selection of rmin and rmax) is
sufficient to guarantee identical leg infinitesimal kinematics
in the tangential direction.

D. Equations of Motion

The system’s kinetic energy during a vertical hop (α = π
or x = 0 so r and y are equivalent) can be expressed as

T =
1

2
Mṙ2 +

1

2
J(Etot,r(r)ṙ)

2 (6)

and potential energy

V =Mgr +
1

2
k(r0 − r)2. (7)

The Lagrangian can then be calculated according to L =
T−V . The only external forces are due to the motor. We now
assume that the motor will be operated at constant terminal
voltage v, which implies that the motor shaft output follows
a typical speed-torque curve [35]:

τ = τmax −
τmax

θ̇nl
θ̇ (8)



where θ̇nl = Kvv and τmax = i
Kv

. Kv is the motor speed
constant, and v and i are the supply voltage and current
respectively (which we assume are algebraically related in
consequence of vanishingly faster electrical time constants
due to negligible inductance). The external force on the body
exerted by the motor is

Fext = Etot,r(r) · (τmax −
Etot,r(r)τmax

θ̇nl
ṙ) (9)

and the equations of motion in stance can be written out by
expanding the Euler-Lagrange operator,

d

dt

∂L

∂ṙ
− ∂L

∂r
= Fext (10)

IV. DYNAMIC TASK SPECIFICATIONS

The three design criteria introduced in Subsection II-D
will now be considered with the model to formalize the
three task specifications as distinct constrained optimization
problems. The findings of this numerical study will then be
compared to results from performing similar tasks on the
physical machine.

A. Effective Conversion to Mechanical Energy

Fig. 2 depicts the distinctly different Eleg,r profiles achiev-
able by choice of operating point, r0, yielding an effec-
tive mechanical advantage that is, qualitatively speaking,
either monotonically decreasing, unimodal, or monotonically
increasing as r0 is varied. The central object of study
in this paper is the consequent modulation of the ground
reaction force felt at the motor over the course of this
radial travel, with the goal of allowing it to operate in
a higher power regime, thereby resulting in greater work
performed. However, the closed loop dynamics (Eqn. 10) is
a highly nonlinear dissipative second order system for which
no closed form solutions can be expected, hence we resort
to numerical analysis, followed by experiments. The integral
corresponding to the motor’s output energy is obtained by
integrating the external force due to the motor from nadir to
liftoff:

ηLON =

r0+rtravel∫
r0

Etot,r(r)(τmax − Etot,r(r)τmaxṙ

θ̇nl
)dr (11)

while ensuring r′′(t) ≥ 0. The first dynamic task speci-
fication can now be formalized as the optimization of Eqn.
11 with respect to the operating point, r0, and gearing, Em.
The liftoff energy is monotonic with spring constant, k, since
the leg starts crouched with the spring compressed a fixed
length. The spring constant is therefore fixed at k = 0 (worst-
case scenario) since this represents the circumstances when
getting kinetic energy from the motor is most critical.

For the physical parameters listed in Table I, numerical
optimization results in optimal ηLON = 7.86J at r∗01 = 0.103
and

E∗m = 2.2 (12)

shown in Tables II and III as well as in Fig. 4. We will
now fix the gearing in simulation at E∗m because the final
two objectives turn out to be insensitive to it, as discussed
further below.

B. Mitigation of Collision Losses

While this system is only considered during a single stance
event, the inclusion of a TD- state (the instant before touch-
down) means that collisions (due to instantaneous changes
in motor velocity) can be modeled. The system is assumed
to collide plastically with the ground at touchdown, and the
energy lost to this collision can be calculated with a simple
momentum balance, very similar to [25]. Tloss, a function
of the pre-collision energy, T−, is:

Tloss = γT− (13)

where γ is the collision efficiency:

γ :=
JE2

tot,r|r=r0+rtravel
M + JE2

tot,r|r=r0+rtravel
(14)

This quantity can be optimized analytically using the
expression for Etot,r derived in Eqn. 5. Observe that the
spring constant, k, does not appear in Eqn. 14 because
the collision it represents is being modeled as an impulse.
Observe, as well, that γ is degenerate in the sense that
∂α
∂Em

> 0 so that the extremum with respect to r0 is Em-
invariant.5 The result of the numerical study, shown in Fig. 5,
is a new optimal r∗0 = 0.115 and γ = 0.976 using E∗m = 2.2
from the previous task.

C. Energy Harvest from Stride to Stride

After touchdown, the parallel spring can be used to
harvest the remaining kinetic energy from flight and store
it temporarily in strain. Additionally, the motor can be used
to do work on the spring from TD+ to nadir. The third task
then seeks to maximize the spring’s strain energy from TD+
to nadir:6

ηNTD =

Nadir∫
TD+

Etot,r(r)(τmax − Etot,r(r)τmaxṙ

θ̇nl
)dr (15)

which is actually evaluated from r0 + rtravel to r0, since
solutions that do not use the whole interval can be shown to
be suboptimal. A further condition is imposed such that the
motor is always able to overpower the spring:

Etot,r(r) · τmax > k(r − r0),∀r ∈ (r0, r0 + rtravel) (16)

This condition can be shown visually in Fig. 3 in which a
constant torque from the actuator, resulting in a r-dependent
force due to the leg kinematics, restricts the upper bound of
spring stiffness (shown for the two examples, r0 = 0.1 and
r0 = 0.2).

5This can be seen directly by observing that γ is monotone in E2
tot,r , which, in

turn is monotone in E2
m. In consequence, the solution to ∂γ

∂r0
= 0 occurs along the

entire “ridge” (r∗0 , Em) where r∗0 := 0.115.
6The kinetic energy remaining from flight is ignored, but if the spring is selected

for maximal energy storage, some harvested energy can be traded for battery energy
from the motor.



