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Abstract— We prove convergence of an approximate Bayesian
estimator for the (scalar) location estimation problem by re-
course to a histogram approximant. We exploit its tractability to
present a simple strategy for managing the tradeoff between ac-
curacy and complexity through the cardinality of the underlying
partition. Our theoretical results provide explicit (conservative)
sufficient conditions under which convergence is guaranteed.
Numerical simulations reveal certain extreme cases in which
the conditions may be tight, and suggest that this procedure
has performance and computational efficiency favorably com-
parable to particle filters, while affording the aforementioned
analytical benefits. We posit that more sophisticated algorithms
can make such piecewise-constant representations similarly
feasible for very high-dimensional problems.

I. INTRODUCTION

We investigate the classic problem of Bayesian estimation
of the posterior distribution of a scalar location parameter θ
from noisy measurements

xn = θ + zn, (1)

where E [zn] = 0 and E
[
z2
n

]
<∞.

Our motivation for location parameter estimation comes
from the field of robotics. Implementing the estimator using
a mobile robot generally introduces a specific dependency
structure between the zn (e.g. [1]), so we can neither assume
they are independent nor identically distributed.

A. Brief Literature Survey

Bayes consistency in such a setting is still not a solved
problem in general [2], however there are specific cases in
which much is known. A classic result of Doob [3] shows
consistency of Bayes estimates from i.i.d. measurements for
almost all parameter values θ drawn from a known distri-
bution. However, from the frequentist point of view where
the true parameter value is fixed but unknown, this result
is not satisfactory and much more work needs to be done
to prove consistency even with relatively restrictive model
assumptions [4]. More recent results like the Bernstein-von
Mises theorem [5] prove Bayes consistency under less re-
strictive assumptions, but still with i.i.d. measurements. More
importantly, these recent results [6], [7] reveal that the prior
distribution plays a pivotal role in the convergence of the
estimation algorithm. A recent summary for estimation from
i.i.d. measurements can be found in [8], whereas the more
complicated case of dependent measurements is investigated
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in [9], [10]. These results (of a theoretical statistics nature)
focus on convergence of the true Bayes posterior, and are
difficult to apply to physically implemented Bayes filters
because accurate representation of the exact posterior is
computationally intractable in high dimensional settings.

Notwithstanding theoretical characterization of the pos-
terior’s critical role in convergence of recursive Bayesian
estimates, it is well known in robotics and related fields that
hard computational constraints necessitate the substitution
of approximate representations such as Kalman filters (with
enhancements) and particle filters [11] in real application set-
tings. These approaches come with penalties such as model
restrictions (for Kalman filters) and/or uncontrollable approx-
imation error (for particle filters). There is a huge recent lit-
erature on modifications that address algorithmically some of
these issues (summarized well in [12]). For histogram filters
in particular, there is some recent work [13] which numeri-
cally explores the tradeoff between representation complexity
and estimator errors, as well as a higher order piecewise-
polynomial (versus piecewise-constant) representation [14].
However, to the best of the authors’ knowledge, heretofore
there has been no analytical result — even restricted to the
domain of piecewise-constant representation — governing
the tradeoff between approximation error and convergence.

B. Organization and Contributions of this Paper

In this paper we focus on the same framework as [3],
with the added complications of dependent measurements
and explicit modeling of the approximation error. However,
because of the difficult nature of the general Bayesian con-
sistency problem, in this paper we assume the existence of
an estimator which contracts the mean-squared error (MSE),
and examine how perturbations due to approximation affect
convergence. We show in Section II-A that this assumption is
not very restrictive by comparing to a suboptimal LMMSE
estimator, and giving exact conditions on the prior under
which it holds.

The central contributions of this paper are (a) an ex-
plicit strategy for balancing the speed/accuracy tradeoff by
controlling the approximation error in Section III, (b) a
supermartingale proof of convergence of the estimate of
the location parameter from dependent measurements with
approximate representations in Section IV-B, (c) a com-
putationally efficient estimation algorithm (some numerical
results are presented in Section V together with comparisons
to a particle filter implementation), which we posit will
be suitable for implementation on even low-power robotic
platforms.