Fig. 3. Normalized motor and spring forces at the toe. Two specific
values of r0 are highlighted to emphasize the difference in available spring
potential (shaded area under spring forces) subject to the constraints of Task
3, specified in Subsection IV-C.

TABLE I
PHYSICAL PROPERTIES OF PROTOTYPE

Parameter Symbol Value
Mass M 1.85kg
Motor Inertia J 10−4kgm2

Motor Stall Torque τmax 6.3Nm

Motor No Load Speed θ̇nl 84 rad
s

Link 1 Length l1 0.1m
Link 2 Length l2 0.2m

For the physical parameters listed in Table I, and Em =
E∗m = 2.2,7 numerical optimization of Eqn. 15 while
ensuring Eqn. 16 results in maximal ηNTD = 7.825J at
r∗03 = 0.1 and k∗ = 1565N/m, shown in Table II and III.

V. EXPERIMENTAL RESULTS

For each task, experiments are performed on the physical
machine shown in Fig. 1, with steps of 0.01m throughout the
range of r0. For each value of r0, five trials were performed,
and data was collected through an instrumented vertical rail.
In each task, the trend of the experimental results matches
that of the numerical simulation, and slight variations in
methodology (that we will detail below) explain some of
the inconsistencies in magnitude. For convenience, all ex-
periments are performed with the actuators (T-Motor U8-16)
in direct-drive (Em = 1) with custom motor controllers [37].

A. Task 1: Effective Conversion to Mechanical Energy

The robot initially uses position control to get to the
desired value of r0. Both motors are then driven with a
constant voltage source (15V ) until the leg passes r0+rtravel
at which point the motor terminals are left open. The jump
energy is computed according to the apex height of the
physical machine. In the simulation trials, the gear ratio,
Em, is allowed to vary, while the experimental trials are all
direct-drive (Em = 1). The major discrepancy in experiments
compared to simulation is an overall decrease in jump energy

7ηNTD is monotone with Em, so the former must be fixed, logically at
E∗

m

Fig. 4. Task 1: Energy that the actuator is able to load into the body
through a sweep parameterized by r0.

attributed to viscous losses due to the rail in both stance and
swing, since energy is only recorded at apex.

B. Task 2: Mitigation of Collision Losses

The robot uses position control to servo the toe to
touchdown length (r = r0 + ttravel) and is then dropped
from a fixed height (0.7m). Throughout stance, the position
controller acts as a virtual spring, harvesting the energy left
at TD+ and causing the robot to jump, thereby reaching a
recorded apex height (with the desired position held constant
throughout the trial). The potential energy at this second apex
height is recorded, and the quotient represents the efficiency
of the harvest. In distinction to the numerical setting, it is
not experimentally possible to isolate losses due only to
instantaneous velocity changes in the motor. Therefore other
losses including:

1) plastic collision of the toe and leg links
2) motor inefficiency
3) viscous effects in the vertical rail

all contribute to a value of γ found experimentally, that is
significantly smaller than the value found numerically. The
trend with respect to r0, however, is preserved.

C. Task 3: Energy Harvest from Stride to Stride

The parallel spring of stiffness k is added such that the
rest length of the spring corresponds to r0. The actuators
are then driven with a constant voltage source (15V ), and
the equilibrium position is recorded. The spring energy,
1
2kr

2
travel, is then computed based on the assumption that the

conventional coiled spring has constant stiffness, k. A key
difference between the experimental and numerical work is
that k is held constant across trials in the physical machine.
Softer springs could be used to improve the energy storage
for r0 6= 0.1, but since the displacement is fixed, the energy
storage would necessarily be lower than the case when
r0 = 0.1.

VI. CONCLUSION

A summary of the results from optimizing the individual
tasks is presented in Table III. While the three parameters of



Fig. 5. Task 2: Collision efficiency due to losses at touchdown.

Fig. 6. Task 3: Energy that can be stored in the parallel spring through
kinematic range parameterized by r0.

interest initially appear to be overconstrained by their par-
ticipation in these potentially conflicting multiple objectives,
further analysis suggests that Em and k can be reasonably
decoupled (optimized once) while the intrinsically coupled
effects of the kinematics, Eleg,r (indexed by r0) turn out to
play a synergistic role across all three objectives. Experimen-
tal results broadly align with numerical predictions, partic-
ularly with respect to leg kinematics. In summary, we have
shown more favorable performance under three energetically-
motivated tasks when the effective mechanical advantage
is monotonically decreasing with r0, made possible by the
“knee” riding above the “hip” joint.

Ongoing work has included the creation of a 5kg
quadrupedal running machine [38] to further explore the
dynamical and control implications of this novel leg design.
Further analysis is also planned to pull the above-mentioned
dynamical tasks back into other parameters of the design
space.

TABLE II
SELECTED DESIGN PARAMETERS

Simulation Experiment
r∗0 (m) k∗ (N/m) E∗

m r∗0 (m) k (N/m)
Task 1 0.103 0 2.2 0.1 0
Task 2 0.115 Invariant E∗

m, Eqn. 12 0.11 0
Task 3 0.1 1565 E∗

m, Eqn. 12 0.1 875

TABLE III
TASK PERFORMANCE

Simulation Experiment
r0 = r∗0 r0 = 0.2 r0 = r∗0 r0 = 0.2 Full

Task 1 7.86 J 3.9 J 4.90 J 3.05 J 6.48 J
Task 2 0.976 0 0.166 0.034 N/A
Task 3 7.825 J 3.15 J 4.2 J 0.75 J N/A
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