We wish to obtain sufficient conditions enabling aggres-
sive approximation (and thus, computational simplification)
while still guaranteeing convergence of the estimate. As
discussed in Section I-A, the classical statistics literature
informs us that the Bayes estimate is sensitive to choice of
prior, and that is particularly confounding because approxi-
mate representations necessarily modify the prior. Although
it is true that in an idealized Bayes estimation problem, the
effect of the prior distribution diminishes [5], [15], this can
only be shown to hold asymptotically. To the best of our
knowledge, the effect of introducing non-zero approximation
error at each recursive step of a Bayes filter has not explicitly
been examined in the past literature.

II. MODEL ASSUMPTIONS

We assume that the random location parameter and mea-
surements lie in the compact space X = B(0,Γ) ⊂ R, where
B(0,Γ) is the closed ball of radius Γ around 0. Define P

as the space of distributions on X. The parameter to be
estimated is sampled from θ ∼ π, a known prior distribution
which is non-informative for location parameters [16]. Let
Y := X×X denote the joint measurement–parameter space.

We define the distribution for zn in (1) as an unbiased
measurement model for xn conditioned on θ, `n(x | θ). We
assume that the measurements are predictive1 (for Lemma
7), unbiased, and with finite second moment σ2

n. We label
the σ-field generated by the first n measurements Fn :=
σ(x1, . . . , xn). We assume that σn is measurable from Fn−1,
and that σi ≤ σmax for each i.

Lastly, for the approximation operation of Section III,
we make the regularity assumptions on the measurement
distribution

1) `n is C1 with derivative ∂
∂x`n(x, θ), and

2) max
∣∣ ∂
∂x`n(x, θ)

∣∣ ≤ Υ <∞.
The conditions above are satisfied by many families of

measurement distributions that are commonly encountered in
location parameter estimation [17]. Moreover, there is sub-
stantial evidence in the literature for received-signal-strength
(RSS) wireless sensor models suffering from standard error
[1], [18] or variance [19] proportional to the sensing range,
thus motivating our decision to not assume independent
measurements.

A. MSE Contracting Estimator

As stated in Section I-B, we also assume the existence
of an estimator which strictly contracts the MSE (under
some conditions on the prior which are derived below). In
particular, let p ∈ P be an arbitrary prior distribution for θ.
Define θ̂ =

∫
X
θdp, Pr(θ | x) ∝ `(x | θ)p(θ) as the Bayes

posterior, and θ̂+ =
∫
X
θPr(θ | x)dθ. Then we require that

E
[
(θ̂+ − θ)2

]
≤ αE

[
(θ̂ − θ)2

]
, (2)

where α < 1. Note that the left- and right-hand sides of
(2) are simply E [Var[θ | x]] and Var[θ] respectively, and

1Predictive [15] is a mild condition requiring that the predictive posterior
distribution Pr(xn+1, . . . | x1, . . . , xn) exists.

Fig. 1. Illustration of the approximation operator Aκ presented in Section
III, showing the tradeoff between cell cardinality, κ, and the approximation
error. Here X = [−1, 1].

we know from the law of total variance [20] that α ≤ 1
automatically.

In general it is difficult to make claims about posterior
variance in Bayesian estimation.2 We prefer to provide
sufficient conditions for (2) by comparing to the suboptimal
LMMSE estimator. It is known [22] that even for a nonlin-
ear/nongaussian estimation problem, the LMMSE estimator
for (1) attains a bound that only depends on the first and
second moments of the joint `(x | θ)p(θ) distribution,

lmmse = E
[
θ2
]
− E [xθ] (E

[
x2
]
)−1E [θx] .

Here, E [xθ] = Eθ[θEx|θ[x]] = E
[
θ2
]

using the law iterated
expectations. Together with E [θ] = 0, we get the condition
(on p)

Var[θ] ≥ σ2
max

(
1

α
− 1

)
, (3)

to ensure lmmse ≤ αVar[θ]. By definition of MMSE, it must
attain a MSE at least as good, thus satisfying (2).

III. APPROXIMATE REPRESENTATIONS

For approximating our belief state, we wish to have (a)
finite parameterizability for computational efficiency, (b) a
functional form for the posterior to enable computation of
statistics such as moments and entropy, and (c) a bound
on the total variation distance between the original and
approximated distributions (informed by the proof in Section
IV-B).

Historically, Stein’s method has seen many applications
in finding approximations of probability distributions among
specific parameterized families such as Poisson [23], geo-
metric [24] and mixtures of similar families [25]. However,
we wish to not commit to a specific family of distributions
and inadvertently impose constraints such as unimodality or
any other structure through rigidity of representation. Early
work on non-parametric approximations from data [26] is
also not applicable because of how much data is required to
get an estimate.

2With normal measurements and general classes of priors, it is possible
to compute the posterior moments exactly if there is exact knowledge of
the first and second derivatives of the marginal distribution [21], but in our
case the prior is arbitrary enough to not permit a similar analysis.



A. Histogram Distributions

Our preferred family of approximations is the set of
“histograms” — piecewise constant distributions — because
of the ease of representation and computation together with
the ability to control the “coarseness” of the approximation
by picking the cardinality of the partition. The authors of [27]
examine histograms as a means of density estimation from
data and provide conditions on bounding the L2-norm of the
error. In this paper we use histograms to directly approximate
densities in P and derive bounds for the approximation error
in the form of the L1-norm of the residual (and thus, total
variation distance [28]).

Definition 1 (Uniform Partition). For given κ ∈ Z+, con-
sider a collection of evenly-spaced boundary points ξi :=
ϕ(i/κ) where ϕ : x 7→ Γ(−1 + 2x) maps [0, 1] 7→ X. Define

Ri = [ξi−1, ξi) (4)

for i ∈ {1, . . . , κ}, and note that ∪iRi = X (ignoring the
zero-measure end-point) is a κ-cell partition.

Definition 2 (Histogram). Define the space of histogram
distributions as Q ⊂ P. A κ-cell histogram distribution q ∈ Q

is defined by a set of levels (qi)
κ
i=1 ∈ Rκ≥0 together with a

κ-cell partition (Ri) such that

q(θ) =

κ∑
i=1

I (θ ∈ Ri) qi, (5)

where I (·) is an indicator function.

Let us define ρ� 1 as a desired minimum mass for each
cell.3 Also, define

δ(κ) := 2Γ
κ (6)

as the size of a cell in a κ-cell partition.
For our purposes of using approximate representations in

a Bayes filter (Section IV-A), we only need to restrict our
attention to a special subset of all possible distributions.

Definition 3 (Approximable Distributions). Given arbitrary
κ, define the set of approximable distributions, Pκ, as the
set of p ∈ P having the properties

1) p is piecewise C1 with some points of discontinuity
that coincide with cell boundaries of the κ-cell parti-
tion, and

2) max |p′| ≤ Υ
ρ <∞.

Note that distributions that are C1 are in Pκ for each κ.
In Section IV-A.2 we provide proof that these assumptions
are enforced automatically by our usage in Section IV.

Definition 4 (Approximation). Given arbitrary κ and p ∈ Pκ,
we define an approximation operator Aκ : Pκ → Q that finds
a κ-cell histogram approximation q = Aκ(p) by

1) forming a κ-cell uniform partition ∪iRi, and

3The intuition behind this is “Cromwell’s Rule” [29]; it also helps us
establish bounds in Proposition 6.

2) setting qi = max{p(Ri), ρ2Γ}, where Ri is the centroid
of Ri.

Figure 1 demonstrates this simple algorithm operating on
a smooth distribution in P.

Proposition 5. Let p ∈ Pκ and q = Aκ(p). Then, the
approximation has the properties

1) ‖p− q‖1 =
∫
X
|(p−Aκ(p))(θ)|dθ ≤ 2Γ2Υ

ρκ ,
2)
∫
X
|θ(p− q)(θ)|dθ ≤ δ(κ) + ρΓ2.

Proof. We prove the claims in sequence:
1) Our histogram is reminiscent of a Riemann sum ap-

proximation. With a little plane geometry we can easily
obtain the error bound

‖p− q‖1 ≤
κ∑
i=1

δ(κ)2

2
max
θ∈Ri

|p′(θ)| ≤ 2Γ2Υ

ρκ
,

where we used the fact that the derivative p′ is well-
defined and bounded in the interior of Ri, per the
conditions assumed from Definition 3.

2) In the rule for setting qi in Definition 4, note that
we can write the approximation as the sum of a
linear operator4 (Gp)(θ) = p(Ri) for θ ∈ Ri, and
a nonlinear “error component” of bounded magnitude
|(h(p))(θ)| ≤ ρ

2Γ , i.e. for each θ ∈ X,

(Aκ(p))(θ) = (Gp)(θ) + (h(p))(θ).

Define id as the identity map. The residual error can
be written as

〈
θ, (id−Aκ)(p)

〉
L2

, an L2-inner product
with respect to measure θ. Using the Hölder inequality,
the linear component of the decomposition above is〈

θ, (id−G)(p)
〉
L2

=
〈
(id−G)(θ), p

〉
L2

≤ ‖(id−G)(θ)‖∞‖p‖1
= ‖(id−G)(θ)‖∞ = δ(κ).

Here (id − G)(θ) cancels the “constant” component
in each cell, and since the θ function has slope 1, the
contribution of each cell is the size of the cell, δ(κ).
The L∞-norm picks out the maximum value of its
argument, and so the result is just δ(κ).
The nonlinear component is bounded by∫

X

∣∣θh(p(θ))dθ
∣∣ ≤ ‖h(p)‖∞‖θ‖1 = ρΓ2.

While not explicitly stated, note that κ < ∞, i.e. we can
always find a finite-dimensional arbitrarily close approxima-
tion.

4To see the linearity of G, suppose p1, p2 ∈ P. Note that G creates
the same partition Ri irrespective of its operand, and so G(p1 + p2) has
the same cell structure as G(pi). The level in cell i of G(·) is set by
simply looking evaluating the operand at θi, the centroid of Ri. Since
p1(θi) + p2(θi) = (p1 + p2)(θi), the superposition property holds for
G. Similarly, the cell structure is invariant to scaling the operand, and
λ · p(θi) = (λp)(θi). (Technically, scaling a distribution by anything other
than unity while staying within P is not possible; we still ensure that it does
not affect the linearity of G as an operator.)



The approximation procedure above is not “optimal” in
any way, but an optimal partitioning scheme (such as a
generalized Lloyd’s procedure [30] with L1-norm objective)
is readily applicable to the theoretical framework presented
in this paper.

IV. A BAYES FILTER USING HISTOGRAMS

Histogram filters have seen some use in robotics for
localization [17], [31] due to their computational efficiency.
However, they do not offer an easy way to guarantee conver-
gence due to information loss in the approximation step. We
implement a similar filter here, but with the goal in mind
of controlling approximation error in order to be able to
guarantee almost sure convergence.

Define the following time-indexed (random) quantities:
• Prior distributions p̂0 = p̃0 := π.
• Unknown true posterior p̂n(θ) := Pr(θ | x1, . . . , xn).
• Measurement-updated belief (calculated using Bayes

rule) p̃−n (θ) ∝ `n(xn | θ)p̃n−1(θ).
• κn-cell approximated belief p̃n := Aκn

(p̃−n ).
• MMSE estimators θ̂n :=

∫
X
θdp̂n, θ̃n :=

∫
X
θdp̃n, and

θ̃−n :=
∫
X
θdp̃−n .

For brevity, we denote ∆θ̂n := θ̂n − θ, ∆θ̃n := θ̃n − θ,
and ∆θ̃−n := θ̃−n − θ for each n.

A. Implementation with Histograms
1) Conditions on the Approximation: For the purposes

of our convergence proof in Section IV-B, we require for
an approximated distribution p̃n ∈ Q that the variance has
a lower-bound given by (3). This does not impose any
additional constraints, because our stopping condition in
Theorem 11 is already a threshold for the posterior variance,
and we simply need to ensure that this additional condition
is met at every iteration.

2) Partition Refinement: For our implementation in this
paper, we restrict ourselves to histogram belief distributions
which are refinements (in the sense of its partition) of
previous beliefs. If κ0 is the initial cell cardinality, we choose
to double the cell count every m steps, i.e.

κi = 2bi/mcκ0. (7)

This strategy ensures that the cell boundary points of
a κn-cell partition automatically contain the cell boundary
points of a κn−1-cell partition. This and Proposition 6 below
together ensure that both conditions assumed in Definition 3
are automatically enforced.

Proposition 6. Summed over the interiors of the cell where
the derivative is defined,∑

i maxθ∈Ri
|(p̃−n )′|

κn−1
≤ Υ

ρ
.

Proof. From the definition of p̃−n , note that for each cell i,

max
θ∈Ri

|(p̃−n )′| =
(p̃n−1)i maxθ∈Ri

∣∣ ∂
∂θ `n(xn, θ)

∣∣∑
j(p̃n−1)j

∫
Rj
`n(xn | θ)dθ

≤ (p̃n−1)iΥ∑
j(p̃n−1)j

∫
Rj
`n(xn | θ)dθ

,

because (p̃n−1)′ = 0 in the interior of a cell. Note that for
the histogram p̃n−1 ∈ Pκn−1

,∑
i

(p̃n−1)i

∫
θ∈Ri

dθ = 1 =⇒
∑
i

(p̃n−1)i =
1

δ(κn−1)
.

Summing maxθ∈Ri
|(p̃−n )′| over all cells,∑

i maxθ∈Ri |(p̃−n )′|
κn−1

≤ Υ

2Γ
∑
j(p̃n−1)j

∫
Rj
`n(xn | θ)dθ

≤ Υ

ρ
∫
X
`n(xn | θ)dθ

=
Υ

ρ
,

using the assumption from Section III-A that we have a
minimum mass ρ in each cell.5 The last equality above can
be seen by changing coordinates back to zn in (1), wherein
(with our assumption of measurable variance) the integral
just becomes

∫
X

Pr(zn)dzn = 1.

Choosing the refinement (7) also results in a summable
approximation error series. As in Proposition 5, the actual
cost of approximation at step i is bounded by εi ≤ 2Γ2Υ

ρκi
,

and so
n∑
i=1

1

κi
≤ 2m =⇒

n∑
i=1

εi ≤
2Γ2Υm

ρκ0
=: εlim. (8)

This strategy guarantees that the errors are summable, while
giving us some degree of control as to how often we refine
the partition.6

B. Convergence Proof using Supermartingales

For the proof of convergence, we use the supermartingale
convergence theorem [32]. This method does not require
independence between successive (in time) stochastic quan-
tities, and lets us focus on incremental approximation errors.

The main result in this section is Theorem 11, which
shows that under the conditions we impose, the MSE con-
verges for our algorithm. Lemmas 8, 9 and 10 show how
different constituents of the error signal are controlled, and
Lemmas 7 establishes bounds that help control these errors.

Lemma 7. The accumulated approximation error at each
time n obeys the bound E [‖p̂n − p̃n‖1 | Fn−1] ≤ εlim, as
defined in (8).

Proof. We assert the subclaim

E
[
‖p̂n − p̃−n ‖1 | Fn−1

]
≤ ‖p̂n−1 − p̃n−1‖1.

Here p̂n−1 and p̃n−1 can be thought of as differing opinions
in the sense of [15]. As in Section II, our measurements are
predictive, and as mentioned in Section IV-A, we ensure that
p̂n−1 is absolutely continuous with respect to p̃n−1.

5We provide a very conservative bound in this proof, but observe that the
denominator would be 1 if the prior were uniform and non-informative (i.e.
(p̃n−1)j = 1

2Γ
), and with informative measurements, intuitively > 1.

6We typically set m ≈ 40; we attain convergence in the order of m steps
and the cell cardinality never “blows up”.



Following the martingale argument in the proof in [15], we
observe that the expected total variation distance dtv remains
the same after one measurement, i.e.

E
[
dtv(p̂n, p̃

−
n ) | Fn−1

]
= dtv(p̂n−1, p̃n−1).

The same property holds for the L1-norm because of their
simple algebraic relation [28]. This shows the subclaim.

Repeatedly using the triangle inequality,

E [‖p̂n − p̃n‖1] ≤ E
[
‖p̂n − p̃−n ‖1

]
+ E

[
‖p̃−n − p̃n‖1

]
≤ E [‖p̂n−1 − p̃n−1‖1] + εn

≤ . . . ≤ ‖π − π‖1 +

n∑
i=1

εi ≤ εlim,

where εi and εlim are as in (8).

Lemma 8. The incremental (mean-squared) error added by
the approximation at time n is bounded by

E
[
(∆θ̃n)2 | Fn−1

]
≤ E

[
(∆θ̃−n )2 | Fn−1

]
+ γn,

where γn := δ(κn)2 + ρΓ2 + (2Γ)εlim, and δ(·) is defined
in (6).

Proof. Note that

E
[
∆θ̃−n | Fn−1

]
=

∫
Y

∆θ̃−n `n(x | θ)p̃n−1(θ)dxdθ+∫
Y

∆θ̃−n `n(x | θ)(p̂n−1(θ)− p̃n−1(θ))dxdθ,

where the first summand is 0 (MMSE is unbiased), and the
second summand can be upper-bounded by∥∥∥∥∫

X

∆θ̃−n `n(x | θ)dx
∥∥∥∥
∞
‖p̂n−1 − p̃n−1‖1 ≤ 2Γεlim.

Also, using Proposition 5,∣∣∣θ̃n − θ̃−n ∣∣∣ =

∣∣∣∣∫
X

θ
(
p̃−n −Aκn

(p̃−n )
)

dθ

∣∣∣∣ ≤ δ(κn) + ρΓ2.

Expanding the square and using the above,

E
[
(∆θ̃n)2 | Fn−1

]
≤ E

[
(∆θ̃−n )2 | Fn−1

]
+

δ(κn)2 + ρΓ2 + 2Γεlim,

as required to prove.

Lemma 9. The improvement due to the new measurement
at step n is

E
[
(∆θ̃−n )2 | Fn−1

]
≤ αE

[
(∆θ̃n−1)2

]
+ (2Γ)2εlim,

where εlim is defined in (8).

Proof. For

E
[
(∆θ̃−n )2 | Fn−1

]
=

∫
Y

(∆θ̃−n )2`n(x | θ)p̂n−1(θ)dxdθ,

we decompose p̂n−1(θ) = p̃n−1(θ) + (p̂n−1(θ)− p̃n−1(θ)).
The integral with p̃n−1(θ) satisfies∫

Y

(∆θ̃−n )2`n(x | θ)p̃n−1(θ)dxdθ

≤ α
∫
Y

(∆θ̃n−1)2`n(x | θ)p̃n−1(θ)dxdθ

≤ α
∫
Y

(∆θ̃n−1)2`n(x | θ)p̂n−1(θ)dxdθ = αE
[
(∆θ̃n−1)2

]
because of the assumption (2), and using the fact that θ̃n−1 is
the MMSE (and must attain the smallest MSE) with respect
to p̃n−1.

For the integral with (p̂n−1(θ)− p̃n−1(θ))dθ, we just use
Hölder’s inequality, to upper bound it by∥∥∥∥∫

X

(∆θ̃−n )2`n(x | θ)dx
∥∥∥∥
∞
‖p̂n−1 − p̃n−1‖1 ≤ (2Γ)2εlim.

Putting these together, we obtain the result.

Lemma 10. At each time n, the random sequence of ap-
proximated (mean-squared) errors obeys

E
[
(∆θ̃n)2 | Fn−1

]
≤ αE

[
(∆θ̃n−1)2

]
+ τn,

where τn := δ(κn)2 + ρΓ2 + ((2Γ) + (2Γ)2)εlim, δ(·) is
defined in (6) and εlim is defined in (8).

Proof. The proof follows directly from Lemmas 8 and 9.
Observe that the τi are bounded, and let τ = maxn τn.

With the help of the lemmas above, we can state the
following theorem that proves covergence of the approximate
Bayesian filter proposed above to a “small” limiting MSE.

Theorem 11. The Bayesian estimate using the approximate
beliefs converges in MSE to a neighborhood of 0,

E
[
(∆θ̃n)2

]
→ B

(
0, τ

1−α

)
.

Proof. Define Mn := E
[
(∆θ̃n)2

]
. From Lemma 10, we

know that E [Mn | Fn−1] ≤ αE [Mn−1] + τ . Now define

Sn := Mn · I
(
Mm > τ

1−α ∀ m < n
)
,

and observe that Si ≥ 0 and

E [Sn | Fn−1] ≤ αSn−1.

Using the supermartingale convergence theorem [32], we
know that Sn converges to some limiting random variable,
S∞. This also means E [Sn] → E [S∞], and we can iterate
the inequality above to observe that

E [Sn] ≤ αE [Sn−1] ≤ α2E [Sn−2] ≤ · · · ≤ αnE [S0] .

Taking limit n → ∞, we see that E [S∞] = 0. Since the
random variable S∞ ≥ 0, we conclude by writing out the
expectation that

Pr(S∞ > 0) = 0,

i.e. we have almost sure convergence to 0.
Now we can conclude that Mn → B

(
0, τ

1−α

)
.



Fig. 2. Performance of the histogram filter for a unimodal measurement
model, showing in (A) that the MSE of the estimator approaches the (best
attainable) MSE, E

[
(∆θ̂)2

]
(blue curve with square markers), for all but

the crudest representations (e.g. κ = 2). (B) shows posterior distributions
for one of the trials presented in (A), with the true posterior in solid blue, and
the approximated belief distributions presented as the shaded red histogram.

The coefficients controlling the error radius τ/(1−α) are
functions of (a) the measurement (captured in α), which is
set by our hypothesis in (2), and (b) the approximation error
(captured in τ ), which is examined in Lemmas 8, 9 and 10.

V. NUMERICAL SIMULATION

In this section we present results from numerical simu-
lation of the Bayes filter of Section IV. The theory of the
preceding section gives us conservative sufficient conditions,
and with numerical simulation in this section we wish to
suggest the nature of regimes in which (some refinement of)
those conditions become necessary, i.e. when the approxi-
mation is “too crude” for the estimator to converge.

For Fig. 2 we use a Normal distribution with standard
deviation σ = 1 for measurements, subplot (A) shows

Fig. 3. Performance of the histogram filter for a multimodal measurement
model, providing evidence that for more complex measurement models,
more complex representations are required for the histogram filter to be
accurate (in MSE terms). Note that the number of cells used is larger than
those in Fig. 2.

Fig. 4. Performance of a simple particle filter [17] with resampling at
every iteration, demonstrating that a comparatively large number of particles
is needed to attain similar MSE to the crude histograms of Fig. 2. Plot
(B) shows the true posterior distribution in blue, and red vertical bars
representing the samples that comprise the particle filter representation of
the posterior.

estimator MSE averaged over 10 trials. We use a fixed cell-
count (labeled as κ) for the histogram filters presented here;
this is the equivalent of setting κ0 as stated and having
m > 40 in the sense of (8). Even 3 or 4 cells are seen
to perform decently, but the κ = 2 estimator seems to run
into problems attaining an arbitrary posterior mean because
of its crude representation. An adaptively refining partition
would alleviate this problem.

For Fig. 3 we use a mixture model of two Normal
distributions for measurements, each with standard deviation
σ = 0.2 to make the bimodality apparent. These more
complex measurements require comparately finer partitions
from those in Fig. 2, giving some feeling for the more
interesting practical settings where poorer measurements or
more intricate environments might necessitate some (suitably
tightened) version of the sufficient conditions in Section IV.

For some illustrative (clearly, not exhaustive) compari-
son, we also implement a simple particle filter [17] which
resamples at every iteration, and plot the corresponding
results in Fig. 4. In order to attain MSE similar to that
of the histograms of Fig. 2, we find we need on the order
of ν ≈ 100 particles, and in the case of our naı̈ve low-
dimensional implementations, a ≈ 10-cell histogram filter is
relatively more computationally efficient.7 We do not claim
any conclusive computational performance benefits (since
we did not rigorously optimize either simulation), but there
is certainly some preliminary evidence that computationally
tractable crude histogram representations perform compara-
bly to relatively complex particle simulations.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a proof of convergence of a MMSE
location parameter estimator using approximate piecewise-

7It must be stressed that our present formal results are much more
conservative: for example, to reach an error bound of ≈ 0.1 in this example
Theorem 11 would call for a cell count of ≈ 104.



constant belief distributions. This means that adding approx-
imation error (which is often unmodeled, yet, necessarily
introduced in implementation) need not preclude a proof of
convergence of a Bayesian estimator. To the best of our
understanding these are the first results in the literature
to provide conditions on the approximation quality of a
Bayesian estimation scheme sufficient for convergence when
the measurements are dependent.

In this initial paper we have presented a very simple
approximation operator (Section III), and provided explicit
model assumptions (Section II) under which this estimator
can be proved to converge to a neighborhood of the true
parameter value (Section IV-B). We have implemented this
histogram Bayes filter (Section V), and provided numerical
evidence that our proofs of convergence, while conservative,
introduce conditions that usefully guide the allowable ap-
proximation error in regimes where the computational goal
of a simplified representation conflicts with the intricacy
of the environment being represented. We also compared
the performance of the resulting filtering algorithm to a
simple particle filter implementation, and empirically found
comparable performance with similar or lower computational
effort in the low-dimensional settings considered.

The approximation strategy implemented in this paper
is motivated by simplicity, but the strict refinement policy
causes monotonic growth in the representation complexity.
Future work will consider more efficient control of quan-
tization that could include the capability to both increase
and decrease cell cardinality using adaptive refinement paired
with cell agglomeration in regions of low interest. In fact,
this technique seems especially attractive in very high-
dimensional problems where large “uninteresting” portions
of the estimation space could be combined into a small
number of cells, thus drastically reducing computational
complexity while still affording analytical leverage similar
to what we exploited in this paper.
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